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Abstract—Over one decade of research in engineering of self-
organization (SO) has established SO as the decentralized way
to build self-adaptive systems. However, such SO systems even
when well engineered may, under certain conditions, exhibit
unwanted dynamical behavior, e.g. performance may decrease
and/or starvation may occur. A promising concept to overcome
such dynamical in-efficiencies in SO systems is to realize the
dynamic exchange or reconfiguration of the coordination pro-
cesses responsible for the self-organizing behavior in terms of a
structural adaptation. In this paper, we propose an architecture
and engineering approach to support the self-adaptive, structural
exchange (or reconfiguration) of self-organizing coordination
processes based on distributed Multi-Agent technology. Here,
a sensor in each agent detects any decrease of specified SO
performance indicators which initiates a distributed consensus
process that allows for the exchange (or reconfiguration) of the
self-organizing coordination processes, enabling the system to
adapt to changing conditions automatically.

Keywords–Self-Organizing Systems; Multi-Agent Systems;
Structural Adaptation; Decentralized Coordination

I. INTRODUCTION

For self-organizing Multi-Agent Systems (MAS), the ca-
pability to adapt to a variety of (mostly external) influences,
i.e., their adaptivity, is a key feature. In this context, adap-
tivity describes the ability of a system to change its struc-
ture respective behavior in response to external influences
or altering demands. In addition, adaptive, self-organizing
systems still strive towards reaching (initially defined) global
goals. Looking in more detail into such adaptive systems,
they reveal many different facets. According to [1] it can
be distinguished between design-time and run-time adaptivity,
where the latter one is far more challenging. Figure 1 depicts
even more dimensions of adaptive systems. It differentiates
between approaches that only change system parameters in
order to exhibit adaptive behavior and concepts that can even
alter the whole structure respective replace certain components
of the system. Furthermore, it discerns between approaches
based on centralized or decentralized architectures and on
how the adaptivity is managed. Thereby, it is differentiated
between solutions where the adaptivity is managed manually
or automatically by the system itself. The red dot shown in the
Figure ranks the proposed solution according to the different
dimensions of adaptive systems. The approach is based on
a decentralized architecture and emphasizes structure-based
changes (while also supporting parameter-based changes). Pos-
sible adaptations are modeled manually at design-time and
executes automatically at run-time. Therefore, the solution is
ranked between manual and automatic adaptations.

Developing and operating systems that belong to this class
of adaptive systems, i.e., self-organizing systems, is a challeng-
ing task. Firstly, it requires a systematic development approach
that copes at all stages with three inherent characteristics of
these systems: non-linear dynamics, stochastic behavior and
emergent phenomena. Secondly, it requires a modular system
architecture which enables the adaptation of the structure at
runtime using highly customizable and reusable coordination
processes. These coordination processes can be understood
as standalone design elements that equip a self-organizing
system with a specific dynamic behavior. By exchanging these
coordination processes at runtime, a distributed application can
adapt not only its behavior but also its inherent structure. Thus,
enabling the system to overcome problems like performance
decrease or starvation, by adjusting the structure of its self-
organizing processes automatically. The approach presented
in this paper extends already established approaches for en-
gineering self-organizing systems by introducing a system ar-
chitecture that systematically enables structural adaptations for
distributed systems with decentralized control. It is comparable
to the reactive planning approach (local) from the BDI (belief,
desire, intention) agent architecture [2]. The system as a whole
strives towards a distributed consensus (global) to execute
predefined structural adaptations plans.

One of the many example of coordination processes in SO
systems are distributed consensus algorithms. These algorithms
establish self-organization and adaptivity, e.g., in multi-vehicle
routing and also exhibit areas in parameter space where they
get ineffective and need to get exchanged [3]. In contrast,
we will use consensus methods on a meta-control level in
this paper in order to detect thresholds for exchanging SO
mechanisms (see Figure 2 in Section III).

Accordingly, the remainder of this paper is structured as
follows: Section 2 describes related work, followed by Section
3 where the properties and engineering challenges of self-
organizing MAS are described and a test scenario is presented.
Section 4 introduces the core concept of structural adaptations
before Section 5 concludes the paper.

II. RELATED WORK

Current trends in computer science like mobile and ubiq-
uitous computing in combination with an increasing diver-
sification of hard- and software platforms challenge tradi-
tional approaches of engineering and operating distributed
systems substantially. Years ago, distributed systems were
mainly closed systems with a-priori known tasks, challenges,
and users. Nowadays, with an increasing pervasiveness of
distributed systems, they have turned into an integral part of
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Figure 1. Dimensions of adaptive systems according to [4].

the business world as well as the private life of many peo-
ple. This evolution implicates new challenges for distributed
systems. For instance, they are forced to deal with high and
unpredictable dynamics, an increasing complexity, and the sat-
isfaction of non-functional requirements like, e.g., robustness,
availability, and scalability. Altogether, this requires a new
generation of distributed systems that is capable of adapting
its behavior autonomously. This challenge is addressed by
research areas like Autonomic [5] or Organic Computing [6]
that aim at providing new approaches to solve it in a systematic
fashion. They achieve it with different types of feedback
loops, relying on (usually) centralized control elements. The
authors of [7] identify feedback loops as the key design
element within a distributed system in order to be able to
exhibit adaptivity. Here, feedback loops consist of three main
components: sensor, actuators and a computing entity. Sensors
are in charge of observing the behavior and the (current)
status of the system respective the environment it is situated
in. Actuators can change the configuration of the system,
which can either lead to parametric or structural changes. The
computing entity which serves as a connector between the
system input (sensor) and the output (actuator) can be very
different w.r.t its internal architecture and abilities [8]. For
instance, the widespread autonomic control loop [5], which
is based on a monitoring, analyzing, planning, executing and
knowledge loop (MAPE-K), contains a centralized computing
entity, which can be associated with an autonomic manager
to software and hardware components in order to equip them
with adaptive behavior. Contrasting to feedback loops, [9]
introduces a policy-based approach where the non-functional
concerns of an application are described as policies and the
application adapts itself to changing conditions controlled by
a centralized policy engine. Like the approach presented in
this paper [9] also focuses on a clean separation between
the business-logic and the self-adapting fulfillment of non-
functional requirements.

According to [10], this class of approaches, that intro-
duce centralized control concepts, can be called self-adaptive
systems. In contrast to this, there are approaches that aim
at providing automatically adaptive systems which rely on
decentralized architectures and utilize distributed feedback
loops and coordination mechanisms. They are called self-
organizing systems [10] and seem, due to their decentralized
system architecture, to be better suited to deal with the afore-

mentioned non-functional requirements. Also the concept of
self-organization has been observed in many other domains
like, e.g., biology, physics, or sociology and has, furthermore,
proven its applicability for distributed systems already before
(as, e.g., mentioned in [11] [12]).

In addition to the difference between centralized and de-
centralized feedback loops, another criterion targets the general
applicability of existing approaches that aim at providing
methods for structural adaptivity for distributed systems. Ac-
cording to [10], adaptivity defines a general system view that
can be further decomposed into so called self-* properties
of distributed systems. Therefore, there are many approaches
which target the provision of a subset of these properties
[13] [14] [15]. Whereas these approaches reach good results
with respect to specific aspects of adaptive behavior, they lack
general methods and concepts that provide structural adaptivity
in general. This, however, limits the general applicability of
these approaches and forces system developers to deal with
(completely) different approaches if there is the requirement
for more than just one type of adaptivity. Consequently, if a
system requires different self-* properties it has to incorporate
different concepts and techniques which increases the com-
plexity of related implementations considerably.

This could be improved by using approaches which are
based on structural adaptivity. However, applying them to the
concept of self-organization in decentralized systems is an
ambitious task. Especially the purposeful engineering of self-
organizing systems is challenged by their inherent non-linear
dynamics and the bottom-up development process. There is
a lack of approaches (and corresponding implementations)
that deal systematically with the whole development pro-
cess. In contrast, approaches like [16] [17] focus mainly on
early development activities as, e.g., requirement analysis or
modeling, whereas approaches like [18] [19] provide basic
implementation frameworks. Approaches like [20] [21] do pro-
vide a comprehensive development process but focus on self-
adaptive systems based on centralized control concepts. An
approach towards meta-adaptation support based on reusable
and composable adaptation components is presented in [22].
The introduced Transformer framework constructs system
global adaptation by contextually fusing adaptation plans from
multiple adaptation components. Similar to the work presented
in this paper, it focuses on decentralized structural adaptation
for multiple purposes. While the work presented here focuses
on a general engineering approach, the work presented in
[22] focuses more on the conflict resolution between different
adaptation behaviors.

In conclusion, it can be stated that there is a lack of
approaches that combine the above mentioned aspects in
order to support structural adaptivity as a basis for systematic
development of generic self-organizing systems. Therefore,
the following Section introduces an approach based on the
systematical engineering of self-organizing MAS which sup-
ports the whole development process. It uses decentralized
feedback structures and aims at supporting structural adaptivity
in general.

III. SELF-ORGANIZING MAS
The presented approach on structural adaptation of co-

ordinations processes is based on previous work on self-
organizing dynamics in MAS. Such a self-organizing dynamic
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Figure 2. Structural adaptation processes exchange or reconfigure the coordination processes responsible for the self-organizing dynamics by monitoring SO
performance indicators.

is shown in the left side of Figure 2. The MAS exhibits a
self-organizing dynamic that causes the system to adapt to
external and internal influences. The self-organizing dynamic
realizes the intended adaptivity of the software system and
is mapped by decentralized coordination processes. The pro-
cesses describe a self-organizing behavior that continuously
structures, adapts and regulates aspects of the application.
They instruct sets of decentralized coordination media and
coordination enactments. Coordination enactments and media
distinguish between techniques for the adaptation of system
elements (local entity adaptation) and realizations of agent in-
teractions (information propagation). Together they control the
microscopic activities of the agents, which on a macroscopic
level lead to the manifestation of the intended self-organizing
dynamic. The integration of the coordination enactments and
media is prescribed by the coordination process definitions,
which structure and instruct their operations. Thus the self-
organizing dynamic of the MAS is described by coordination
processes, which model the intended adaptivity of the system.
On a technical level these processes instruct coordination
enactments and media which realize the intended adaptivity.

Conceptually speaking, structural adaptations for self-
organizing systems means an adaptation of the coordina-
tion processes, as they describe the system’s intended self-
organizing dynamic. The right side of Figure 2 illustrates
this concept. The MAS exhibits structural adaptations which
influence and observe the self-organizing dynamic. Similar
to the self-organizing dynamic, the structural adaptations are
described by processes. They define adaptation conditions,
which specify states of the system where the self-organizing
dynamic should be altered. This alteration is realized by
prescribed adaptation activities, which are triggered due to
specified SO performance indicators. Ineffective coordination
processes are deactivated if the system’s behavior becomes
deficient and therefore other coordination processes are acti-
vated in exchange. This results in a structural adaptation of
the coordination process composition. This means, on a lower
level, if the system’s behavior is not deficient but measured
inefficient, the active coordination processes are reconfigured
by parametric adaptations. The structural adaptation processes
instruct adaptation enactments to monitor the agents with re-
gard to the SO performance indicators. In both cases (structural
or parametric adaptation), it is necessary that the system’s
entities find a consensus whether or not the adaptations should

be performed. Therefore, a distributed consensus method is
utilized in order to come to a decision about the execution of
the adaptation. In case of a positive decision it is performed
by manipulating the relevant coordination processes.

A. Coordination Enactment Architecture
The work on structural adaptations is based on a previ-

ously published tailored programming model for the software-
technical utilization of coordination processes as reusable
design elements [23]. The programming model provides a
systematic modeling and configuration language called MAS-
Dynamics and a reference architecture to enable the enactment
of pre-described coordination models called DeCoMAS [24]
(Decentralized Coordination for Multi-Agent Systems). The
architecture is based on the clean separation of activities
that are relevant to the coordination of agents and the sys-
tem’s functionality. Therefore, coordination processes can be
treated as first class design elements that define application-
independent coordination interdependencies. Figure 3 illus-
trates the layered structure of the coordination enactment
architecture. The functionality of the MAS is mapped by the
application layer. The coordination logic is realized as an
underlying layer. This layer provides a set of coordination
media which provide the required coordination mechanisms.
They build the infrastructure that allows the agents to exchange
application independent coordination information and control
the information dissemination. Thus, the coordination media
are the technical realization of previous described coordination
processes. The agents communicate with the coordination
media using their coordination enactments (cf. Figure 3(B)).
The enactments influence and observe the agent activities (1)
and exchange information that is relevant for the coordination
via the coordination media (2). The local configuration of
these activities, e.g., when to publish information and how
to process perceptions, is defined in a declarative, external
coordination model (3) written in the MASDynamics language.
Coordination is declaratively described to support the reuse of
coordination pattern in different applications. This architecture
focuses on the transparent separation of application and coor-
dination logic, meaning that agent models are not modified
by the coordination logic. This allows the supplement of
coordination to existing applications. A recent example on how
this architecture can be implemented to realize decentralized
coordination in self-organizing systems based on Peer-to-Peer
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technology is described in [25].
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Figure 3. Coordination enactment architecture [26].

B. Engineering Self-Organizing MAS
The engineering of structural adaptations of coordination

processes is part of an existing engineering approach for self-
organizing MAS developed in the SodekoVS project [27].
Part of the project was the development of the Coordination
Enactment Architecture. The project aims at providing self-
organizing processes as reusable elements that developers can
systematically integrate into their applications. The utilization
of self-organization in software engineering is addressed by
providing a reference architecture to offer a conceptual frame-
work for the configuration and integration of self-organizing
processes. The integration is guided by adjusting methodical
development procedures. Following this, coordination media
are made available as middleware services. A minimal intrusive
programming model allows developers to configure and inte-
grate representations of nature-inspired coordination strategies
into their applications. Figure 4 denotes the conceptual view on
integrating self-organization. Incremental development activi-
ties are supplemented with activities that address the manifes-
tation of self-organizing phenomena (I-V). While developers
design the functionality of their applications, they revise the
decentralized coordination of component activities in inter-
leaved development activities. Supplements to the requirements
activities (I) facilitate the description of the intended applica-
tion dynamics. During analysis activities (II) it is examined
which instances or combinations of coordination metaphors
can lead to the required adaptivity. Design activities (III) detail
the models of selected coordination strategies and configure the
coordination media that are used for their realization. These
activities prepare the implementation and integration (IV) of
medium instances to be configured and accessed by a generic
usage interface. Testing (V) activities are supplemented with a
simulation-based validation that agent coaction meets the given
requirements, i.e., manifests the intended adaptiveness. The
whole development process, as described in [27], is designed
as a iterative process. Based on the results of the simulation-
based validation, the self-organized coordination processes are
redesigned until they achieve the intended adaptivity. Either
based on the validation results or as an result of the initial
analysis it may be observed that certain coordination processes
or certain process configuration are only suitable for certain
conditions but become deficient or insufficient for others. In
this case it is practical to utilize structural adaptations for the
re-composition of coordination processes or, on a lower level,
parametric adaptations for the reconfiguration of coordination

Figure 4. SodekoVS development activities following [27].

parameters. The key challenge hereby is to identify these con-
ditions that require a structural (or parametric) adaptation and
map them to SO performance indicators. As an addition to the
existing engineering approach this paper propagates anticipated
structural adaptations. Following the same iterative approach
as designing and implementing the coordination processes, the
adaptations should also be designed and implemented in a
iterative way. The conditions that require adaptations should
be identified based on the requirements and analysis activities
and redefined by the results of a simulation-based validation.

C. Example: MarsWorld Coordination
This paper utilizes the MarsWorld scenario to explain the

following concepts and their usage. The scenario is based on
an application setting presented in [28]. A set of autonomous
robots is sent to the planet of Mars to mine ore. The mining
process consists of three distinct activities: (1) analyze loca-
tions to verify the presence of ore, (2) the mining or production
of the ore and (3) transporting the mined ore to a homebase.
The robots in this scenario are controlled by software agents,
which are specialized to perform one of the distinct mining
operations. The Sentry agents are equipped with sophisticated
sensors to analyze potential ore locations, Producer agents
have the capability to mine ore deposits at analyzed locations
and the Carry agents can transport the mined ore to the
homebase. Obviously as none of the three agents types is able
to mine alone, the agents need to work together to achieve
their collaborative goal. Therefore, this scenario is chosen for
the case study, as the agents require some sort of coordination
in order to achieve the collaborative goal.

The Sentry agents analyze potential ore deposits and inform
the Producer agents whether or not ore can be mined there.
The Producers mine the ore at the analyzed deposits and
inform the Carry agents about it, so they can carry it to
the homebase. Initially all agents explore the environment
randomly. All agents have sensors to find potential ore de-
posits. If Producer or Carry agents encounter any potential
deposits, they inform a Sentry agent. Sentry agents that have
encountered a potential deposit or were informed about one,
analyze the deposit. When they have verified the presence of
ore at the location they request a Producer agent to mine the
ore. Accordingly, after mining the ore Producers request a
Carry agent to transport it to the homebase.

As the MarsWorld example exhibits no predefined organi-
zational structure the agents need to be coordinated in order to
achieve their collaborative goal. Based on the communication
between the agents three coordination processes are needed to
handle the information distribution:

1) Coordination information the Producer and Carry
agents send to the Sentry agent, when they en-
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countered potential ore deposits while exploring the
environment.

2) Coordination information the Sentry agents send to
Producer agents when they have analyzed a potential
ore deposit and found ore to mine there.

3) Coordination information the Producer agents send
to the Carry agents after ore was mined and is now
ready for transportation to the home base.

As a simple example a coordination process manifestation
based on a neighborhood approach is envisioned. In this case,
each coordination process selects the agent of the appropriate
type, which is nearest to the emitting agent. By selecting the
nearest agent it is ensured that the informed agents have to
travel the minimal distance to reach the designated destination.
If the environment consists of multiple ore deposit clusters,
characterized by a small distance between the ore deposits
in the cluster and a large distance to the next cluster, this
coordination approach lets the agents form local groups in
a self-organized way. Thus, the different agent types will
organize themselves in an emergent way.

Of course the coordination processes based on this ap-
proach require knowledge about the current positions of each
agent. In the case study, the environment is equipped with
a positioning service offering this information. The three
coordination process realizations utilize the service in order to
distribute the coordination messages to the nearest matching
agent. This results in the realizations of the following three
coordination processes:

• latest target seen nearest: Whenever a Producer or
Carry agent has encountered a potential ore deposit,
this coordination process selects the Sentry agent
nearest to the location of the Producer or Carry agent
and informs it about the deposit. The Sentry agent
adds the location to its queue and eventually analyzes
it.

• latest target analyzed nearest: After a Sentry has an-
alyzed a potential ore deposit and actually found ore
there, this coordination process selects the Producer
agent nearest to the location and calls it to mine ore
here.

• latest target produced nearest: When a Producer
agent has completely depleted the ore deposit, this
coordination process selects and informs the Carry
agent nearest to the location, so that it can transport
the mined ore to the homebase.

Technical speaking, the coordination processes are described
declaratively with the MASDynamics language. The DeCoMAS
framework initializes the Coordination Enactments for the
participating agents at application start time. These enactments
monitor the agents and whenever one of the described Co-
ordination Events occurs, the according Coordination Infor-
mation is sent to the nearest matching agent. This is done
by facilitating a Coordination Medium, which makes use of
the environments positioning service to determine the nearest
matching agent. The Coordination Enactment of the receiving
agent triggers a Coordination Event, when the Coordination
Information is received, letting the agent react based on its
defined behavior.

IV. STRUCTURAL ADAPTATION OF COORDINATION
PROCESSES

This Section presents the structural adaptation architecture
and the extension of the MASDynamics language for describing
the adaptations in a declarative way. Also, an example for
a structural adaptation based on the MarsWorld scenario is
introduced.

A. Adaptation Architecture

The previous described Coordination Enactment architec-
ture was extended by the introduction of so called Adaptation
Enactments, to enable structural adaptations of coordination
processes. Similar to Coordination Enactments, which were
introduced to equip applications with coordination capabilities,
the Adaptation Enactments equip applications with the capa-
bility to structural adapt coordination processes at runtime.
Figure 5 shows the extension of the Coordination Enact-
ment architecture. The Adaptation Enactments are part of
the coordination layer and therefore independent from the
system’s functionality (supporting a clean separation between
application and coordination logic). They observe the agents
similar to the Coordination Enactments. But contrasting to the
Coordination Enactments they do not influence the agents,
but the coordination media, which are the technical real-
ization of the coordination processes. As described before,
the Coordination Enactments influence and observe the agent
activities and exchange information relevant for coordination
via a coordination medium. As shown in the Figure, the Adap-
tation Enactments consists of two components. The Monitor
observes specified SO performance indicators as part of the
agent, and in case of a decreased performance, determined
by a specified condition, it initiates a consensus process for
structural adaptations. The Service is used as an interface for
the distributed consensus process. It offers generic consensus
interface methods to support different consensus approaches
(e.g., voting).

Figure 5. Adaptation architecture.

An example for a simple consensus algorithm is the follow-
ing voting scheme. When the Adaptation Enactment Monitor
of an agent observes a decreased performance, it initializes
a distributed voting attempt and acts as leader of this vote.
Utilizing the service interface it presents a suggested adaption
to the other agents. Based on their local information (state of
the agent), the called Adaptation Enactment Services decide
whether or not to agree on the proposed adaptation and inform
the vote leader about their decision. The leader analyzes the
received votes and decides if the required majority for the
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adaptation was reached. If so the suggested adaption is com-
mitted by activating or deactivating the affected coordination
media, respective by changing their coordination parameters.

B. Adaptation Description
To describe structural adaptations the MASDynamics lan-

guage was extended to support the declarative description
of possible adaptations. These adaptations are described at
design time and executed at runtime. As described before,
structural adaptation of coordination processes can be realized
by exchange or reconfiguration of coordination processes.
Therefore, the already realized description of coordination pro-
cesses was extended to indicate whether or not a coordination
process is active at start time. This allows a developer to
define multiple coordination processes with different behavior
at design time, from whom only a subset may be active
at start time. Furthermore, the MASDynamics language was
extended with the following elements to describe these possible
adaptations: The first part concerns the types of agents that
are allowed to participate in the adaptation process. The
DeCoMAS framework creates Adaptation Enactments for this
types of agents, so they can be monitored with regards to
specified performance indicators and are able to participate
in the decision making process.

The second part concerns the actual adaptations. Each
adaptation is identified by a unique id and a reset flag. The
reset flags specifies if the performance indicator should be reset
after a failed adaptation attempt. It can be used to prevent
repeated adaptation attempts flooding the system, if only a
subset of agents are subjected to bad performance indicators,
while the majority of the systems still performs well and in
that case would not agree on an adaptation. Further information
in the adaptation description concerns the consensus process.
It includes a minimum total number of answers a vote leader
awaits, before it starts to evaluate the results from an adaptation
attempt it started. Also the required quorum that has to be
reached, before a structural adaptation may be accepted is
specified. A timeout after which the vote leader will start to
evaluate it, even if it has not received the required number of
answers can also be specified. Furthermore, it is possible to
delay an adaptation attempt if specified. Also, an adaptation
can be blocked for a certain amount of time at start time, to
avoid oscillation problems (startDelay).

Besides the information concerning the adaptation process,
the description also contains information about the affected
coordination processes. This includes the realization id of
the affected coordination processes and the information if
the process should be activated or deactivated, respective
which parameter of the coordination process should be altered
to which value. The last information needed for structural
adaptations are the constraints regarding the agents state. For
each agent type, they specify which element should be used as
a SO performance indicator. They contain a condition and a
threshold. The condition is used by the Adaptation Enactments
Monitor, to point out if the performance indicator has become
deficient for the specified agent and therefore, if an adaptation
attempt should be started. When the Adaptation Enactment
Service of an agent receives an adaptation request, it uses
the threshold to determine whether or not it should agree to
the proposed adaptation. Therefore, the threshold allows the
specification of an insufficient performance indicator that is not

as as strict as the actual condition, which would force the agent
to start an adaptation attempt by itself. The threshold maps a
negative trend allowing the agent to anticipate an insufficient
performance.

C. Example: MarsWorld Structural Adaptation
In order to test the structural adaptations at runtime, the

MarsWorld scenario was extended with an other manifestation
of the three coordination processes described in Section III-C.
The new manifestation is based on a simple random selection
approach and therefore, does not exhibit any self-organizing
behavior. In this case, each of the coordination processes
randomly selects an agent of the appropriate type and informs
it about the sensed, analyzed or produced ore.

Arguably, the coordination process manifestations that are
based on the neighborhood approach will perform better, as
the formation of local mining groups around the ore clusters
minimizes the distance the agents have to travel, before they
can analyze, produce or transport ore and therefore, optimizes
the overall mining efficiency. But these coordination processes
depend on the positioning service offered by the environment.
If this service fails, the coordination processes will not be
able to select the nearest agents, thus, they will not be able
to inform the according agents. In such a case the application
would benefit from the capability to structurally self-adapt and
to switch to the random-selection based coordination process
manifestations.

The goal is to deactivate the location based coordination
processes, when the positioning service offered by the envi-
ronment fails. As compensation the random selection based
coordination processes will be activated. The agents have no
knowledge about the fact that the positioning service has failed
in this scenario conception. But they can measure the time
that has passed since they have received the last coordination
information. If they have not received any messages within a
given time, they assume that something went wrong and the
positioning service is broken. In this example, an agent waits
20 seconds until it assumes a malfunction and initializes a
voting process acting as leader. Of course it is possible that
agents have not received any coordination information within
this time frame for other reasons. Therefore, they have to find
a consensus, whether or not the coordination processes should
be adjusted to overcome local phenomena. Agents that have
received a voting requests determine if they have received any
coordination information within the last 15 seconds (threshold)
and if so vote yes. The agent, which started the voting process
waits until it has received all the voting results (this is a
simplification because in this small scenario we neglect any
message lost) and evaluates them. If the required majority of
75% has been reached, the structural adaptation is performed.
At start time, the adaptation capability is blocked for 30
seconds, because it may take a while before the first potential
ore deposits are sensed and therefore, the system might adapt
prematurely because of oscillation problems.

To measure the impact of the structural self-adaptation 50
simulations run with the location-based coordination processes
active at start time were executed. After 60 seconds a failure in
the environment’s positioning service was simulated. Thus, the
coordination processes were no longer able to select the nearest
agent and therefore, were not able to distribute the coordination
information. The adaptation capability was blocked for 30
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Figure 6. Evaluation of the Structural Adaptations for the MarsWorld (axis
are described in the text).

seconds at start time, so 50 seconds had to pass before first
voting attempts were started. Figure 6 shows the evaluation
results of the self-adaptation. The x-axis denotes the time in
1/10 second steps. The y-axis shows the total number of voting
attempts, the percentage of simulated failures in the positioning
service and the percentage of adaptations. The Figure shows
how the simulated failure in the location service occurred after
60 seconds have passed (deviations are caused by inaccuracies
of the MAS platform’s clock). It took 50 seconds before first
voting attempts occurred. This is the shortest possible amount
of time been passed before agents could observe the absence
of any coordination information within the last 20 seconds.
As Figure 6 shows, the percentage of voting attempts grows
until all systems have performed the adaptation. In this case the
adaptation was configured as unique, so after it was performed,
no further voting attempts were undone.

The results also show that in approximately 50% of the
simulation runs voting attempts occurred before the actual
failure has arisen. This behavior can be explained by the
random exploration of the environment and the communication
cascades. Carry agents only receive coordination information
after sentry agents have sensed ore and producer agents have
mined it. If only a few ore deposits have been sensed after
50 seconds, the majority of the agents will not have received
any coordination information until this time and therefore,
interpret the absence of such messages as a potential failure.
Thus, voting for an adaptation. A higher blocking time for the
adaptation capability at start time or higher observation and
threshold values would lead to fewer premature adaptations.
On the other hand this would lead to a higher response time
before the system adapts itself after a failure. As described
before, suitable parameters have to be identified as part of the
iterative, simulation driven engineering approach. The Figure
also shows the relative number of coordination messages
in relation to the number of coordination messages from a
scenario were no failure occurs and therefore, no adaptation
was needed. The curved line shows that there is no significant
deviation between the two scenarios until the failure occurred.
When the failure occurs the number of messages slides down
in relation to the failure-free scenario. After the self-adaptation

took place, the number of messages rises again to the level of
the failure-free scenario. This shows how the self-adaption is
able to repair a deficient behavior.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented an architecture and engineering
approach for structural adaptations in self-organizing MAS
to realize the dynamic exchange or reconfiguration of self-
organizing coordination processes. It aims at supporting struc-
tural adaptations in general, rather than focusing on single
self-* properties. The approach consists of a generic system
architecture that governs the development of self-organizing
MAS and a description language that supports the declarative
description of coordination processes and pre-described struc-
tural adaptations, which can be processed by the corresponding
framework automatically. It is supported by an engineering
process consisting of incremental development activities that
are supplemented with activities that address the manifesta-
tion of self-organizing behavior. The approach supports the
modularization of coordination, which enables reusability and
interoperability of coordination processes. It propagates a clear
separation between application functionality and coordination,
allowing developers to implement coordination without the
need to change the applications business logic. Furthermore,
with the introduction of structural adaptations of coordination
processes it supports the self-adaptive structural exchange or
reconfiguration of self-organizing processes. By detecting any
decrease of specified SO performance indicators, the Adap-
tation Enactment extension initiates a distributed consensus
process, that allows for the exchange or reconfiguration of
the self-organizing processes to adapt to changing conditions
automatically. Since the approach uses a set of coordination
processes to be defined at design time, it is conceptually
comparable to the reactive planning approach in a single BDI
agent (local planing), but it strives towards finding a global
structural adaptation plan for the system as a whole.
The presented framework was used in the MarsWorld scenario
to realize a collaborative application in which three different
types of agents needed to be coordinated, in order to mine ore
on Mars. Therefore, three different coordination processes with
two different manifestations (random or proximity-based) were
implemented. The scenario was used as a proof of concept, to
show how structural adaptations of coordination processes can
be used. A specified SO performance indicator pointed out that
an agent has not received any coordination messages within a
given time, which led to an exchange of coordination processes
at runtime.
Arguably, this work is still in progress and therefore, both the
implemented distributed voting scheme as a consensus method
and the MarsWorld scenario are kept quite simple and offer
room for improvement. Future work will focus on these two
aspects. A more sophisticated distributed consensus algorithm
with a strong focus on decentralized coordination will be
developed to replace the proof of concept voting scheme. Also
the approach will be tested on more realistic and complex
scenarios (e.g., the self-organized redistribution of bicycles in a
bike sharing system [29]) involving different types of structural
adaptations, in order to analyze which scenarios will profit
from such adaptations and to improve the overall engineering
approach.
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