
Modbus-A: Automated Slave ID Allocation Enabling Architecture for Modbus Devices
on RS485/232

Bharath Sudev*#, Iain Kinghorn*, Dongbing Gu#, Doug Gower*

* Fläkt Woods UK
Colchester, England CO4 5ZD

Email: {bharath.sudev, iain.kinghorn, doug.gower}@flaktgroup.com

School of Computer Science and Electronic Engineering
University of Essex, Colchester, England CO4 3SQ

Email: {bs16733, dgu}@essex.ac.uk

Abstract—If Modbus devices are to be connected on to the
same communication infrastructure, each device must be
powered up individually and manually given a unique ID.
This can be a time-consuming and laborious process if the
system has a plurality of devices. This paper presents the
architecture, implementation and testing information of
Modbus-A, an architecture that allows the master device on
a communication infrastructure to autonomously set the IDs
of live devices, which are already connected to the bus.
Furthermore, the concept is validated using a software
simulator as well as using a hardware prototype.

Keywords— Modbus; Modbus-A; autonomous Modbus ID
allocation.

I. INTRODUCTION

Modbus [1] is a single master multiple slave protocol.
As per the specification, the master should be connected
to the slaves in a daisy chain topology, as shown in Figure
1. The slave devices will have unique slave IDs, using
which the master will address them during
communication.

To get information from a slave or to set a parameter
on the slave, the master sends a message with the slave ID
through the daisy chain. As an example, if the master
sends a message with the ID=3, the slaves with ID1 and
ID2 will ignore the message and forward it down the
chain. When the slave with its ID set as 3 receives the
message, it will process the instruction and send a
response message through the chain back to the master.
However by default, Modbus devices out of the box
typically will have an ID of 1. So, one would not be able
to connect devices out of the box into a daisy chain

topology as there will be multiple devices with the same
slave ID of 1, as shown in Figure 2.

Under such a situation, the devices will have to be
disconnected, powered up individually and given unique
slave IDs individually before connecting them into the
daisy chain. This can be a time consuming and difficult
process when there are a wide number of devices. It is
even harder in situations where the devices are already
installed and needs reconfiguration.

This paper will present Modbus_A architecture along
with the implementation and test result of our patent
pending (GB2017008577) concept that will enable
automatic reconfiguration of slave IDs of devices which
are already in a daisy chain.

This paper is organised as follows. Section II presents
related work on Modbus communication followed by the
architecture and functionality of Modbus-A in Section III.
Section IV presents information on software simulation
conducted and its results. Section V then presents the
hardware implementation followed by conclusion as
Section VI.

II. RELATED WORK

Modbus is a protocol widely used in industrial devices
like inverters, sensors and control systems. As previously
mentioned, every message from the Modbus master will
have a slave ID in it to designate the intended recipient of
the message.

Followed by the slave ID, the master will send a
function code specifying the requested operation followed

Figure 1. Normal multi slave operation

Figure 2. Configuration out of the box

Master

Slave
(ID 1)

Slave
(ID 2)

Slave
(ID 3)

Slave
(ID 4)

Master

Slave
(ID 1)

Slave
(ID 1)

Slave
(ID 1)

Slave
(ID 1)

39Copyright (c) IARIA, 2017. ISBN: 978-1-61208-599-9

ADVCOMP 2017 : The Eleventh International Conference on Advanced Engineering Computing and Applications in Sciences

by some data (if required) and error check code. The
frame format of a Modbus message is shown in Figure 3.

Though every slave in the system will receive each
message, only the slave with the same address (ID) as in
the message will accept the message while the other
slaves ignore it. On reception of the message, the slave
will do the requested operation and respond with a
message back to the master containing its slave ID as a
confirmation. If the master fails to receive a confirmation
message, the master will retransmit the message as the
pervious message is assumed to be lost [2]. So, it is
critical that the slaves have unique Modbus IDs lest
multiple slaves will attempt to reply to the master’s
message simultaneously thereby failing the protocol.
Since the devices typically will have a Modbus ID of 1
out of the box, there will be duplication of IDs on the bus
if there are multiple devices.

In such a situation, each must be powered up
separately and given a unique Modbus ID before
connecting them to a common communication medium.
The difficulty of setting the ID will increase with the
number of devices and the location of its deployment.

Naismith et. al. [3] present a concept where the
master device polls through all the possible address in the
network on start-up. This enables detection of devices on
the network if all of them have unique Modbus IDs.
However, this is a time-consuming process and would not
work if there are devices with same Modbus IDs.

Liang et. al. [4] present a concept that will enable
reconfiguration of slave IDs when there are ID conflicts.
The system employed slaves with unique identification
numbers in them. In case of devices with conflicting
Modbus IDs, the master requests the conflicting slaves to
send their unique identification number to the master
within a certain pre-set interval like in Ethernet [5]. The
slaves then will attempt to send their ID back after a
random waiting period so that the IDs are received at the
master reliably. In case the IDs are not received by the
master, the same process will be re-initiated several times
until the identification numbers of all the slaves are
received. Once the identification numbers of the slaves are
received successfully by the master, the master will then
send configuration messages to set Modbus ID of each
slave referring to it by its identification number. Since the
technique relies on each slave having its own unique
identification number, there could be difficulty in
adopting this as a universal standard as use of different
types of devices or devices from different manufactures
can result in duplication of identification numbers on the
network. Furthermore, in a system with many slaves, the
master will have to send multiple retransmission messages
to the slaves; and the slaves will have to attempt to
respond with its identification number multiple times per
message from the master for a successful transmission.
So, the configuration time will increase significantly with

the number of devices on the communication
infrastructure.

A similar concept is presented in [6] where the master
initially will send a broadcast message to retrieve Modbus
IDs of all the devices on the network. This technique also
involves the use of a unique identification number in the
slave to enable communication to devices with same
Modbus slave IDs.

In case of ID conflicts, the master will request the
slaves with conflict to send their Modbus IDs combined
with their unique identifier thereby formulating a total ID.
To prevent conflicts of reply messages, each slave will
delay the message back to the master for a time period
proportional to its total ID. Due to the use of unique
identifiers on the slaves, this technique could also suffer
from the limitations as with [4] as discussed previously. A
similar approach is seen in [7] where the slaves are
identified using unique identifiers and communication is
possible either using Modbus or TCP (Transmission
Control Protocol).

On the contrary, Lloyd [8] presents a concept that
enables slave devices to send unsolicited messages to the
master requesting identification/configuration. Successful
transmission of the message is ensured by using principles
used in Ethernet like Address Resolution Protocol [9] and
Dynamic Host Configuration Protocol [10]. On receipt of
the message, the master is able to allocate ID to the
device. This technique is thus able to resolve ID conflicts
by using complex logic on the slaves which enables
unsolicited messages transmission using certain protocols.
This paper presents the Modbus-A protocol that enables
resolution of ID conflicts using a computationally light
method with minimal overheads.

III. MODBUS-A ARCHITECTURE AND FUNCTIONALITY

Modbus-A slaves have two ports for communication.
The slaves have two states of operation, a default state
where the two Modbus ports are connected internally
using a Modbus bridge as in Figure 4(a) and configuration
mode where the Modbus bridge is disconnected, as shown
in Figure 4(b).

As a result, Modbus-A slaves will function as any
other traditional Modbus slave under normal operation, as
shown in Figure 5.

Figure 3. Modbus frame format

Figure 4. Modbus-A slave modes
(a) Default mode (b) Config mode

(b)(a)

40Copyright (c) IARIA, 2017. ISBN: 978-1-61208-599-9

ADVCOMP 2017 : The Eleventh International Conference on Advanced Engineering Computing and Applications in Sciences

Consider the condition where the slaves are new out
of the box and hence have ID=1, as shown in Figure 6.

To make the system work, the slaves must be set with
unique IDs. With Modbus-A, the master can be made to
do this automatically in two stages as explained below.

A. Reset stage

The master sends a reset message to the daisy chain.
Regardless of the slave ID, every device that receives the
message will accept it and transmit it to the next slave.
Once the message is transmitted to the next device, each
slave will switch to configuration mode thereby
disintegrating the daisy chain by opening the Modbus
bridge, as shown in Figure 7. The slaves will also clear
their own slave ID. After sending the reset message the
master switches to re-config stage.

B. Re-config stage

In re-config stage, the master sends messages with
incrementing slave ID so that the slaves which are in
configuration mode can set its ID and go into default
mode. In the example in Figure 7, the master first sends a
configuration message with ID=1.

Since the slaves are in configuration mode and hence
have disconnected Modbus bridges, only the first slave
will receive the message. On receiving the message, the
slave will set its ID to 1 and then change its mode to
default, as shown in Figure 8. On setting the slave ID, the
slave will send an acknowledgement message to the
master thereby confirming the configuration.

As the master is in the re-config mode, it will keep on
sending configuration messages with unique slave IDs
using an incrementing counter. So, the second message
from the master will have an ID of 2. Since the first slave
in the example already has a slave ID (of 1) and is in the
default mode, it will ignore the message and transmit it to
the second slave.

Since the second slave is in configuration mode, it
will set its ID in accordance with the ID in the message
and switch to normal mode without transmitting the
message to the next slave. This is shown in Figure 9. The
slave will also send an acknowledgement message back to
the master.

Similarly, the third message from the master will
configure the third slave and the fourth message the fourth
slave, as shown in Figure 10 and Figure 11.

Figure 5. Normal multi slave operation

Figure 6. Configuration out of the box

Figure 7. Auto-reconfiguration sequence step 1

Figure 8. Auto-reconfiguration sequence step 2

Figure 9. Auto-reconfiguration sequence step 3

Master

Slave
(ID 1)

Slave
(ID 1)

Slave
(ID 1)

Slave
(ID 1)

Master

Slave
(ID?)

Slave
(ID?)

Slave
(ID?)

Master

Slave
(ID1)

Slave
(ID?)

Slave
(ID?)

Master

Slave
(ID1)

Slave
(ID2)

Slave
(ID?)

Slave
(ID?)

Slave
(ID 4)

Slave
(ID?)

Slave
(ID?)

41Copyright (c) IARIA, 2017. ISBN: 978-1-61208-599-9

ADVCOMP 2017 : The Eleventh International Conference on Advanced Engineering Computing and Applications in Sciences

So, ultimately, all the devices in the chain will be
configured and set to default mode, as shown in Figure
11.

Even after the last slave in the chain is configured (as
in Figure 11), the master will still be sending
configuration messages as before.

However, since all the slaves are in default more and
hence no more re-configuration happens, the master will
stop to get re-configuration acknowledgement messages
back. This will enable the master to deduce that all the
slaves in the chain are configured.

IV. SOFTWARE SIMULATION AND RESULTS

A. Simulator architecture

To ensure expected system functionality before
development of a hardware prototype, we developed a
Modbus slave simulator with added Modbus-A
functionality. The Cycle-approximate TLM (Transaction-
level modelling) [11] based simulator is capable of
simulation of a parametrizable number of slave devices. In
the simulation, slave IDs 98 and 99 were reserved for the
reconfiguration procedure such that a message (from the
master) with the ID 98 will be treated as the reset message
that will instruct all the slaves to disconnect their Modbus
bridges and to switch into reset mode.

Following that, the master will send messages with
ID 99 accompanied with a new slave IDs thereby
configuring the recipient slaves.

The same function can be implemented differently
with broadcast messages. In Modbus, messages with ID=0
is treated as broadcast messages. Further work will
involve use of broadcast messages coupled with function
codes depicting reset and config messages.

The autonomous algorithm that enables the master to
configure the slave addresses of devices on the network is
shown in Figure 12.

Similarly, the algorithm shown in Figure 13 allows
the slaves to get configured autonomously by the master.

This enables the slaves to function like any other
traditional Modbus slave device under normal working
conditions in an infinite loop.

B. Simulation results

Here we present the simulation result of the system
with 42 slave devices; from the data captured in the
simulator’s log. Figure 14 shows the address of the slaves
at the start of the simulation. It can be seen that all of the
devices have an address of 1; as devices would have out
of the box.

Figure 11. Auto-reconfiguration sequence step 5

Figure 12. Autonomous slave configuration algorithm on the master

Master

Slave
(ID1)

Slave
(ID2)

Slave
(ID3)

Master

Slave
(ID1)

Slave
(ID2)

Slave
(ID3)

Slave
(ID4)

Stop

IDx = 1

Send reconfiguration message with IDx
as Modbus ID

Response
received from

slave

IDx = IDx + 1

Yes

No

Start

Send reset command

Figure 10. Auto-reconfiguration sequence step 4

Start

Turn Reset Mode On
Disable Modbus Bridge

Receive message

On reset
mode

Yes No

Reset
message

Yes

Config
message

Set Modbus ID
Enable Modbus Bridge
Disable Reset Mode

Yes
Send response

Perform the requested
Modbus function

No

No

Send response

Yes

Yes

Yes

No

No

No

Slave
(ID?)

Figure 13. Configuration algorithm on slaves

42Copyright (c) IARIA, 2017. ISBN: 978-1-61208-599-9

ADVCOMP 2017 : The Eleventh International Conference on Advanced Engineering Computing and Applications in Sciences

Figure 14. Address of slaves at the start of the simulation

As mentioned in Section III, the Modbus-A master
will initally send a reset command which will reset the
slave IDs on all the slaves and disconnect its Modbus
bridges.
Following that, it will send reset messages to each slave
with new slave IDs enabling each slave to set its own ID
as per the allocation by the master.

The Modbus addresses of the slaves after the 9th

iteration is shown in Figure 15. It can be seen that the first
8 slave devices were give unique IDs from 1 to 8 by the
master. It can also be noted that the slaves 9 to 42 do not
have IDs as they are in reset mode.

Figure 15. Addresses of slaves after the 9th iteration of the reset logic

Similarly, Figure 16 and Figure 17 show the
addresses of the slaves after the 18th and 30th iteration,
respectively.

Figure 16. Addresses of slaves after the 18th iteration of the reset logic

It can be seen that 17 of the slaves were reset with
unique IDs by the 18th iteration (Figure 16) and 29 of the
slaves were reset with unique IDs by the 30th itteration
(Figure 17).

Figure 17. Addresses of slaves after the 30th iteration of the reset logic

Figure 18 shows the address of the slaves after the
44th itteration after the whole reset algorithm was
performed. As visible, the master device was able to
configure each slave with unique IDs autonomously.

Figure 18. Addresses of slaves after the 44th iteration of the reset logic

V. HARDWARE IMPLEMENTATION

A RS485 based hardware implementation of a
Modbus-A slave is shown in Figure 19.

Each Modbus-A slave circuit consisted of a
microcontroller board along with a UART (Universal
Asynchronous Receiver-Transmitter) to RS485 circuit and
a relay. Port 1 is directly connected to the RS485 A and
RS485 B connections from the UART to RS485 circuit
and the connections to Port 2 are made through the
normally closed relay. A control line from the

0

10

20

30

40

50

1 3 5 7 9 11131517192123252729313335373941

M
o

d
b

u
s

A
d

d
re

ss

Slave number

Addresses of slaves at 30th iteration

0

10

20

30

40

50

1 3 5 7 9 11131517192123252729313335373941

M
o

d
b

u
s

A
d

d
re

ss

Slave number

Addresses of slaves after 44th iteration

Figure 19. Modbus-A slave implementation

UART to
RS485 circuit

Microcontroller
board

Port 1

UART RS485 A

RS485 B

Control

RS485
B

RS485
A

Port 2

Relay
(Normally closed)

RS485
B

RS485
A

43Copyright (c) IARIA, 2017. ISBN: 978-1-61208-599-9

ADVCOMP 2017 : The Eleventh International Conference on Advanced Engineering Computing and Applications in Sciences

microcontroller board was added to turn the relay on and
off as needed.

The test system utilised four such Modbus-A slaves
and a PC (with a USB to RS485 adapter) as the master
device. The components used in the design are listed in
Table I.

TABLE I. COMPONENTS USED

ITEM MODEL

Microcontroller
board

Arduino Mega2560 with 8-bit
ATmega2560 microcontroller

Relay
Good Sky GS-SH-205D 5V GS-D
Series 1A DPDT Relay

RS485 chip Maxim MAX3072E

The hardware tests confirmed the functionality of the
device as previously established during software
simulation.

VI. CONCLUSION

The paper presented Modbus-A, an architecture that
will enable a Modbus master device to autonomously
configure Modbus slaves already connected on to the
common communication medium.

This was made possible using a configuration
algorithm on the slaves aided by an additional hardware
component. This enabled the Modbus-A master to
autonomously reset Modbus IDs of every slave connected
using a configuration algorithm. This eliminates the need
for individually powering up each Modbus slave and
setting its Modbus ID before connecting them into a
common communication medium.

The paper explored the implementation aspects of the
architecture along with details on tests conducted using a
software simulator. The paper also detailed a possible
hardware implementation of the system and evaluated its
functionality.

ACKNOWLEDGEMENT

This research is partly funded by Innovate UK as part
of the Knowledge Transfer Partnership [12] initiative of
the government of the United Kingdom.

REFERENCES

[1] Modbus Organization, Inc, “Modbus,” 1979. [Online].
Available: http://www.modbus.org/specs.php. [Accessed
19 May 2017].

[2] Modbus Organization, “Modbus application protocol
specification v1.1b,” 28 December 2006. [Online].
Available:
http://www.modbus.org/docs/Modbus_Application_Proto
col_V1_1b.pdf. [Accessed 2 June 2017].

[3] R. H. Naismith and D. Areces, “Automatic configuration
of network automation devices”. USA Patent US
2005/0256939 A1, 17 November 2005.

[4] W. C. Liang, Y. H. Liu, and K. H. Chu, “Method for

setting addresses of slave devices in communication
network”. USA Patent US 9015267B2, 21 April 2015.

[5] IEEE Standard 802.3, “Part3: Carrier sense multiple
access with collision detection,” 2000 Edition.

[6] Y. P. Grain et al., “Automatic Address Identification
Method By Utilizing MODBUS Communication Protocol
On RS-485”. China Patent CN201410330307.8, 10
February 2016.

[7] C. J. Ching , A. L. Ting, and L. C. Chin, “Design the
DNS-Like Smart Switch for Heterogeneous Network
Base on SDN Architecture,” in International Computer
Symposium (ICS), Chiayi, Taiwan, 2016.

[8] C. A. Lloyd, “Automated configuration of device
communication settings”. USA Patent US 8190697B2, 29
May 2012.

[9] T. Alharbi and M. Portmann, “SProxy ARP - efficient
ARP handling in SDN,” in 26th International
Telecommunication Networks and Applications
Conference (ITNAC), Dunedin, New Zealand, 2016.

[10] C. Lin, T. Su, and Z. Wang, “Summary of high-
availability DHCP service solutions,” in 4th IEEE
International Conference on Broadband Network and
Multimedia Technology (IC-BNMT), Shenzhen, China,
2012.

[11] J. R. Harbin and L. S. Indrusiak, “Fast transaction-level
dynamic power consumption modelling in priority
preemptive wormhole switching networks on chip,” in
International Conference on Embedded Computer
Systems: Architectures, Modeling, and Simulation
(SAMOS XIII), Samos, Greece, 2013.

[12] Innovate UK, “Knowledge Transfer Partnerships,”
Innovate UK, 2017. [Online]. Available:
http://ktp.innovateuk.org/. [Accessed 13 June 2017].

44Copyright (c) IARIA, 2017. ISBN: 978-1-61208-599-9

ADVCOMP 2017 : The Eleventh International Conference on Advanced Engineering Computing and Applications in Sciences

