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Abstract—In this paper, a set of micro-benchmarks is proposed
to determine basic performance parameters of single-node main-
stream hardware architectures for High Performance Computing.
Performance parameters of recent processors, including those of
accelerators, are determined. The investigated systems are Intel
server processor architectures as well as the two accelerator lines
Intel Xeon Phi and Nvidia graphic processors. Results show
similarities for some parameters between all architectures, but
significant differences for others.
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I. INTRODUCTION
For resource-intensive computations in High Performance

Computing (HPC) on a single node level the performance
characteristics of the processor, memory and core-core / core-
memory interconnect architecture are important to understand,
to achieve good performance. Often HPC applications stress
for most of their run time only parts of the hardware in
compute intensive program kernels. Examples are compute
bound problems, such as direct linear solvers [1] that are
bound by the floating point capability of a system or memory
bandwidth bound problems like the multiplication of a sparse
matrix with a dense vector in iterative solvers [2]. Other
application kernels may be bound differently.

This paper proposes a set of micro-benchmarks to char-
acterize HPC hardware on a single-node level. The results of
the micro-benchmarks are performance parameters related to
performance bounds found in many computational kernels (see
[3] for two of such parameters). These parameters often allow
to draw conclusions for the (at least relative) performance of
real applications or performance critical application kernels
of certain classes that are bound by one or few of those
parameters. Additionally, if carefully chosen, bottlenecks of
architectures can be revealed. The benchmarks were chosen
to allow conclusions on an application level, rather than
to evaluate deep structures in a processor architecture with
sophisticated low-level programs.

The proposed micro-benchmarks are applied to represen-
tatives of different classes of current hardware architectures.
Results show similarities in performance between all architec-
tures for some parameters (e.g., reaching near peak floating
point performance for matrix multiply), but also significant
differences between architectures (e.g., main memory latency
and bandwidth). Consequently only certain application classes
are suitable for a specific architecture.

The paper is structured as follows. The following sec-
tion discusses related work. Then, current mainstream HPC
hardware architectures are briefly described, focusing on their
differences. Section IV contains a description of the proposed
micro-benchmarks. Section V describes our experimental setup
and finally in Section VI, the evaluation results are discussed,
followed by a conclusion.

II. RELATED WORK
Benchmarks are widely used to evaluate systems concern-

ing certain performance properties. The result of a benchmark
should be usable as an indicator that can support a decision,
e.g., whether this system is feasible for a certain task or not.
A multitude of different benchmarks exists, dependent on the
question to be answered.

The Top500 list [4] uses the High Performance Linpack [1]
to rank (very) large parallel systems. This benchmark produces
just a single value, the FLOP-rate (Floating Point Operations)
per second for just one specific task, the direct solution of a
very large linear system.

The widely used SPEC CPU benchmark [5] is a mix of
several real world application programs for integer dominant
computations or floating point dominant applications. Running
the benchmark on a system produces one factor for each class.
These numbers express a relative performance improvement
compared to an older system.

Williams et al. introduced the roofline model [3] to de-
scribe the expectable performance space in a resource bound
problem. The two resources in this model, evaluated in a two-
dimensional chart, are computational density (operations per
transferred byte) and peak floating point performance. This is
an example where two limitating parameters on a system are
used to show eligible perfomance values.

The NAS Parallel Benchmarks [6] are more application
oriented benchmarks. These benchmarks consist of larger
compute intensive kernels and where originally designed to
stress large parallel computers. Each of these applications
represents a different computing aspect. The applicications
include, e.g., Conjugate Gradient (irregular memory access),
Multi-Grid (long- and short-distance communication), or fast
Fourier Transform (all-to-all communication). These bench-
marks have been, amongst others, implemented in OpenMP
[7] and recently in OpenCL [8]. With the OpenCL extension
they can be used to measure recent accelerators, such as GPUs.

For a finer granularity, benchmarks that give individual
results for several operation classes can be used. An example
is the OpenMP micro-benchmark suite [9] [10] that gives a
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TABLE I. OVERVIEW OF THE MICRO-BENCHMARKS.

Benchmark Category Application
Memory latency Memory access Single-thread latency to main memory
Memory bandwidth Memory access Bandwidth to main memory
Atomic update Synchronization Multi-threaded atomic update of a shared scalar variable
Barrier Synchronization Barrier operation of n threads
Reduction Synchronization Parallel reduction of n values to a single value
Communication Communication Data transfer bandwidth to/from an accelerator through PCI Express
DGEMM Computation Parallel dense matrix multiply (compute bound)
SPMV Computation Sparse matrix multiplied with a dense vector (memory bound)

developer a measure of how well basic constructs of OpenMP
[11] map to a given system. If a developer knows important
parameters that mainly determine the overall performance of an
application in this programming model, he is able to estimate
how well his own application will perform on the system using
these basic constructs.

Other micro-benchmark suites, which aim for a finer gran-
ularity are proposed in [12], [13] and [14]. These benchmark-
suites are based on OpenCL. Here, OpenCL is used to compare
memory related issues, as well as low level floating point
operations and real life applications on different hardware
architectures, including accelerators.

III. CURRENT HARDWARE ARCHITECTURES
This section gives a very brief overview on current HPC

processor architectures and memory technology. The chapter
is partitioned into sections on mainstream HPC processor ar-
chitectures, HPC accelerator architectures and finally memory
technologies.

A. Processor Architectures
We concentrate on the Intel Xeon EP line of HPC relevant

processors, as these processors are used in nearly all new
systems in the Top500 list [4] of HPC computers. Intel’s
recent micro-architectures are Sandy Bridge (SB), and it’s
successor Ivy Bridge (IB). The last change in the architecture
appeared late 2014 in the Haswell processors (HW). A detailed
description of the architectures is given in the related literature
of the manufacturer [15].

Processors nowadays have several cores. In HPC clusters
multiprocessor nodes with 2 processors are often used. Keep-
ing multiple core-private caches coherent is usually done in
the hardware by cache coherence protocols. Keeping caches
coherent costs latency, bandwidth and may also influence an
architecture’s scalability.

B. Accelerator Architectures
Certain application classes can be accelerated using special

attached processors. Nvidia graphic processors (GPU) and Intel
Many Integrated Core processors (MIC) of the Xeon Phi family
are predominant in HPC [4].

A Nvidia GPU has a hierarchical design (CUDA architec-
ture [16]) that differs from common CPUs. The execution units
(SE, Streaming Processors) are organized in multiprocessors,
called Streaming Multi-Processors (SM or SMX), a GPU has
several of such multiprocessors. For example, the Kepler GPU
has up to 15 SMX and 192 SE per SMX resulting in a total of
2880 SE in the largest device configuration. These execution
units are always used by a group of 32 threads called a warp.
Such an architecture leads to several aspects that have to be
respected in performance critical programs, e.g., coalesced
memory access [17].

An Intel Xeon Phi coprocessor [18] is compromised of
multiple CPU-like cores. The current generation Xeon Phi
Knights Corner (KNC) has between 57 and 61 of such cores,
which are connected via a bi-directional ring bus. To achieve
good performance on a Xeon Phi the application must use
parallelism as well as vectorization. In [19] requirements for
vectorization are specified for the usage of the Intel compiler,
e.g., no jumps and branches in a loop.

Recent accelerators (i.e., GPU as well as Xeon Phi) are plu-
gin cards connected to the host through a PCI Express (PCIe)
adapter. This adapter is often a severe bottleneck, because the
transfer rate through a PCIe connection is significantly lower
(8 GB/s for PCIe 2.0 (x16) and 16 GB/s for PCIe 3.0 (x16))
than for example memory transfer rates in a host system.

C. Memory Technologies
On one side DDR3 / DDR4 RAM, which is used in CPU-

based systems is mostly optimized for a short latency time.
On the other side, GDDR5 memory used in accelerators is
optimized for bandwidth. This is important, as the performance
of accelerators mainly comes from Single Instruction Multiple
Data (SIMD) parallelism, where the same instruction is applied
concurrently to multiple data items. These data items have to
be fed to the functional units in parallel, needing high main
memory bandwidth.

All processors of discussion, including recent GPUs, use
caches to speed up memory accesses. While GPUs currently
have a 2 level cache hierarchy, CPUs use 3 levels of caches
with increasing sizes and latencies. Caches are only useful if
data accesses initiated by the program instructions obey spatial
or temporal locality [20].

IV. PROPOSED MICRO-BENCHMARKS
We propose a set of 8 micro-benchmarks to determine

performance critical parameters in single-node parallel HPC
systems. Each single benchmark tests one specific aspect of
a hardware architecture or parallel runtime system on that
hardware. These aspects are performance critical for certain
application classes. Table I gives an overview of the proposed
set. One or a combination of these parameters are usually the
performance bounds of an application. In real-life application
it is possible, that a combination of these parameters occur
with different factors / weights. It is up to the developer to
use his knowledge of the application to weight these factors
correctly. Nevertheless, if the application is truly dominated
by one of these parameters the developer has an indication
whether an architecture would be suitable for this application.

The presented set of micro-benchmarks was implemented
in C with OpenMP for the use with Intel Procesors (including
KNC). However, the OpenMP implementation could also be
used for further architectures, like Power 8, ARM, or AMD
Processors. Moreover, widely used C compilers like the Intel
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icc or the GNU gcc support this programming approach. Re-
cently the GNU gcc added support for OpenMP 4.0 constructs,
which makes it possible to address future Intel Xeon Phi pro-
cessors. For the usage with Nvidia accelerators the commonly
used CUDA programming approach was chosen, as this is
the programming model delivering the best performance on
these GPUs. Porting the CUDA implementation for example
to OpenCL should be straightforward as both programming
platforms have similar concepts.

A. Memory Performance
Memory accesses are often the main performance bottle-

neck in applications. An example for that is an iterative solver
working on large sparse matrices [2] or graph processing [21].
Memory performance itself is mainly influenced by memory
latency and memory bandwidth as the key performance param-
eters. An indicator for a latency bound application are many
accesses to different small data items (that are not cached).
An indicator for a bandwidth bound application is a program
(kernel) with low computational density, i.e., the ratio of the
number of operations performed on data compared to the
number of bytes ,which need to be transferred for that data, is
low.

1) Memory Read Latency: Read latency can be determined
by single threaded pointer chasing, i.e., a repeated read oper-
ation of type ptr = *ptr with a properly setup pointer table.
If all accessed addresses are within an address space of size S
(without associativity collisions in the cache) and S is smaller
than a cache size then all accesses can be stored in this cache.

2) Memory Bandwidth: To measure main memory band-
width the Stream benchmark [22] is commonly used. We
adapted this freely available benchmark for the Xeon Phi using
the OpenMP target construct [11] and for graphic processors
using CUDA programming constructs [23].

B. Synchronization Performance
Synchronization between execution units (threads, pro-

cesses, etc.) at certain points during the program execution
is necessary to ensure parallel program correctness. However,
synchronization is often a very performance critical operation
[24], because serialization, e.g., atomic updates, or overall
agreement, e.g., barrier between the execution units, is nec-
essary. Moreover, reduction operations are another important
and performance critical type of synchronization in real life
applications.

1) Atomic Updates: In our atomic update benchmark all
participating threads perform an atomic increment operation
on a single scalar shared integer variable in parallel. As a side
note, this operation also modifies the variable. Consequently,
the coherence protocol initiates a cache line invalidation /
update in a cache coherent multi-cache based system. The
atomic increment operation is repeated several times during
the benchmark by each thread.

2) Barrier: In the barrier benchmark, a barrier operation
is carried out repeatedly. For multiprocessors the benchmark
uses an OpenMP barrier pragma inside a parallel region.
For the Xeon Phi, this is surrounded by a target region.
The CUDA execution model [23] does not support a barrier
synchronization as such, because this would violate the basic
concept of warp independence. In CUDA, a program with
global steps is implemented using a sequence of multiple
kernels. Therefore, the kernel launch time (with an empty
kernel) with the following synchronization to wait for the

kernel finalization is the closest adequate comparison to a
barrier.

3) Reduction: In the reduction benchmark, a vector with
n elements of type double is reduced to one double value
summing up all vector elements. For a reduction partial sums
must be summed up in a synchronized way, which is additional
work compared to a sequential implementation and needs some
serialization between parallel entities. The program for the
multiprocessors uses the OpenMP reduction clause in a parallel
for-loop. On multiprocessors systems the vector is initialized in
parallel, so that parts of the vector are split over different Non-
Uniform memory Access [20] (NUMA) nodes in a NUMA
system. It should be pointed out that such a distribution is
done internally by the operating system. As CUDA does not
provide reduction operations itself, the open source (CUDA-
based) Thrust library [25] of Nvidia is used for this benchmark
on the GPU systems.

C. Communication Performance
In the communication benchmark, we measured the transfer

rate of a certain amount of data between a host and an
accelerator device over PCI Express. This measurement is
carried out for both directions (to and from the accelerator).

D. Programming Kernels
For many scientific application fields linear algebra oper-

ations are building blocks and often belong to the most time
consuming parts of a program. Dependend on the problem
origin, dense or sparse matrices are used. The following two
evaluation benchmarks cover both matrix types and also stress
different parts of a system (these are both performance limiting
for many applications also outside linear algebra).

1) Compute bound application kernel: For dense matrix
multiply, with a high computational density, many techniques
are known (and applied inside optimized library functions),
which allow to run this operation near the peak floating point
performance. Consequently, if done the right way, dense matrix
multiply evaluates in essence the floating point performance
of a core / processor / multiprocessor system. This operation
is well examined and implemented efficiently in the BLAS
library [26] and vendor optimized libraries, like the Intel MKL
[27] and Nvidia cuBLAS [28].

2) Memory bound application kernel: On the other side, a
sparse matrix multiplied with a dense vector (SPMV) stresses
almost only the memory system, as it has a low computational
density. The operation is available for multiple storage formats
[2] and is, at least for larger matrices, memory bandwidth
limited and not compute bound. SPMV is also available in
the vendor optimized libraries Intel MKL [27] and Nvidia
cuSPARSE [29], both with a small selection of supported
storage formats. The CSR format [2] is a general format with
good/reasonable performance characteristics for many sparse
matrices on CPU based systems. The ELL format is, for
appropriate matrices (a small and ideally constant number of
non-zero elements per row), a favorable storage format on
GPUs [30]. It should be pointed out, that in this benchmark
we are not interested in the best possible performance for a
specific matrix. We rather want to relate the performance of
different systems for this type of operation in a more general
way.
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TABLE II. SELECTED HARDWARE PARAMETERS OF THE SYSTEMS USED.

Parameter Processor Systems Accelerator Systems
Architecture SB IB HW KNC M2050 (Fermi) K20 (Kepler) K80 (2×Kepler)
Clock [GHz] (with TurboBoost) 2.6 (3.3) 2.7 (3.5) 2.6 (3.6) 1.053 1.15 0.706 0.560 (0.875)
Peak double prec. perf.1[GFlops]; 1 proc. 20.8 21.6 33.17 16.8 - - -
Peak double prec. perf.1[GFlops]; all proc. 332.8 518.4 929 1010.8 515 1170 2× 935
Theor. memory bandwidth [GB/s]2 102.4 119.4 136 320 148 208 2×240
Main memory size [GB] 128 256 128 8 3 5 2×12
Degree of parallelism 3 32 48 56 240 448 2496 2×2496
1 In relation to baseclock
2 ECC off for accelerators
3 Including hyperthreads

V. EXPERIMENTAL SETUP
In this section, we specify our parallel system test envi-

ronment where the benchmarks were applied. Additionally,
we discuss parameter settings of the benchmarks, because
performance can be a parameterized function, e.g., dependent
on the number of used threads or data items.

A. Test Environment
The used systems include the last generations of Intel

server processors and for accelerators the Intel Xeon Phi KNC
as a many-core architecture, as well as three recent Nvidia
GPU architectures. These include the most actual systems in
each class. The tested accelerators use PCIe 2 (x16) for KNC,
M2050 and K20and PCIe 3 (x16) for K80. The new Nvidia
K80 consists of two Kepler GPUs, which work as two single
devices and have to be programmed seperately. Only one of
the GPUs was used to perform the benchmarks. Otherwise this
would have to be viewed as a multi-GPU setup and would not
be comparable to the other acceelerators. Table II summarizes
key hardware parameters of the systems used. The CPU based
systems are all 2-way multiprocessor systems.

B. Test Parameters
The benchmark tests were executed with the following

parameter settings:

• Memory latency: Variable size of the pointer table
with a single threaded run.

• Memory bandwidth: Fixed large vector size of
STREAM_ARRAY_SIZE=40000000 and a repeat factor of
NTIMES=1000.

• Atomic update: Variable number of threads according
to the systems used.

• Barrier: Variable number of threads according to the
systems used.

• Reduction: Variable vector size with a full parallel run.

• Communication: Variable size of the transferred data.

• DGEMM: Variable matrix size with a full parallel run.

• SPMV: Fixed test matrix according to the SPE10
problem [31], SPMV implementation of MKL and
cuSPARSE, CSR and/or ELL format (dependent on
the library).

VI. RESULTS

In this section, we discuss the main results and concentrate
on the interesting aspects. When performance data is plotted as
a function of the number of threads, it is meant as number of
thread blocks for GPUs, because the usage model for graphic
processors differs from a multiprocessor system. On GPUs
usually all stream processors of such a processor are used
(with even much more concurrency in the application to hide
latencies) instead of specifying the exact number of threads.

Figure 1 shows the results for the memory latency, with
an access stride of 256 byte, in absolute times. Figures 2
shows these results in cycles relative to the respective base
CPU/GPU clock. For all systems, levels of the same latency
(induced by cache sizes of the different cache levels) and the
huge difference to a main memory access (the last step to the
right) are clearly visible. If only absolute times are considered,
as expected, one can see that all accelarators have higher
latency than the processor architectures and that the GPU
based Nvidia accelerators are slower than a CPU based KNC.
Moreover, there seems to be hardly any improvement between
GPU generations. But, if relative latencies are considered, one
can see that the GPUs improve over the generations quite
significantly, as the base clock is much lower. Related to
relative cycles, the newest K80 outperforms the KNC and gets
even close to the CPUs in access to global/main memory. So,
read latency seems to be limited by the lower base clock on the
K80. Looking at the different cache levels, the measurements
on the M2050 and K80 GPUs show three different levels in
access time which can be explained by the L1/L2 caches and
accesses to the main memory. On the K20 only two levels of
similar access times are visible. This is induced by different
versions of the the Kepler architecture. The K20 does not cache
global memory accesses in the L1 cache, but this is done in
the newer generation K80. On the CPU based systems one
can see the smaller L1 and L2 caches, then the larger L3
cache and at last seen in a fourth step the access to the main
memory. Access to the L1, L2, L3 caches is very fast, for L1
and L2 even on KNC. Altogether the processor systems still
outperform the accelerators in latency time, although newer
accelerator generations have improved. Therefore applications
that are already latency bound have a severe problem on
accelerator systems if they cannot hide this latency, e.g. by
allowing multiple read requests to be open at the same time.

The memory bandwidth performance is shown in Figure 3.
For the processor systems the default thread scheduling was
used here, with variable numbers of threads. For graphic pro-
cessors the usage model is different to a multiprocessor system,
because usually all stream processors of such a processor are
used instead of specifying the exact number of threads. The
performance number(s) for GPUs are therefore given as a
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Figure 1. Memory latency results (absolute time).
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Figure 2. Memory latency results (relative cycles).

dashed line (for all stream processors used). In contrast to
the results on latency, the accelerators perform better than the
CPU systems. It is noteable that the KNC shows relativly bad
performance here. Its bandwidth is comparable to the Haswell
CPUs and the older Nvidia Fermi GPUs. Moreover the KNC
is not able to reach its theoretical bandwidth at all, though it
has the highest theoretical bandwidth of all tested systems. All
processor systems almost reach their theoretical bandwith.

Thread mapping / binding can be an important aspect
reaching good performance. A thread mapping defines how
application threads are mapped to hardware threads, e.g.,
processors sockets, cores in a multi-core CPU, or hardware
threads in a hyperthreaded core. Basic mapping strategies
are to keep threads as close as possible in the hardware
(compact; e.g., to exploit data locality between threads) or
to spread as wide as possible (scattered; e.g., to exploit as
much memory bandwidth as possible). Figure 4 shows the
bandwidth test for the KNC with different thread mapping
in OpenMP. A significant difference can be observed when
different thread mappings are used. If the compact thread
mapping is used (same as in Figure 4) bandwith increases
steadily with increasing number of threads. The performance
drop with the last four threads occurs, because at this point
the last core with its four hardware threads is used in the
application, but that performs a busy waiting for operating
system tasks (communication with the host system). When
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Figure 3. Memory bandwidth results.
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Figure 4. Memory bandwidth results on KNC, different thread mapping.

scattered thread mapping is used, the impact of the four
hardware threads can be seen. The performance increases until
all cores are evenly utilized (one thread per core), then as soon
as one core gets a second thread the performance drops and
increases again steadily. Moreover, again the impact of the
operating system core can be seen when all available threads
of the KNC are used. Different to the KNC, changing the
thread mapping for processor systems showed no difference at
all for the benchmark.

Figure 5 shows the performance results for the atomic oper-
ation on the different systems. On the multiprocessors systems
and KNC time increases linearly, proportional to the number of
(competing) threads in use. Because the performance numbers
show the normalized time for one operation, there is an
increase in time per operation with the number of threads.
This can be explained with the coherence and synchronization
protocol, which is run by the processors / cores to ensure
coherence and atomicity of such an operation. With more
threads involved, the overhead increases [21]. For all three
GPU systems the time is constant, which can be explained
by the use of the unified L2 cache and the weak memory
model without memory coherence. Moreover the performance
improvement for atomic operations from Fermi (M2050) to
Kepler (K20, K80) is clearly visible in this figure. For the
KNC with compact thread mapping quite large fluctuations
can be observed (note the logscale of the plot).
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Figure 6. Atomic update results on KNC, different thread mapping.

Figure 6 shows the atomic benchmark for KNC with
different thread mappings. When scattered and balanced thread
mapping is used the fluctuations become smaller, but still the
changes of the performance with increasing number of thread
is quite unsteady. An explanation for this could be the ring bus
of the KNC. The cache of all cores in the KNC have to be
kept coherent via this ringbus. Moreover, from the time when
one core is popuated with all four hardware threads, time for
an atomic update increases significantly. Again, changing the
thread mapping for processor systems showed no difference at
all for the benchmark.

Figure 7 illustrates performance results of the barrier test.
The barrier synchronization on the Xeon Phi shows a similar
behavior as on the multiprocessor systems. For the Nvidia
accelerators the number of threads in the figure represents the
number of used thread blocks (with 1024 threads per block).
The figure shows that the kernel launch time is nearly constant
and equal for M2050, K20 and K80. Further it does not depend
on the number of blocks. Moreover, changing the thread map-
ping showed no significant differences on the multiprocessor
systems. The impact of different thread mapping for the KNC
can be seen in Figure 8. For balanced and scatter thread
mapping, time increases steadily until all cores are populated
with one thread. Afterwards, when more than one thread runs
on a core, the releveance on the barrier execution time becomes
less important. For compact thread mapping, the number of
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Figure 7. Barrier results.
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Figure 8. Barrier results on KNC, different thread mapping.

used cores increases steadily with the number of threads, so
the time increases steadily, too.

For the reduction test, Figure 9 shows the parallel run time
using all available parallelism on the system with increasing
vector size. The M2050 card was limited by the available
memory size and the largest vector size could not be used on
this system. The GPUs are slower than the multiprocessors
for a smaller number of elements and they are faster than
the multiprocessors for large vectors which follows the usage
model of GPUs.

Figure 10 shows data transfer rates in GB/s from the host
to the attached accelerator and vice versa. The results show
that, for reasonable large data sizes the bus is used efficiently
on all systems (the theoretical data transfer rate of 8 GB/s for
PCIe 2.0 and 16 GB/s for PCIe 3.0 minus protocol overhead).
For the transfer back from the accelerator to the host there
is a performance drop on the M2050 reaching only approx. 5
GB/s instead of nearly 7 GB/s on the other accelerators. The
low bandwidth seems to be a problem with our combination of
host system and accelerator card. The data transfer rates of the
KNC are low, starting at smaller data sizes (e.g. below 2 GB/s
for 80,000 bytes). The difference between host to device and
device to host bandwidth could be due to the Direct Memory
Access (DMA) initiator. When the DMA is initiated from the
CPU it has better performance. Moreover the K80 does not
reach the theoretical limit for the PCIe 3. This could perhaps
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be different when both GPUs are utilized.
In Figure 11, performance results for the dense matrix

multiply operation are shown. Here, only the best performance,
over all matrix sizes, is given. As expected the operation has
better performance on the accelerators due to their better raw
floating point performance. It can be seen that on the majority
of the processor systems almost peak performance is reached.
The Haswell processor even shows better performance than
the given theoretical peak performance in Table II (related to
the base clock). This can be explained by the intelligent turbo
boost and temporal overclocking of these processors. Moreover
the Haswell processors are the first processors which reach
(nearly) one Teraflop performance. That makes it comparable
to even recent accelerators. Haswell outperforms the older
Fermi architechture and the KNC, which does not reach its
theoretical performance at all. The Haswell results for matrix
multiply are on nearly the same level as the recent Kepler
architectures and get only beaten by the new K80. The K80
as well shows better performance than its given theoretical
peak performance. Again, this can be explained by the use of
turboboost.

For the SPMV operation shown in Figure 12 only the best
results for a system and a format are given. All GPU systems
perform well, compared to the multiprocessor and Xeon Phi
systems. The K20 performs around 26% faster than the M2050
using ELL format. The low performance improvement of the
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K20 can be explained by the fact that the SPMV operation
is memory bound and the memory bandwidth of the K20
is only around 25% higher compared to the M2050. Similar
relations apply for K20 and K80. Surprisingly the KNC shows
the weakest performance in this test although this card has the
highest nominal memory bandwidth of all used systems. The
reason for that was shown in the bandwidth results where the
KNC did only reach half of its peak memory bandwidth.

VII. CONCLUSIONS
This paper introduced a set of benchmarks to determine

important performance parameters of single-node parallel sys-
tems. One or a combination of these parameters are often
performance limitating in parallel applications.

The benchmarks were applied to systems of the same basic
architecture but different processor generations (Intel Haswell
/ Ivy Brige / Sandy Bridge) as well as to different architectures
(CPU, two different accelerator architectures).

It was shown that some parameters (e.g., the memory
related ones) show fairly different performance characteristics
between the systems qualifying or disqualifying a system for
certain application classes. In contrast, all systems showed a
rather similar behavior for compute-dense problems reaching
near-peak floating point performance that is quite comparable
between accelerators and latest generation processors. Due to
design decisions in the processor architecture graphic proces-
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sors show a remarkable performance on some synchronization
operations, operations that often limit the parallel performance.

In this paper we discussed only single-node parameters.
An extension of this work would be to include cluster archi-
tectures, i.e., multiple-node architectures. Another extension
could be to include multi-accelerator architechtures,e.g., using
both GPUs of the K80. Further investigation would include the
impact of different programming models such as OpenACC or
OpenCL instead of CUDA on a GPU.

ACKNOWLEDGEMENTS
We would like to thank the CMT team at Saudi Aramco

EXPEC ARC for their support and input. Especially we
want to thank Ali H. Dogru for making this research project
possible.

REFERENCES

[1] A. Petitet, R. Whaley, J. Dongarra, and A. Cleary, “HPL - a portable
implementation of the high-performance Linpack benchmark for
distributed-memory computers,” http://www.netlib.org/benchmark/hpl/,
Tech. Rep., 2008, version 2.0, [retrieved: Jun, 2015].

[2] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed. SIAM,
2003.

[3] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful
visual performance model for multicore architectures,” Comm. ACM,
vol. 52, no. 4, Apr. 2009, pp. 65–76.

[4] Top 500 List, http://www.top500.org/, [retrieved: Jun, 2015].
[5] SPEC CPU 2006, Standard Performance Evaluation Corporation,

https://www.spec.org/cpu2006/, [retrieved: Jun, 2015].
[6] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter,

L. Dagum, R. Fatoohi, S. Fineberg, P. Frederickson, T. Lasinski,
R. Schreiber, H. Simon, V. Venkatakrishnan, and S. Weeratunga,
“The NAS parallel benchmarks,” NASA Ames Research Center,
http://www.nas.nasa.gov/assets/pdf/techreports/1994/rnr-94-007.pdf,
Tech. Rep., 1994, [retrieved: Jun, 2015].

[7] H. Jin, M. Frumkin, and J. Yan, “The openmp implementation of
NAS parallel benchmarks and its performance,” NASA Ames Re-
search Center, http://www.nas.nasa.gov/assets/pdf/techreports/1999/nas-
99-011.pdf, Tech. Rep., 1999, [retrieved: Jun, 2015].

[8] S. Seo, G. Jo, and J. Lee, “Performance characterization of the NAS
parallel benchmarks in OpenCL,” in The 2011 IEEE International
Symposium on Workload Characterization (IISWC). IEEE, 2011, pp.
137–148.

[9] J. Bull and D. O’Neill, “A microbenchmark suite for OpenMP 2.0,”
SIGARCH Comput. Archit. News, vol. 29, no. 5, 2001, pp. 41–48.

[10] J. Bull, F. Reid, and N. McDonnell, “A microbenchmark suite for
OpenMP tasks,” in Proc. 8th Intl. Conference on OpenMP in a Het-
erogeneous World (IWOMP’12), 2012, pp. 271–274.

[11] OpenMP Application Program Interface, 4th ed., OpenMP Architecture
Review Board, http://www.openmp.org/, Jul. 2013, [retrieved: Jun,
2015].

[12] P. Thoman, K. Kofler, H. Studtand, J. Thomson, and T. Fahringer,
“Automatic OpenCL device characterization: Guiding optimized kernel
design,” in Euro-Par 2011. Springer-Verlag, 2011, pp. 438–452.

[13] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth,
K. Spafford, V. Tipparaju, and J. S. Vetter, “The scalable heterogeneous
computing (shoc) benchmark suite,” in Proceedings of the 3rd Workshop
on General-Purpose Computation on Graphics Processing Units. ACM,
2010, pp. 63–74.

[14] X. Yan, X. Shi, and Q. Sun, “An opencl micro-benchmark suite for
gpus and cpus,” in 2012 13th International Conference on Parallel
and Distributed Computing, Applications and Technologies (PDCAT).
IEEE, 2012, pp. 53–58.

[15] Intel R⃝ 64 and IA-32 Architectures Optimization Reference Manual,
Intel, http://www.intel.com/content/www/us/en/architecture-and-
technology/64-ia-32-architectures-optimization-manual.html, Sep.
2014, [retrieved: Jun, 2015].

[16] Nvidia CUDA, https://developer.nvidia.com/cuda-zone, [retrieved: Jun,
2015].

[17] M. Wolfe, Understanding the CUDA Data Parallel
Threading Model. A Primer, pgiinsider ed., PGI,
https://www.pgroup.com/lit/articles/insider/v2n1a5.htm, Feb. 2010,
(Updated December 2012), [retrieved: Jun, 2015].

[18] J. Jeffers and J. Reinders, Intel R⃝ Xeon PhiTMCoprocessor High-
Performance Programming. Morgan Kaufmann, 2013.

[19] M. Corden, Requirements for Vectorizable Loops, Intel,
https://software.intel.com/en-us/articles/requirements-for-vectorizable-
loops/, 2012, [retrieved: Jun, 2015].

[20] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quan-
titative Approach, 5th ed. Morgan Kaufmann Publishers, Inc., 2012.

[21] R. Berrendorf and M. Makulla, “Level-synchronous parallel breadth-
first search algorithms for multicore- and multiprocessors systems,” in
Proc. Sixth Intl. Conference on Future Computational Technologies and
Applications (FUTURE COMPUTING 2014), 2014, pp. 26–31.

[22] J. D. McCalpin, “Stream: Sustainable memory bandwidth in high
performance computers,” University of Virginia, Charlottesville,
Virginia, Tech. Rep. TM-88, 1991-2007, [retrieved: Jun, 2015].
[Online]. Available: http://www.cs.virginia.edu/stream/

[23] Nvidia, CUDA C Programming Guide, pg-02829-001 v6.5 ed.,
http://docs.nvidia.com/cuda/pdf/CUDA C Programming Guide.pdf,
Aug. 2014, [retrieved: Jun, 2015].

[24] R. Berrendorf, “A technique to avoid atomic operations on large shared
memory parallel systems,” Intl. Journal on Advances in Software, vol. 7,
no. 7&8, 2014, pp. 197–210.

[25] Nvidia, Thrust, https://developer.nvidia.com/thrust, [retrieved: Jun,
2015].

[26] BLAS (Basic Linear Algebra Subprograms),
http://www.netlib.org/blas/, [retrieved: Jun, 2015].

[27] Intel R⃝ Math Kernel Library, https://software.intel.com/en-us/intel-mkl,
[retrieved: Jun, 2015].

[28] Nvidia cuBLAS, https://developer.nvidia.com/cublas, [retrieved: Jun,
2015].

[29] Nvidia cuSPARSE, https://developer.nvidia.com/cusparse, [retrieved:
Jun, 2015].

[30] N. Bell and M. Garland, “Efficient sparse matrix-vector multiplication
on CUDA,” Nvidia Corp., Tech. Rep. NVR-2008-004, Dec. 2008.

[31] SPE Comparative Solution Project, Society of Petroleum Engineers,
http://www.spe.org/web/csp/, [retrieved: Jun, 2015].

35Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-419-0

ADVCOMP 2015 : The Ninth International Conference on Advanced Engineering Computing and Applications in Sciences


