
Self-discovery Algorithms for a Massively-Parallel
Computer

Kier J. Dugan, Jeff S. Reeve, Andrew D. Brown
Electronics and Computer Science

University of Southampton
Southampton, UK

{kjd1v07, jsr, adb}@ecs.soton.ac.uk

Abstract—SpiNNaker is a biologically-inspired massively-
parallel computer design that will contain over a million pro-
cessors, distributed over more than 60,000 chips. The system
bootstrap must discover how they are connected for the machine
to enter a usable state. In this paper we describe a set of algo-
rithms for discovering missing or malfunctioning inter-chip links,
assigning unique identifiers to each chip, and building point-to-
point network routing tables. All of the algorithms have been
simulated, and will be implemented into SpiNNaker after further
investigation. Our goal is to design an autonomic bootstrap stage
that can operate on arbitrary machine geometries.

Keywords—SpiNNaker; self-discovering networks; parallel
computer bootstrap procedures; self-configuration.

I. INTRODUCTION

SpiNNaker [1] is a biologically-inspired massively-parallel
computer that will contain over a million processors, dis-
tributed across more than sixty-thousand Multi-Processor
System-on-Chip (MPSoC) devices. The flagship application
for this machine is to model large neural-networks contain-
ing biologically-realistic numbers of neurons and synapses
in biological real-time [2]. Each MPSoC contains 18 ARM
processors with the intention of using 16 for simulation, one
as a monitor processor that manages communications for the
chip, and one as a spare for reliability purposes.

The network fabric of SpiNNaker follows a globally asyn-
chronous, locally synchronous (GALS) methodology which
allows each processor to exist in its own clock domain [3].
Inside each MPSoC, an asynchronous network-on-chip (NoC)
connects all of the processors to the router. These routers
communicate with each other using six inter-chip ports which
have also been inspired by NoC designs. Both networks
use m-of-n codes to provide reliable, low-latency, self-timed
communications using compact transmit/receive logic.

Four routing methods, each optimised for a specific task,
operate in parallel throughout the machine [4]. MC (multicast)
traffic is used to carry address-event representation (AER)
simulation data in a one-to-many fashion inspired by neural
connectivity patterns; FR (fixed-route) packets are a special-
isation of this, where the source-addressed routing has been
sacrificed in favour of a larger payload. P2P (point-to-point)
packets carry command and system information between two
chips of the machine in a one-to-one mapping. Finally, NN

(nearest-neighbour) packets provide a one-to-one link between
a chip and any one of its six immediate neighbours.

An ideal SpiNNaker network is an isotropic 3D torus with
extra diagonal links to facilitate triangular routing around
problematic links. Due to the scale of the final machine, there
can be no guarantee that all processors and chips will be
functional on start-up. Assigning labels and routes statically is
therefore not viable, nor can any assumptions be made about
the regularity of the structure of the machine.

Other MPSoCs avoid this issue by taking more self-
contained approach, acting as either master- or co-processors.
In the Centip3De [5] MPSoC, a 3D NoC is used to maintain
cache-coherency throughout the chip so that all 64 ARM
Cortex-M3 processors can communicate using shared mem-
ory. A similar approach has been used by Intel in their
prototype data-center-on-a-die, which reserves a small region
of shared memory as a message-passing buffer that allows
the 48 Pentium-class IA-32 processors to communicate [6].
TILE64TM [7] uses several software-controlled networks (one
also being software-routed) to connect a regular grid of 64
VLIW processors to the system RAM, on-chip peripherals, and
each other. PCI-express and Ethernet controllers provide the
inter-chip communications instead of allowing the processor
network to bridge chip boundaries as it does in SpiNNaker.

These devices either assign processor labels statically or are
structured such that they can be derived at runtime. Similarly,
conventional cluster machines assembled from commodity
computer hardware may make use of the vendor-assigned
MAC address of the network interface card as a machine
label. Higher level protocols, such as the Dynamic Host
Configuration Protocol (DHCP), can be used to automatically
assign system-wide labels from a central source.

SpiNNaker chips are, nominally, identical and hence there
is no equivalent of a MAC address available. It follows
that only NN packets may be used during the system boot
because the higher-level networks require both chip labels
and at least partial knowledge of the machine geometry. In
this paper we present a set of algorithms that will discover
missing/malfunctioning inter-chip links, assign each chip a
unique label, and then build the P2P tables. All of these
algorithms have been prototyped in simulations that mimic
the distributed interrupt-driven nature of SpiNNaker.

The rest of this paper is structured as follows: in Section II

36Copyright (c) IARIA, 2013. ISBN: 978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications

we introduce the bootstrap algorithms that eventually lead
to a constructed P2P table on each chip; Section III briefly
describes some early-stage work towards building the MC
tables; and Section IV concludes with a summary of this paper
and introduces planned future work.

II. BOOTSTRAPPING ALGORITHMS

The SpiNNaker machine does not power up with any
implied knowledge of its structure and must discover this as
part of the bootstrap procedure. Each chip has an integrated
ROM that stores a small boot program capable of initialising
the NN routing mechanism and the Ethernet controller if there
is an active connection. All cores enter the wait-for-interrupt
(WFI) state once these resources are ready, and may only
process interrupts from these sub-systems.

System software, which must be loaded into the machine
from an external host, is then distributed to all chips using
a flood-fill mechanism [8]. Existing algorithms for providing
each SpiNNaker chip with a unique label and building the
point-to-point tables are semi-automatic and require prior
knowledge. The algorithms presented in this paper aim to
remove this constraint and hence provide a more autonomic
self-discovering bootstrap process that may be applied to
arbitrary machine geometries.

A. The α-ping

Malfunctioning links are not detected during the initial
flood-fill process primarily due to the small size of the boot
ROM. After control is passed from the boot-loader to the sys-
tem software, higher-level detection algorithms may be applied
to the machine to detect faults. Completion of the flood-fill
cannot easily be detected without making assumptions about
the machine geometry. We propose the α-ping as a process
that will be incorporated into the system software and then
executed after an appropriate time-out to allow for completion
of the flood-fill.

Two tokens are passed between the monitor processors
of adjacent chips—the request token, αR, and the acknowl-
edgement token, αA. Each chip labels all local ports as
undefined immediately after executing the system soft-
ware. The host machine starts the process by injecting αR

into the Ethernet-connected chip. αR is then broadcast to
all neighbouring chips and every local port is assigned the
requested label. Chips respond to incoming αR with αA

and label the appropriate port as active; further αR are
broadcast to all other unlabelled ports and the requested
label will be attached as before. After a predetermined chip-
local time-out (for the same reasons as with the flood-fill) all
ports that are still labelled requested are assumed to have
malfunctioned and will hence be inactive.

B. Assigning Chip Labels

Each chip of the SpiNNaker machine must be assigned a
unique identifier so that P2P routes can be established. The
existing method assumes a grid topology and requires extents
in X and Y to be specified a priori by the operator [9]. A

chip will be assigned a label from a predecessor (which is an
Ethernet-connected host in the case of the root chip) and then
geometric assumptions and simple arithmetic (x mod X and
y mod Y) are used to calculate the labels for the surrounding
chips. Two clear pros of this method are that a) chip labels
are entirely deterministic so there cannot be any conflicts
during the set-up; and b) it will operate as a wave front of
parallel computation emanating from the root chip. However,
the geometric assumptions constrain the SpiNNaker machine
to a grid which may not always be an appropriate geometry.

A solution is to build a spanning tree with its root at the
Ethernet-connected chip. The generated tree structure may be
derived from an arbitrary connected graph and provides a
simple method for building hierarchical barrier, scatter and
gather constructs common in parallel computing. Chips can
also be uniquely labelled as part of the traversal process that
builds the tree.

The SpiNNaker programming model is based on events
(i.e., hardware interrupts) that are triggered either by a regular
timer tick or by a packet arrival. Deriving the spanning tree
must be performed within SpiNNaker and can only make use
of NN packets to raise events on neighbouring chips. Only
the monitor processors can take part in this process, and the
algorithm must be defined on a per-node basis rather than on
the machine-graph as a whole.

An interrupt-driven breadth-first search (BFS) is used be-
cause it should extract a wide, shallow tree from the SpiN-
Naker grid. This is desirable as it allows a large volume of the
barrier, scatter and gather communication to occur in parallel.
A sequential BFS is presently used because it ensures that
labels are generated contiguously and will therefore be unique
across the machine as illustrated by Figure 1.

1) General Algorithm Description: A node is represented
as a finite-state machine and will be in one of the following
states during the algorithm: IDLE, LABELLED, PARENT, or
BARRIER. All nodes begin in the IDLE state and enter the
BARRIER state once the tree has been successfully built.
Query-events, Q(L), and reply-events, R(L,A), are used to
transmit labels, L, between parent and child nodes and to
report the number of nodes affected by an operation, A.

For a given node, V , in the IDLE state, a label will be
attached upon the reception of an event, Q(L), containing the
new label value to use. V will then emit a reply-event, R(L, 1),
to the originator of Q to report that the label has been accepted
(i.e., A = 1 because V was the only node affected by Q). V
will then advance to the LABELLED state and hence a parent-
child relationship has been established.

A node in the LABELLED state will receive an event, Q(L),
after the parent, VP , has finished labelling its neighbour nodes.
L will be the first value that may be used as a label. V
will iterate over all neighbouring nodes (except VP) sending
Q(L+n) where n is initialised to 0 and incremented for each
R(L+n, 1) reply. Neighbours that already have been assigned
a label will respond with R(L+n, 0) and hence n will not be
incremented. This process will continue until all neighbours
of V have been visited, causing V to respond to VP with

37Copyright (c) IARIA, 2013. ISBN: 978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications

8

7

18

11

6

4

2

121

3

13

19

16

14

0

17

9

10

5

15

(a) Arbitrary machine graph

8

7

18

11

6

4

2

12

1

3

13

19

16

14

0

17

9

10

5

15

(b) Extracted tree

Fig. 1. Input graph and resulting tree for the proposed event-driven breadth-first algorithm.

R(L+n, n) before entering the PARENT state. Using Figure 1
as an example and assuming that node 0 is in the LABELLED
state (i.e., the host machine has assigned it a label of 0), it will
pass Q(1) to one of its neighbours which will then respond
with R(1, 1) to indicate that the label, 1, has been accepted. If
the target neighbour already has a label, the reply will instead
be R(1, 0) because the label has not been accepted. The next
neighbour receives Q(2) and will reply with R(2, 1), and so
on until all neighbours have been labelled.

Once in this state, V performs similar behaviour but instead
computes a running total of affected nodes, nT , which is first
initialised to 0 and then increased by nR for each reply event
R(L + nT + nR, nR) from a child node. V will respond to
its parent, VP , with R(L+nT , nT) after all child nodes have
been visited. Following from the previous example, node 0
would respond to its parent (the host, in this case) with R(3, 3)
because L = 3 was the highest label assigned to a neighbour
and A = 3 nodes were affected.

A node may, at any time, receive a barrier event, B(L),
which immediately causes the node to perform the following
actions: 1) store L as the number of nodes in the machine
graph, 2) propagate B(L) to all child nodes, and 3) transition
into the BARRIER state. No BFS events will be processed in
this state, hence this marks the completion of the algorithm.

2) Duty of the Root Node: The description in the previous
section is valid for all nodes of the graph and of the derived
tree, but the root node is required to behave slightly differently.
Its parent is the host of the simulation and will not be part of
the machine graph (an Ethernet-connected PC is the host of a
SpiNNaker-based simulation). The host will issue Q(0) to a
node VR of the target system to start the algorithm. VR will
assert itself as the root node of the machine because L = 0.
VR will progress through the states in the same manner as

any other node except that it does not require the permission
of its parent to raise new events. It therefore issues new events,
calculating appropriate values for L, and computes a running
total of the number of affected nodes, AR, for each pass. When
AR = 0, all nodes of the machine graph have been assigned
a unique label and have progressed through all the required
states, which triggers VR to perform the following:

• B(Lmax) is issued to all child nodes of VR;
• R(Lmax, 0) is issued to the host of the simulation;
• VR enters the BARRIER state.
Following the running example one final time with node

0 having labelled its neighbouring nodes and entered the
PARENT state, a random child is chosen (node 3 in the case
of Figure 1) and issued with Q(4). Node 3 follows the same
procedure as before by labelling its neighbours 4, 5 and 6.
Once complete, node 3 replies to node 0 with R(6, 3) because
L = 6 is the highest label used and A = 3 nodes were affected.
Next, node 1 is randomly chosen and issued Q(7); R(11, 5)
is raised in response after each neighbour has been visited.
Finally node 2 is issued Q(12) and responds with R(12, 1).
Node 0 can now calculate the total number of affected nodes
for this pass as AR = 3 + 5 + 1 = 9. As AR 6= 0, a random
child node is passed Q(13) and the process continues until
nodes 1, 2, and 3 all respond with R(Lmax, 0), which causes
node 0 to complete the actions described above. Figure 1a
shows a random graph that has been used as a machine model
for this algorithm. Each node represents a SpiNNaker chip and
each edge is a nearest-neighbour (NN) connection. Figure 1b
is the tree structure that has been built.

C. P2P Table Generation

Building the P2P routing tables currently uses the same
machine geometry assumptions as the labelling process [9],

38Copyright (c) IARIA, 2013. ISBN: 978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications

and must be replaced to use the BFS-assigned chip labels.
Assuming that all nodes of an arbitrary connected graph

(i.e., all chips of a SpiNNaker machine) are in the BARRIER
state, a node, Vi, transmits its label, i, to all neighbouring
nodes including those that are not child nodes. A receiving
node, Vk, with network ports E(Vk) links the incoming port,
Ej ∈ E(Vk), to Vi by setting the ith entry of its routing table
accordingly (i.e., Pk[i] = Ej). The message is then forwarded
through all ports other than Ej to continue the process.

This bootstrap stage begins with the root node broadcasting
its own label, 0, to its neighbours after all graph nodes have
entered the BARRIER state. Nodes receiving label messages
for the first time update their P2P table, propagate the message
to all neighbours except the source, and then broadcast their
own label. If a P2P table entry is already present then the
node will not broadcast further messages. A wave front of
these messages will propagate across the graph until all nodes
have a complete P2P table, which will contain L entries as
reported by the B(L) message of the labelling stage.

A second barrier condition is required to conclude the
bootstrap. Messages may now be routed between any two
nodes of the machine graph dynamically by following the
appropriate ports mapped in the P2P tables.

III. MAPPING PROBLEM GRAPHS TO MACHINE
GEOMETRIES

A SpiNNaker application is represented as a connected
graph that describes how data flows through a set of be-
haviours. Mapping these problem graphs onto the machine
is essentially a combination of assignment and path-finding
problems. SpiNNaker is optimised for simulating large-scale
neural networks in biological real-time, and hence existing
methods exploit the hierarchy of these problem graphs to
simplify allocation and routing [10][11].

These assumptions do not hold for general-purpose appli-
cations because there can be no guarantee of the structure of
the problem graph. We are developing a physically-inspired
approach that treats each node of the graph as a charged
particle contained within a volume. The field interactions
between nodes will distribute them evenly across the machine
geometry. Additional forces acting in place of the edges will
keep heavily connected areas local. Graph drawing and chip-
layout algorithms have served as two key inspirations.

Our goal is to produce an algorithm that can be solved
locally at each node without requiring any global knowledge of
the machine or problem graphs. This cannot be included in the
bootstrap because the application may change during runtime.
An ongoing supervisory process may be able to adjust node
and edge weights (i.e., their field contributions) to facilitate
dynamic load balancing without requiring global knowledge.

IV. CONCLUSION AND FUTURE WORK

We have presented a brief review of bootstrapping algo-
rithms that we are developing for use on the SpiNNaker
massively parallel computer. A breadth-first search based on
node-local information and event driven interactions is used to

assign unique labels to nodes (chips) and to support a barrier
tree structure. At present, all algorithms have been tested in
a simulation environment that accurately mimics the NN net-
work. The BFS is sequential to guarantee unique labels across
the machine but this leads to a computational complexity of
O(n). This is somewhat wasteful of the massively parallel
resources of SpiNNaker, and further work will be conducted
to parallelise this algorithm as much as is practicable.

Section III presents an idea we aim to develop that will
allow arbitrary problem graphs to be mapped onto arbitrary
machine geometries using only locally available knowledge.
Our longer term goal is to couple these algorithms to design
a system capable of reacting to system-level changes (such
as a processor or chip malfunctioning) without using global
knowledge or a central overseer. Additionally, they will allow
a problem graph to be streamed into SpiNNaker and the
allocation of problem nodes to cores, and the derivation of
network routes, will be an automatic process.

ACKNOWLEDGMENT

This work is supported by the UK Engineering and Phys-
ical Sciences Research Council (EPSRC) through grants
EP/G015775/1 and EP/G015740/1, and with industrial support
from ARM Ltd.

REFERENCES

[1] SpiNNaker home page. University of Manchester. Last Accessed: May
2013. [Online]. Available: http://apt.cs.man.ac.uk/projects/SpiNNaker/

[2] S. Furber and A. Brown, “Biologically-Inspired Massively-Parallel Ar-
chitectures - Computing Beyond a Million Processors,” in Int. Conf. on
Application of Concurrency to System Design. IEEE, 2009, pp. 3–12.

[3] L. Plana, S. Furber, S. Temple, M. Khan, Y. Shi, J. Wu, and S. Yang, “A
GALS Infrastructure for a Massively Parallel Multiprocessor,” Design
& Test of Computers, vol. 24, no. 5, pp. 454–463, Sep. 2007.

[4] S. Furber, D. Lester, L. Plana, J. Garside, E. Painkras, S. Temple, and
A. Brown, “Overview of the SpiNNaker System Architecture,” IEEE
Transactions on Computers, pp. 1–14, 2012.

[5] D. Fick, R. Dreslinski, B. Giridhar, G. Kim, S. Seo, M. Fojtik,
S. Satpathy, Y. Lee, D. Kim, N. Liu, M. Wieckowski, G. Chen,
T. Mudge, D. Sylvester, and D. Blaauw, “Centip3De: A 3930DMIPS/W
configurable near-threshold 3D stacked system with 64 ARM Cortex-M3
cores,” in ISSCC. IEEE, Feb. 2012, pp. 190–192.

[6] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl,
D. Jenkins, H. Wilson, N. Borkar, G. Schrom, and Others, “A 48-
core IA-32 message-passing processor with DVFS in 45nm CMOS,”
in ISSCC, vol. 9, no. 2. IEEE, Feb. 2010, pp. 108–109.

[7] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung,
J. MacKay, M. Reif, L. Bao, J. Brown, M. Mattina, C.-c. Miao,
C. Ramey, D. Wentzlaff, W. Anderson, E. Berger, N. Fairbanks, D. Khan,
F. Montenegro, J. Stickney, and J. Zook, “TILE64? Processor: A 64-Core
SoC with Mesh Interconnect,” in ISSCC. IEEE, Feb. 2008, pp. 88–89.

[8] M. Khan, J. Navaridas, A. Rast, X. Jin, L. Plana, M. Lujan, J. Woods,
J. Miguel-Alonso, and S. Furber, “Event-Driven Configuration of a Neu-
ral Network CMP System over a Homogeneous Interconnect Fabric,” in
8th Int. Symp. on Parallel and Distributed Computing. IEEE, 2009,
pp. 54–61.

[9] T. Sharp, C. Patterson, and S. Furber, “Distributed configuration of
massively-parallel simulation on SpiNNaker neuromorphic hardware,”
in Int. Joint Conf. on Neural Networks. IEEE, 2011, pp. 1099–1105.

[10] F. Galluppi, S. Davies, A. Rast, T. Sharp, L. Plana, and S. Furber, “A
hierachical configuration system for a massively parallel neural hardware
platform,” in Computing Frontiers. ACM Press, 2012, pp. 183–192.

[11] S. Davies, J. Navaridas, F. Galluppi, and S. Furber, “Population-based
routing in the SpiNNaker neuromorphic architecture,” in Int. Joint Conf.
on Neural Networks. IEEE, 2012, pp. 1–8.

39Copyright (c) IARIA, 2013. ISBN: 978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications

