
Coordination-level Adaptation in Distributed Systems

Ichiro Satoh
National Institute of Informatics

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
ichiro@nii.ac.jp

Abstract—This paper proposes a framework for adapting the
behaviors and coordinations of software agents to changes in
distributed systems. It is unique to other existing approaches
for self-adaptation because it introduces the notions of differ-
entiation in cellular into real distributed systems. When an
agent delegates a function to another agent coordinating with
it, if the former has the function, this function becomes less-
developed and the latter’s function becomes well-developed.
The framework was constructed as a middleware system
and allowed us to define agents as Java objects written in
JavaBean. We present several evaluations of the framework in
a distributed system instead of any simulation-based systems.

Keywords-Differentiation; Distributed System; Coordination.

I. INTRODUCTION

Distributed systems are dynamic and complicated by
nature and may partially have malfunctioned, e.g., network
partitioning. Their scale and complexity are beyond the
ability of traditional management approaches, e.g., cen-
tralized and top-down ones. Distributed systems should
adapt themselves to changes in their system structures,
including network topology, and the requirements of their
applications. Many researchers have explored adaptations
for distributed systems. The author proposed an approach to
adapting behaviors in software components that a distributed
application consisted of without any centralized and top-
down management systems [9]. The approach was inspired
by a natural adaptation, called cellular differentiation, which
was a mechanism by which cells in a multicellular or-
ganism become specialized to perform specific functions
in a variety of tissues and organs. The approach could
differentiate their functions according to their roles in whole
applications and resource availability, as just like cells.
It involves function matching as differentiation factors in
functions, where service matching is the process of com-
paring the function request against the available function
advertisements and determining which function best satisfies
the request. When a component delegates a function to
another component, if the former has the function, its
function becomes less-developed in the sense that it has less
computational resources, e.g., active threads, and the latter’s
function becomes well-developed in the sense that it has
more computational resources.

This paper presents the second step of our approach.

The previous approach supports adaptations only at internal
behaviors of software components [9], because it could
not adapt coordinations between components. The proposed
approach presented in this paper aimed at adaptations in
coordinations between more than one component in addition
to the internal behaviors of components. Although existing
attempts for adaptive coordinations between computers have
been explored, our approach has two notable advantages.
The first is to manage adaptive coordinations without any
centralized and top-down management systems. The second
is keep consistency between adaptations in multiple comput-
ers, because adaptive coordinations need to be supported at
more than one computer. Adaptations for distributed systems
have several unique requirements that adaptaions for non-
distributed systems do not have. Since a distributed system
consists of multiple computers, adaptations tend to affect
behaviors on more than one computer. However, adaptations
may not be synchronized. Therefore, when some computers
achieved their adaptations, others may not yet. In particular,
adaptations for coordinations between multiple computers
needs their adaptations need to be synchronized.

The remainder of this paper is structured as follows. In
Section II, we present the related work. Section III discusses
the basic approach and Section IV presents the design
and implementation of our proposal. Section V evaluates
the implementation and Section VI describes applications.
Section VII gives some concluding remarks.

II. RELATED WORK

This section discusses several related studies on software
adaptation in distributed systems. Existing can be classified
into four types, parameter-level, software-level, location-
level, and coordination-level adaptations. Although the first
and second approaches are common in non-distributed sys-
tems, the third and fourth are available only in distributed
systems.

The first is to adapt system parameters, e.g., durations of
timeouts and the amount of available resources to changes
in distributed systems. Adaptations in the type tend to
be limited. The second is to adapt software for defining
components running on computers. It enables behaviors of
software in distributed systems to be adapted to changes in
the systems. As mentioned previously, our previous approach
is in the type. One of the most typical approaches of the type

15Copyright (c) IARIA, 2015. ISBN: 978-1-61208-391-9

ADAPTIVE 2015 : The Seventh International Conference on Adaptive and Self-Adaptive Systems and Applications

is genetic programming [6]. The fitness of every individual
program in the population need to be evaluated in each gen-
eration and multiple individuals are stochastically selected
from the current population based on their fitness. However,
since distributed systems may have an effect on the real
world and be used for mission-critical processing, there is
no chance of ascertaining the fitness of randomly generated
programs. Blair et al. [1] tried to introduce self-awareness
and self-healing into a CORBA-compatible Object Request
Broker (ORB). Their system was a meta-level architecture
with the ability of dynamically binding CORBA objects. The
aim of resource management strategy is to maximize the
profits of both customer agents and resource agents in large
datacenters by balancing demand and supply in the market.
Several researchers have addressed resource allocation for
clouds by using an auction mechanism. For example, Lin et
al [7] proposed a mechanism based on a sealed-bid auction.
The cloud service provider collected all the users’ bids and
determined the price. Zhang et al. [12] introduced the notion
of spot markets and proposed market analysis to forecast the
demand for each spot market.

The third is location-level adaptations. Suda et al. pro-
posed bio-inspired middleware, called Bio-Networking, for
disseminating network services in dynamic and large-scale
networks where there were a large number of decentralized
data and services [8], [10]. Although they introduced the
notion of energy into distributed systems and enabled agents
to be replicated at and moved to suitable computers accord-
ing to the number of service requests from clients, where
the selection of computers depends on distances between
agents and clients. As most of their parameters, e.g., energy,
tended to depend on a particular distributed system, so
that they may not have been available in other systems.
Our approach should be independent of the capabilities of
distributed systems as much as possible.

The fourth is coordination-level adaptations. Jaeger et al.
[4] introduced the notion of self-organization to ORB and
a publish/subscribe system. Georgiadis et al. [3] presented
connection-based architecture for self-organizing software
components on a distributed system. Like other software
component architectures, they intended to customize their
systems by changing the connections between components
instead of internal behaviors inside the components. Cheng
at al. [2] presented an adaptive selection mechanism for
servers by enabling selection policies, but they did not
customize the servers themselves. They also needed to
execute different servers simultaneously. There have been
many attempts to apply self-organization into distributed
systems, e.g., a myconet model for peer-to-peer network
[11]. There has been no attempts in the third and fourth
types that keep consistency between adaptions at multiple
computers.

III. BASIC APPROACH

This paper introduces the notion of (de)differentiation into
a distributed system as a mechanism for adapting coordina-
tions between software components, which may be running
on different computers connected through a network.

Differentiation-inspired coordination-level adaptation:
This mechanism was inspired by differentiation in dic-
tyostelium discoideum. When dictyostelium discoideum
cells aggregate, they can be differentiated into two types:
prespore cells and prestalk cells. Each cell tries to become a
prespore cell and periodically secretes chemical substance,
called cAMP, to other cells. If a cell can receive more than
a specified amount of the substance from other cells, it
can become a prespore cell. There are three rules. 1) the
substance chemotaxically leads other cells to prestalk cells.
2) A cell that is becoming a prespore cell can secrete a
large amount of the substance to other cells. 3) When a cell
receives more substance from other cells, it can secrete less
substance to other cells.

Each agent has one or more functions with weights, where
each weight corresponds to the amount of the substance
and indicates the superiority of its function. Each agent
initially intends to progress all its functions and periodically
multicasts restraining messages to other agents federated
with it within the domain of current networks. Restraining
messages lead other agents to degenerate their functions
specified in the messages and to decrease the superiority of
the functions. As a result, agents complement other agents
in the sense that each agent can provide some functions to
other agents and delegate other functions to other agents that
can provide the functions. Finally, functions that are often
delegated to other agents, and then become inactive in the
sense that they lose their computational resources.

Consistency in distributed adaptations: Coordination-
based adaptations often need to modify protocols and
application-logics in multiple computers. Such modifications
are often required to be synchronized. Suppose an adaptation
for coordination between two computers. While the first
computer achieved its modification for the adaptation and
another does not yet, if coordination between them happen,
their coordination may be inconsistent, because the protocol
or application-logic of one computer does not match with
that of the another. To solve this problem, we introduce
a synchronization mechanism for blocking coordinations
among computers until the computers that do the coordi-
nations complete their adaptations.

IV. DESIGN AND IMPLEMENTATION

Our approach is maintained through two parts: runtime
systems and agents. The former is a middleware system
for running on computers and the latter is a self-contained
and autonomous software entity. It has three protocols for
(de)differentiation and delegation.

16Copyright (c) IARIA, 2015. ISBN: 978-1-61208-391-9

ADAPTIVE 2015 : The Seventh International Conference on Adaptive and Self-Adaptive Systems and Applications

A. Adaptive agent

Each agent is an autonomous programmable entity and
consists of one or more functions, called the behavior parts,
and its state, called the body part, with information for
(de)differentiation, called the attribute part. These parts are
implemented as a set of Java objects. We can define each
agent as a single JavaBean, where each method in JavaBean
needs to access the database maintained in the body parts.

• The body part maintains program variables shared by
its behaviors parts like instance variables in object
orientation. When it receives a request message from an
external system or other agents, it dispatches the mes-
sage to the behavior part that can handle the message.

• The behavior part defines more than one application-
specific behavior. It corresponds to a method in object
orientation. As in behavior invocation, when a message
is received from the body part, the behavior is executed
and returns the result via the body part.

• The attribute part maintains descriptive information
with regard to the agent, including its own identifier.
The attributes contains a database for maintaining the
weights of its own behaviors and for recording infor-
mation on the behaviors that other agents can provide.

The agent has behaviors bk1 , . . . , b
k
n and wk

i is the weight
of behavior bki . Each agent (k-th) assigns its own maximum
to the total of the weights of all its behaviors. The W k

i is
the maximum of the weight of behavior bki in k-th agent.
The maximum total of the weights of its behaviors in the
k-th agent must be less than W k. (W k ≥

∑n
i=1 wk

i), where
wk

j − 1 is 0 if wk
j is 0. The W k may depend on agents. In

fact, W k corresponds to the upper limit of the ability of each
agent and may depend on the performance of the underlying
system, including the processor. Note that we never expect
that the latter will be complete, since agents periodically
exchange their information with neighboring agents. Fur-
thermore, when agents receive no retraining messages from
others for longer than a specified duration, they remove
information about them.

The approach offers two communication policies for in-
tercomponent interactions.

• If a component declares a forward policy for another,
when specified messages are sent to other components,
the messages are forwarded to the latter as well as the
former.

• If a component declares a delegate policy for another,
when specified messages are sent to the former, the
messages are forwarded to the latter but not to the
former.

The former policy is useful when two components share the
same information and the latter policy provides a master-
slave relation between them. The framework provides three
interactions: publish/subscribe for asynchronous event pass-

ing, remote method invocation, and stream-based communi-
cation as well as message forward and delegate policies.

Body
part

Attribute
part

Agent B

(b) Progression/Regression phase

(c) Differentiated phase

Restraining
message

Well-developed Less-developed

Agent A

Agent B

(a) Invocation phase

Request message

w1 5 Behavior 1

w2 5 Behavior 2

w15Behavior 1

w25Behavior 2

Body
part

Attribute
part

Body
part

Attribute
part

Agent A

Agent B

w1 5 Behavior 1

w2 5 Behavior 2

w15Behavior 1

w25Behavior 2

Body
part

Attribute
part

Body
part

Attribute
part

Agent A

Agent B

w1 6 Behavior 1

w2 5 Behavior 2

w14Behavior 1

w25Behavior 2

Body
part

Attribute
part

Agent B

Agent B

(d) Dedifferentiated phase

Initial weight

Body
part

Attribute
part

Agent A

Agent B

w1 5 Behavior 1

w2 5 Behavior 2

w15Behavior 1

w25Behavior 2

Body
part

Attribute
part

Agent B

Initial weight

Figure 1. Differentiation mechanism for agent

B. Adaptive coordination

Next, we describe our differentiation-inspired adaptation
mechanism.

1) Removing redundant functions: Behaviors in an agent,
which are delegated from other agents more times, are well
developed, whereas other behaviors, which are delegated
from other agents fewer times, in a cell are less developed.
Finally, the agent only provides the former behaviors and
delegates the latter behaviors to other agents.

1: When an agent (k-th agent) receives a request message
from another agent, it selects the behavior (bki) that
can handle the message from its behavior part and
dispatches the message to the selected behavior (Figure
1 (a)).

2: It executes the behavior (bki) and returns the result.
3: It increases the weight of the behavior, wk

i .
4: It multicasts a restraining message with the signature

of the behavior, its identifier (k), and the behavior’s
weight (wk

i) to other agents (Figure 1 (b)).
The key idea behind this approach is to distinguish between
internal and external requests. When behaviors are invoked

17Copyright (c) IARIA, 2015. ISBN: 978-1-61208-391-9

ADAPTIVE 2015 : The Seventh International Conference on Adaptive and Self-Adaptive Systems and Applications

by their agents, their weights are not increased. If the
total weights of the agent’s behaviors,

∑
wk

i , is equal to
their maximal total weight W k, it decreases the minimal
(and positive) weights (wk

j is replaced by wk
j − 1 where

wk
j = min(wk

1 , . . . , w
k
n) and wk

j ≥ 0). The above phase
corresponds to the degeneration of agents.

1: When an agent (k-th agent) receives a restraining
message with regard to bji from another agent (j-th)
, it looks for the behaviors (bkm, . . . bkl) that can satisfy
the signature specified in the receiving message.

2: If it has such behaviors, it decreases their weights
(wk

m, . . . wk
l) and updates the weight (wj

i) (Figure 1
(c)).

3: If the weights (wk
m, . . . , wk

l) are under a specified value,
e.g., 0, the behaviors (bkm, . . . bkl) are inactivated.

C. Invocation of functions

When an agent wants to execute a behavior, even if it has
the behavior, it needs to select one of the behaviors, which
may be provided by itself or others, according to the values
of their weights.

1: When an agent (k-th agent) wants to execute a behavior,
bi , it looks up the weight (wk

i) of the same or
compatible behavior and the weights (wj

i , . . . , w
m
i) of

such behaviors (bji , . . . , b
m
i).

2: If multiple agents, including itself, can provide the
wanted behavior, it selects one of the agents according
to selection function ϕk, which maps from wk

i and
wj

i , . . . , w
m
i to bli, where l is k or j, . . . ,m.

3: It delegates the selected agent to execute the behavior
and waits for the result from the agent.

The approach permits each agent to use its own evaluation
function, ϕ, because the selection of behaviors often depends
on its application and coordination. Although there is no
universal selection function for mapping from behaviors’
weights to at most one appropriate behavior like a variety
of creatures, we can provide several functions.

D. Increasing resources for busy functions

The approach also provides a mechanism for duplicating
agents, including their states, e.g., instance variables, as well
as their program codes and deploying a clone at a runtime
system. It permits each agent (k-th agent) to create a copy
of itself when the total weights (

∑n
i=1 w

k
i) of functions

(bk1 , . . . , b
k
n) provided in itself is the same or more than a

specified value. The sum of the total weights of the original
agent and those of the clone agent is equal to the total
weights of the original agent before the agent is duplicated.
The current implementation supports two conditions. The
first permits each agent (k-th) to create a clone of it when
the total of its weights (

∑n
i=1 w

k
i) is more than its maximal

total weight W k and the second condition is twice that
of the total initial weights of the functions. When a busy
agent running as a user program has no access resources, it

allocates resources to the clone agent via the external control
system.

E. Releasing resources for redundant functions

Each agent (j-th) periodically multicasts messages, called
heartbeat messages, for a behavior (bji), which is still
activated with its identifier (j) via the runtime system. When
an agent (k-th) does not receive any heartbeat messages
with regard to a behavior (bji) from another agent (j-th)
for a specified time, it automatically decreases the weight
(wj

i) of the behavior (bji), and resets the weight (wk
i) of the

behavior (bki) to be the initial value or increases the weight
(wk

i) (Figure 1 (d)). The weights of behaviors provided
by other agents are automatically decreased without any
heartbeat messages from the agents. Therefore, when an
agent terminates or fails, other agents decrease the weights
of the behaviors provided by the agent and if they then
have the same or compatible behaviors, they can activate
the behaviors, which may be inactivated.

F. Consistent Adaptation based on Primary-Backup Proto-
col

Our framework uses a primary-backup scheme to maintain
consistent states between one primary server and replica
servers for adaptation. A primary server receives all in-
coming client requests, executes them, and propagates the
resulting to the backup replica severs. To detect failures
in the primary and replica servers, they periodically sends
heartbeat messages to one another.

• When the primary server crashes, some of the replica
servers detects the inactivation of the primary because
they cannot receive any heartbeat messages from the
primary. They execute a recovery protocol both to
agree upon a common consistent state before resuming
regular operation and to establish a new primary to
broadcast state changes. To exercise the primary role,
a replica server must have the support of a quorum
of processes. As replica servers can crash and recover,
there can be over time multiple primaries and in fact
the same replica server may exercise the primary role
multiple times.

• When replica servers crash, the primary detects the
inactivation of the servers because it cannot receive any
heartbeat messages from them. It removes them from
its list of replica servers. When they become activated,
it sends the latest updates of the state that were adapted
after they crash.

We associate an instance value with each established pri-
mary. A given instance value maps to at most one replica
server.

Each runtime system is constructed as a middleware
system with Java (Figure 2). It is responsible for executing
agents and for exchanging messages in runtime systems on
other computers through a network. When a runtime system

18Copyright (c) IARIA, 2015. ISBN: 978-1-61208-391-9

ADAPTIVE 2015 : The Seventh International Conference on Adaptive and Self-Adaptive Systems and Applications

is (re)connected to a network, it multicasts heartbeat mes-
sages to other runtime systems to advertise itself, including
its network address in a plug-and-play protocol manner.

Agent BAgent A

Runtime System

Execution
manager

Adaptation
manager

Coordination
manager

g g Agent DAgent C

Runtime System

Execution
manager

Adaptation
manager

Coordination
manager

g g

y

Java VM (PaaS Runtme)

y

Java VM (PaaS Runtime)

Network

(OS) (OS)

(IaaS VM) (IaaS VM)

Runtime System Runtime System

Consistency ManagerConsistency Manager

Figure 2. Runtime system

Adaptation messages, i.e., restraining and heartbeat mes-
sages, are transmitted as multicast UDP packets, which are
unreliable. When the runtime system multicasts information
about the signature of a behavior in restraining messages, the
signature is encoded into a hash code by using Java’s serial
versioning mechanism and is transmitted as code. Restrain-
ing messages for behaviors that do not arrive at agents are
seriously affected, because other agents automatically treat
the behaviors provided by the senders to be inactive when
they do not receive such messages for certain durations.
Since our mechanism does not assume that each agent has
complete information about all agents, it is available even
when some heartbeat messages are lost.

Application-specific messages, i.e., request and reply, are
implemented through TCP sessions as reliable communica-
tions. When typical network problems occur, e.g., network
partitioning and node failure during communication, the
TCP session itself can detect such problems and it notifies
runtime systems on both sides to execute the exception
handling defined in runtime systems or agents. The current
implementation supports a multiplexing mechanism to min-
imize communication channels between agents running on
two computers on at most TCP session. To avoid conflicts
between UDP packets, it can explicitly change the periods
of heartbeat messages issued from agents. Each runtime
system offers a remote method invocation (RMI) mechanism
through a TCP connection. It is implemented independent
of Java’s RMI because this has no mechanisms for updating
references for migrating components. Each runtime system
can maintain a database that stores pairs of identifiers of
its connected components and the network addresses of
their current runtime systems. It also provides components
with references to the other components of the application
federation to which it belongs. Each reference enables the
component to interact with the component that it specifies,
even if the components are on different hosts or move to
other hosts.

V. EVALUATION

Although the current implementation was not constructed
for performance, we evaluated that of several basic oper-
ations in a distributed system where eight computers (Intel
Core 7i Duo 2.8 GHz with MacOS X 10.9 and J2SE version
7) were connected through a giga-ethernet. The cost of
transmitting a heartbeat or restraining message through UDP
multicasting was 11 ms. The cost of transmitting a request
message between two computers was 21 ms through TCP.
These costs were estimated from the measurements of round-
trip times between computers. We assumed in the following
experiments that each agent issued heartbeat messages to
other agents every 100 ms through UDP multicasting.

0 1 2 3
0

2

4

6

8

10

12

W
e

ig
h

t
Time (s)

Function B in Agent 1

Function C in Agent 1

Function B in Agent 2

Function C in Agent 2

Function B in Agent 3

Function C in Agent 3

Function B in Agent 4

Function C in Agent 4

Figure 3. Degree of progress in differentiation-based adaptation

The experiment was carried out to evaluate the basic abil-
ity of agents to differentiate themselves through interactions
in a reliable network. Each agent had three behaviors, called
A, B, and C. The A behavior periodically issued messages to
invoke its B and C behaviors or those of other agents every
200 ms and the B and C behaviors were null behaviors.
Each agent that wanted to execute a behavior, i.e., B or C,
selected a behavior whose weight had the highest value if
its database recognized one or more agents that provided
the same or compatible behavior, including itself. When it
invokes behavior B or C and the weights of its and others
behaviors were the same, it randomly selected one of the
behaviors. We assumed in this experiment that the weights
of the B and C behaviors of each agent would initially be
five and the maximum of the weight of each behavior and
the total maximum W k of weights would be ten.

Figure 3 presents the results we obtained from the ex-
periment. Both diagrams have a timeline in minutes on
the x-axis and the weights of behavior B in each agent
on the y-axis. Differentiation started after 200 ms, because
each agent knows the presence of other agents by receiving
heartbeat messages from them. Figure 3 shows the detailed
results of our differentiation between four agents, where
their weights were not initially varied and then they forked
into progression and regression sides.

19Copyright (c) IARIA, 2015. ISBN: 978-1-61208-391-9

ADAPTIVE 2015 : The Seventh International Conference on Adaptive and Self-Adaptive Systems and Applications

VI. APPLICATION

We describe a practical application with this approach to
illustrate the utility of our (de)differentiation for service
deployment and composition in a disaggregated computing
setting. Our application is initially a single drawing edi-
tor service at a server and then automatically duplicates,
deploys, and differentiates the service and its clones at
different computers. Each service is defined based on a
model-view-control (MVC) pattern as an an agent consisting
of model, view, and control behaviors. The first manages and
stores drawing data and should be executed on a computer
equipped with a powerful processor and a lot of memory.
The second part displays drawing data on the screen of its
current host and should be deployed at computers equipped
with large screens. The third part forwards drawing data
from the pointing device, e.g., mouse, of its current computer
to the first behavior.

When the server is connected to a network, the agent auto-
matically introspects the capabilities of computing devices
connected to the network via the current runtime system.
When it discovers a computer equipped with a pointing
device and a large display, e.g., a smart TV, the agent
makes a clone of it with its behaviors and deploys the
clone agent at the smart TV. The original agent, which is
running on the server, decreases the weights of its behaviors
corresponding to the view and control parts and the clone
agent, which is running on the smart TV, decreases the
weight of its behavior corresponding to the model part. This
is because the server has no display or pointing device and
the smart TV had no storage device. Therefore, each of
the agents delegates the behaviors that its computer does
not support to another agent. As a result, their weights for
behaviors monotonously increases or decreases and they are
then successfully differentiated according to the capabilities
of their current computers. A user could view pictures stored
in the server on the screen of a smart TV.

When a user disconnects the server from the network, the
agent running on the server dedifferentiates itself, because
it lacks its co-partners, to which it delegates the behaviors
corresponding the view and control parts. When it connects
to another network with another smart TV, it can clone itself
and differentiate itself and the clone. However, since the
agent running on the smart TV has no data, it does not
invoke inactive behavior, which corresponds to the model
part, and is then terminated.

Although this may be carried out by using non-
differentiation approaches, this approach had several advan-
tages. For example, it has no central management system so
that it can avoid single points in performance bottlenecks and
failures. It make our management tasks easier. That is, after
we just deploy only one agent at a computer, the approach
enables the agent to automatically duplicate, deploy, and
adapt itself and its clones according to the capabilities of

computers and the demands of its applications.

VII. CONCLUSION

This paper proposed a framework for adapting software
agents, which coordinate with one another, on distributed
systems. It is unique to other existing software adaptations
in introducing the notions of differentiation and cellular divi-
sion in cellular slime molds, e.g., dictyostelium discoideum,
into software agents. When an agent delegates a function to
another agent, if the former has the function, its function
becomes less-developed and the latter’s function becomes
well-developed. When agents have many requests from other
agents, they create their clone agents. The framework was
constructed as a middleware system on real distributed
systems instead of any simulation-based systems. Agents can
be composed of Java objects.

REFERENCES

[1] G. S. Blair, at al., Reflection, self-awareness and self-healing
in OpenORB, in Proceedings of 1st Workshop on Self-healing
systems (WOSS’2002), ACM Press, 2002, pp.9–14.

[2] S. Cheng, D. Garlan, B. Schmerl, Architecture-based self-
adaptation in the presence of multiple objectives, in Proceed-
ings of International Workshop on Self-adaptation and Self-
managing Systems (SEAMS’2006), ACM Press, 2006, pp.2–8.

[3] I. Georgiadis, J. Magee, and J. Kramer, Self-Organising Soft-
ware Architectures for Distributed Systems in Proceedings of
1st Workshop on Self-healing systems (WOSS’2002), ACM
Press, 2002, pp.33–38.

[4] M. A. Jaeger, H. Parzyjegla, G. Muhl, K. Herrmann, Self-
organizing broker topologies for publish/subscribe systems,
in Proceedings of ACM symposium on Applied Computing
(SAC’2007), ACM, 2007, pp.543–550.

[5] J.R. Koza, Genetic Programming: On the Programming of
Computers by Means of Natural Selection, MIT Press, 1992.

[6] W. Lin, G. Lin, and H. Wei, Dynamic Auction Mechanism for
Cloud Resource Allocation In Proceedings of 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Comput-
ing (CCGrid’2010), 2010, pp.591–592.

[7] T. Nakano and T. Suda, Self-Organizing Network Services
With Evolutionary Adaptation, IEEE Transactions on Neural
Networks, vol.16, no.5, 2005, pp.1269–1278.

[8] I. Satoh, Evolutionary Mechanism for Disaggregated Com-
puting, In Proceedings of 6th International Conference on
Complex, Intelligent, and Software Intensive Systems (CI-
SIS’2012), IEEE Computer Society 2012, pp.343–350.

[9] T. Suda and J. Suzuki: A Middleware Platform for a
Biologically-inspired Network Architecture Supporting Au-
tonomous and Adaptive Applications. IEEE Journal on Se-
lected Areas in Communications, vol.23, no.2, 2005, pp.249–
260.

[10] P. L. Snyder, R. Greenstadt, G. Valetto, Myconet: A
Fungi-Inspired Model for Superpeer-Based Peer-to-Peer Over-
lay Topologies, in Proceedings of 3rd IEEE International
Conference on Self-Adaptive and Self-Organizing Systems
(SASO’2009), 2009, pp.40–50.

[11] Q. Zhang, E. Gurses, R. Boutaba, and J. Xiao, Dynamic
resource allocation for spot markets in clouds, in Proceedings
of 11th USENIX Conference on Hot topics in Management of
Internet, Cloud, and Enterprise Networks and Services (Hot-
ICE’2011), USENIX Association, 2011.

20Copyright (c) IARIA, 2015. ISBN: 978-1-61208-391-9

ADAPTIVE 2015 : The Seventh International Conference on Adaptive and Self-Adaptive Systems and Applications

