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Abstract—Mean-field theory is a significant recent step for
the field of stochastic optimal control. By allowing the optimal
control functions to take into account not only the state of
the controlled node, but also the mean-field state of an entire
ensemble of nodes, mean-field theory allows us to model inter-
dependent networks of agents in an analytically tractable
manner. In this paper, we show its application to a very
standard problem of cellular network optimization, the cell
loading problem. By modelling the cell-loading problem as a
combination of the loading of the individual cell, as well as the
loading of the entire network, we show that a distributed optimal
control function exists that can be individually implemented at
nodes, and that is capable of reaching network wide equilibrium.
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I. INTRODUCTION AND PROBLEM STATEMENT

Stochastic optimal control is a powerful technique to

control time-varying systems with randomly varying inputs.

Developed over the last fifty years from the base of vari-

ational inequality and deterministic optimal control theory,

it has been applied in multiple disciplines, ranging from

finance to oil exploration and medical trials. The fundamental

strength of optimal control is the ability to develop an optimal

control function which can optimize performance over a time

interval, as opposed to a single instant of time, in the face

of unknown, time varying inputs.

Application of stochastic optimal control to wireless net-

works, however, has been limited [1][2][3]. A fundamental

problem in the application of optimal control techniques in

this domain is that of inter-node inter-dependency. Wireless

networks of the 4th and 5th generation are increasingly

built around the principles of shared resources, overlapping

coverage areas and inter-cell and even inter-radio technology

coordination. This change, from the days of isolated cells of

fixed boundaries in 2nd generation networks, has come about

because of two reasons. The first is the ability of individual

user terminals to use larger and larger bands of spectrum. The

second is the need for networks to dynamically adapt to large

variations in demand, both spatially and temporally. Cellular

networks are being moved towards newer and newer business

cases such as wide-area connectivity for cellular networks

supporting Internet Of Things, connected vehicles, etc. Most

of these use cases are dependent on network nodes being able

to flexibly adapt to new patterns in user behaviour. Hence,

the paradigm of dynamically shared resources and network

node cooperation is here to stay. For a few examples, we

see Coordinated Multipoint networks in 4G, Hetnets and

Inter-Cell Interference Coordination (ICIC/eICIC). Indeed,

the 3rd Generation Partnership Project (3gPP) has introduced

the X-interface between network nodes as an explicit means

of inter-node coordination in real-time, in order to make

coordinated cooperative network operation possible.

A. Optimal Control for Wireless Networks

Applying any kind of optimal control to wireless network

nodes hence needs to model the network nodes impact on

each other. Network nodes are independent, yet coexisting

agents, tied together by the constraints of shared resources

and shared environments. In this situation, it is not really

possible to model each network as independent of the other

nodes. To apply optimal control, one would to simultaneously

solve the optimal control equation for all network nodes

simultaneously, i.e., the network state becomes a vector

of states, one for each agent. This however leads to the

dimensionality problem as the number of degrees of freedom

increase as O(n2). It also requires a degree of simultaneous

coordinated control that is not feasible in most wireless

networks. A strictly adversarial approach (such as used in

game theoretic techniques) is also not appropriate, since

network nodes are not necessarily operating in competition of

each other. It may make sense for a given node to hand over

load to another node or to take over loading from another

node cooperatively. To a large extent, we are optimizing

overall network capacity, not individual node capacity.

B. The Mean-Field Extension to Stochastic Optimal Control

In the 2000s, Lasry and Lions [4] and independently,

yet nearly simultaneously Minyi Huang and his team [5]

kicked off a concerted research effort on optimal control

of multiple interacting stochastic processes with mean field

constraints. Optimal control problems of this nature are called

Mean Field Games (henceforth MFG). The MFG technique

is an extension to stochastic optimal control that allows the

empirical distribution of individual network node states to be

included in the transition and cost functions. This provides

us a mechanism for incorporating the network state variables

into individual node decision control algorithms. For exam-

ple, Huang et al. in [6] use mean-field stochastic control as a

way of optimal power control in wireless networks. Wireless

nodes have to set transmission power so as to maximize
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the Signal to Interference Ratio (SIR), yet minimize cross-

neighbour interference. In this case, the latter is modelled in

terms of the empirical power distribution across the network.

In this paper, we apply stochastic control with mean field

constraints to an associated problem, that of cell loading. We

will show how this powerful new technique can be applied

to this crucial and very basic problem of cellular resource

management. The rest of the paper is organized as follows. In

Section II, we introduce the cell loading problem. In Section

III, we give an introduction to Stochastic Optimal Control and

its extension to Mean-field constraints. Finally, in Section IV,

we show how we model the cell loading problem in terms

of mean-field constraints and stochastic demand and provide

a framework for its solution.

II. THE CELL LOADING PROBLEM

The cell-loading problem has been studied as part of the

load balancing problem since a long time and is seen as

a fundamental component of the Self Optimizing Network

(SON) [7][8].

A relatively recent analysis of the current status and open

areas is given by Andrews et al. in [9]. In this work, the

authors also discuss the myths surrounding cell loading and

QoS. One of the myths identified by the authors is that the

capacity of a cell is rarely a property of the link SIR, but also

has to take into account the loading of the cell itself. In our

opinion, this underlies the need to do active load balancing

as discussed in the rest of the paper.

1) Problem Description: The problem is briefly described

as follows: we have a network of overlapping cells covering

a given coverage area. Each cell is controlled by a network

node (base-station). The state variable X(t) for a given cell

is the demand for bandwidth from the associated network

node. The network nodes negotiate with a central controller

for allocation of resources; the resources available to a given

network are a measure of its capacity c(t). The resources

allocated to a cell (network node) may be a combination

of various different physical and computational resources,

such as spectrum, power and backhaul capacity. All of these

combine in some way to determine the overall load handling

ability c() of a given network node. Since these are shared

resources, nodes in a SON can flexibly deploy them, while

keeping with overall network constraints, from one cell to

the other as demand changes.

We make the problem more interesting by making some

additional assumptions on the part of the users; that they are

bandwidth hunting and self-optimizing. A bandwidth hunting

entity constantly increases demand as its current demand

is met; this attribute is typically used for TCP congestion

management algorithms, which hunt for spare bandwidth

in the network and then fill it up. Since modern wireless

networks are dominated by data traffic, this is not a far-

fetched assumption. The second attribute refers to the user

equipments agency in terms of selecting the cell to attach

to; an individual user terminal will tend to detach from over-

crowded cells with less available bandwidth and attach to

less crowded cells using a mixture of measurements and

network feedback. 5th generation user terminals will have

the capability to interrogate the network for this kind of

information and the algorithms to use the information for

optimal network selection.

It is clear that the likelihood of input demand rising further

is tied to the expressed demand not only in the current

cell, but also in the neighbouring cells; for example, if the

demand for a given cell is low and that of the neighbouring

cells higher, it is possible for users to handoff to one of

the neighbouring cells, hence decreasing expressed demand

in the given cell. Here we can use the difference of the

local demand and the average of the empirical network-

wide demand to express this preference. Similarly, we can

place constraints on the final distribution, by making g() a

function both of the final value of X , as well as the final

distribution; for example, by providing an incentive for users

to stay within a certain range of the mean.

Given this scenario, the challenge is to design an algorithm

for the optimal allocation of resources. The input to the

algorithm is the demand as measured at each network node,

and information of the network wide distribution of this

variable; since we are only interested in a single moment of

the distribution, the amount of information to be circulated

network wide is relatively limited. Based on this input,

individual network nodes will compute the optimal capacity

they wish to deploy and then execute that strategy. The

objective is to minimize the demand allocation gap while

maximizing the total served demand. For reasons we shall

describe below, we shall formulate and solve the algorithm

as a stochastic optimal control problem with a meanfield

constraint.

2) Previous Work: The existing literature in load bal-

ancing in cellular networks is vast, even if we limit it to

distributed cooperative algorithms. Broadly, the approaches

in the literature can be divided into two categories. One set

of research tends to focus on user redistribution, using intra-

cellular and inter-cellular handoffs [10][11]. In other words,

rather than moving resources, the users are moved between

cells. In these approaches, the decisions are typically taken at

the endpoints with the network nodes providing information

about current loading. Alternately, one can move the decision

logic to the network nodes themselves. In the second set

of approaches, the network nodes autonomously learn the

optimal loading limit individually and then act to achieve

this. In [12], the authors propose reinforcement learning

techniques for network nodes to tune specific configuration

parameters to achieve the optimal load. In contrast, in [13]

Bigham et al. describe a method of structured direct nego-

tiation between the network nodes, using the gap between

demand and capacity as a distance factor between nodes in a

graph. In [14], the authors model the negotiation process as

a game between an individual loaded cell and underloaded

neighbour cells.

In this paper we have proposed load balancing using mean-

field stochastic optimal control. We replace the inter-network
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node negotiation by a distributed stochastic optimization

process, where the network node has visibility of its own

load as well as the network wide load. The network wide

load is a mean field statistic, sampled at a central location

from feedback from individual nodes, computed, filtered and

broadcast back to the network nodes as an input variable.

User load is modelled as an exogenous variable, where

individual users seek to maximize their own utilities.

III. STOCHASTIC OPTIMAL CONTROL AND MEAN FIELD

GAMES

In this section, we shall present the basics of mean-field

stochastic optimal control.

A. Fundamentals

We start with the basic stochastic optimal control problem.

We consider a system whose state variable X is controlled

by the transition function (1) given below

dXk
t = b(Xk

t , ut)dt+ σ(Xk
t , ut)dW

k
t (1)

The variable ut = U(Xk
t , t) is the output of a control

function at time t, where said function is adapted to the

filtration generated by the stochastic process W k
t , which

is a brownian motion. b() and σ() are Lipschitz continuous

bounded functions as required for the standard definition of

a Wiener process. The system governed by this equation has

a long term cost function as in (2).

Φ
(

x0, u, T
)

= E

[

g(XT ) +

∫ T

0

f
(

Xk
t , ut

)

dt

]

X(0)= x0 (2)

Our aim is to find the optimal control function u∗(t) from a

set of possible control functions u ∈ U so as to minimize

the expected minimum total cost Φ(x0, a, T ), over the time

period [0, T ]. Computing the optimal value of u(t) is, in a

nutshell, the stochastic optimal control problem.

The general solution technique is derived from the cor-

responding deterministic optimal control problem, with an

important caveat. Whereas, in a deterministic control prob-

lem, the cost corresponding to each choice of u() can be

forecast, here we are faced with uncertainty in the future.

At each point t, the value of u(t) has to be based on the

information regarding X as known upto then. This is what

we mean by being adapted to the filtration of X .

1) Solution Technique : HJB equation : The classic way

to solve a stochastic optimal control problem is to construct

the Hamilton Jacobi Bellman (HJB) equation, which, for the

above problem is given in (3).

∂φ

∂s
(y, u) + b (y, u)∇xφ+

σ2 (y, u)

2
∇2

xφ+ f (y, u) = 0

⇒
∂φ

∂s
(y, u) +H (b,∇xφ, f, u) +

σ2

2
(y, u)∇2

xφ = 0

φ (Y ) = g (Y ) (3)

The value of u = u∗ which solves this equation for all y
gives the optimal value of u. Note the second derivative

term, which makes the solution rather complex. The function

H(y, b, f, x, u) = 〈y(x, u), b(x, u)〉 + f(x, u) is called the

Hamiltonian; the solution to the above equation depends, to

a very large extent, on the structure of the Hamiltonian.

2) The Adjoint Equation Approach: A second method is

to construct the adjoint equation based on the Stochastic

Maximum Principle (SMP), in a manner analogous to the

Lagrangian for a deterministic optimization problem. The

stochastic maximum principle [15] is conceptually similar to

the Pontryagin maximum principle for the deterministic case.

However, it is more complex to solve because the solution is

not time reversible [16].

The SMP requires us to find two stochastic variables pt, qt,
such that the equation pair (4) holds.

− dpt= ∇xH
(

pt, qt, b, f,X
k
t , u

)

dt+ qtdW
k
t

pT= ∇xg (XT ) (4)

In this equation, the Hamiltonian takes the extended form

defined as in (5).

H(p, q, b, f, x, u)

= 〈p, b(x, u)〉+ tr
{

qT .σ(x, u)
}

+ f(x, u)

∂uH(p, q, b, f, x, u∗) = 0 (5)

The solution of pt, qt if they exist, provide an optimal control

function u. Note that this is a backward stochastic differential

equation again because the termination value of p is provided.

We note that this is a simplified version of the SMP, where

the function σ() is independent of Xk
t . If σ() is a function

of X , then we need to add a second pair of variables to take

care of the additional risk of modifying the diffusion term in

dXk
t . The interested reader should consult Yong [16, Section

3.1] for more information. For the rest of this article, we will

only consider problems where σ() is independent of u.

B. Adding the Meanfield Constraint

We now consider the problem of adding the meanfield

constraint. In this version of the problem, the equations (1),

(2) change to the form given in (6). The term zt is the

meanfield term. In the simplest case, it is the scaled average

of the empirical states of the other agents in the game, i.e.,

zt = η/(N − 1)
∑

Xj 6=k
t . In real life, it can be expressed as

more complex moments of the empirical distribution µX
t or

functions thereof.

dXk
t = b(Xk

t , ut, z
k
t )dt+ σ(Xk

t , ut, zt)dW
k
t

φ
(

x0, u
)

= E{g (XT , zt) +

∫ T

0

f
(

Xk
t , ut, zt

)

dt}

µX
t (Y ) =

1

N

N
∑

j=1

IXj=Y

zt = Average
(

µX
t

)

(6)

The existence of the term zt represents the coupling between

the states of the different agents. It requires us to take into

account the global ensemble of states, when computing the
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optimal strategy u∗() for the kth agent. The meanfield term

thus allows us to model the interdependence of the agents.

Most explicit solutions that we have encountered use the

empirical average. However, more complex functions may

also be used at the cost of complexity.

1) Convergence to Equilibrium: The incorporation of the

meanfield term µX
t raises an interesting problem of evolution

of the meanfield distribution µX
t in response to a given

strategy u(). This is important because we would like a

solution where the optimal strategy u∗() drives µX
t to stable

equilibrium (or at least a stable value of the feedback term

zt). Huang et al. in [5] address this problem by considering

the case where the number of agents is very large. By taking

the limit to infinity, Huang et al. demonstrate that there is a

Nash equivalent solution (NCE) wherebe µX
t tends to a long

term stable distribution µX
t which leads to a Nash equilibrium

for all agents. This is very important, because it lets us relate

the term µX
t to the evolution of X; we shall see the solution

technique in The HJB-KFP approach section below.

A second interesting problem is that of differentiating the

Hamiltonian function with respect to a distribution function;

Lasry [4] has shown that this can be done using the Wasser-

stein space of probablity measures on a Borel space and using

a suitably defined lifting function.

Unfortunately, solutions for stochastic optimal control

problems with mean-field games are not easy. There are three

main techniques, two of which depend on solving Forward

Backward Stochastic Differential Equations (FBSDE). To

date, most of the research in solutions of MFGs pertain to a

special class of MFGs, the so-called Linear Quadratic MFG

[17][18][19]. There are two main approaches that we shall

discuss below; these approaches have been studied mostly

in the context of LQMFGs. Recently, a paper has been

published by Pham and Wei [20], which discusses a dynamic

programming solution to these games. However, we have not

covered it here.

The linear quadratic MFG (LQMFG) consists of an op-

timization problem where the transition function of Xk
t is

linear (7) and the value function is quadratic (8).

dXt = bXt + aut + b̂zt (7)

φ = qX2 + r.u2 + q̂ (X − z)2 (8)

While simple in nature, the LQMFG can be applied to a

large number of situations with interesting results. As we

shall see below, we have modelled the cell loading problem

as an LQMFG.

2) The HJB-KFP approach: The fundamental idea behind

this approach is that as the number of agents becomes

large, the distribution for the states of the individual agents

approaches the probability distribution for the state of each

individual agents. In [5] Huang et al. have shown that

this assumption leads to a Nash equilibrium. The solution

comes from utilizing the Kolmogorov Backward equation

(sometimes called the Kolmogorov Fokker Planck equation)

to model the probability distribution of X for a given agents,

together with the HJB equation, as shown below (9), given

the probability distribution of the starting state. In theory, in

a stable equilibrium, the long term probability distribution

of Xk
t under the Fokker Plank equilibrium should match

the empirical distribution of Xk
T as T → ∞, leading to a

stable solution for the HJB equation and thereby making the

equilibrium self-sustaining. In this situation, we can postulate

that Xk
T → zt as the distribution evolves, for large values of

T .

∂tφ+
σ2

2
∇2φ+H(∇xφ, b, f,X

k
t , ut, zt)

φT = g (XT )

zt = E
[

Xk
t

]

, Xk
0
= x0

∂tzt = −b()∇xzt +
1

2
σ2(x)∇2zt, z0 = Xk

0
(9)

Note that the HJB equation is a backward stochastic dif-

ferential equation, whereas the KFP is a forward equation.

Once again, the value of u which solves both equations

simultaneously is the optimal control function. The KFP-HJB

technique has been used successfully for LQMFGs in many

papers; a good example is that of Bardi [17].

C. Constructing the Adjoint Equation

An alternate approach to solve the mean field problem is

to extend the adjoint equation described in (4) to take into

account the presence of the mean field term zt [21]. To do

this, we have to extend the Hamiltonian as shown in (10) .

H̃
(

X, y, z, X̃, u
)

= H
(

X, y, z, µX
t , u

)

(10)

Here X̃ is a random variable with a probability distribution

function matching µX
t . The extended Hamiltonian H̃ thus be-

comes a lifted version of the standard Hamiltonian, allowing

us to take the derivative with respect to the distribution µX
t .

The Stochastic Maximum Principle is as in (11)

−dpt = ∇xH
(

Xk
t , ut, pt, qt, µ

X
t

)

dt

+ E
[

∂µH(Xk
t , ut, pt, qt, µ

X
t )

]

+ qtdW
k
t

pT = ∇xg (XT ) + E [∂µg (XT )] (11)

The challenge with solving (11) is that we have no idea of

µX
t or even of the form of µX

t . One possible way out of this is

to treat it as a variational inequality problem as suggested by

Bensoussan in [18]. In this approach, we assume that all the

agents, other than the kth agents is using the optimal strategy,

which leads to the term µX
t being replaced by a deterministic

zt as the moment of the distribution that we are interested in.

The optimal strategy, if it is deviation proof, will lead to a

fixed point solution, where by xt = E [Xt|g(zt)] = zt, where

g(zt) represents the moment of the distribution that we are

interested in. Bensoussan et al. apply this to the solution of

a Linear Quadratic MFG and demonstrate the solution is ǫ
Nash compliant.
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IV. APPLICATION TO THE CELL-LOADING PROBLEM

We now see if this technique can be applied to the cell-

loading problem. We recall that the purpose of the cell

loading problem is to ensure that cell-loads are as uniform

as possible, given the variations in demand. We measure the

expressed demand ,i.e., actual request for service at any given

kth cell as the state variable Xk. The variation in demand is

based on two parts. One is the natural variation, captured

through a random diffusion term. The second is the variation

of demand in response to the offered service. For our control

variable u, we have selected the gap between the request for

service Xk(t) and the actual capacity assigned to that cell,

Ck(t). u
k
t = Xk

t − Ck
t .

A. Feedback Loop Between Demand and Offered Capacity

The majority of modern data-based applications use the

Internet Transport Control Protocol (TCP) as the backbone

transport protocol. This is true for Internet browsing, as

well as video streaming using Dynamic Adaptive Stream-

ing over HTTP (DASH). TCP by its very design uses a

bandwidth hunting algorithm to determine the appropriate

transmission rate. As a result, TCP endpoints react to the

available bandwidth in the network. When the network is

congested, the TCP back off and reduce the data injection

rate and hence, the network load. On the other hand, if

they sense the availability of bandwidth in the network, they

increase the network load gradually. The success of the TCP

bandwidth hunting algorithm is such that even non TCP

connections are nowadays required to maintain TCP like

transmission rate management protocols. For example, the

Tcp Friendly Rate Control [22] is now an Internet standard

for bandwidth control of media flows such as those proposed

in Web real-time communication (WebRTC). The assumption

of bandwidth hunting endpoints is important, because it

allows us to model demand as a continuous process. If, on

the other hand, the bandwidth demand changed in discrete

bands, we would have to use a jump-diffusion process, which

makes the analysis more complex.

For wireless networks, the bandwidth hunting behaviour

of individual endpoints is augmented by the bandwidth

sensing capability of the access network user; for example,

User Equipment (UE) triggered handoffs between cells as

a response to congestion. We can postulate that expressed

demand will decrease in the face of a demand capacity gap (

u > 0) and increase in the face of surplus capacity being

deployed (u < 0). We further postulate that this has to

take into account the overall distribution of demand. In other

words, if a given kth cell is heavily loaded and facing a

demand supply gap, its users will have an incentive to migrate

to neighbouring cells. Hence, we define the state transition

function as in (12), using the term zt as introduced above.

dXk(t) = −Auk
t +B

(

Xk
t − zt)

)

+ σdW k
t (12)

We note that the diffusion term is independent of the empir-

ical distribution, for the reasons described above. A and B
are constants.

B. Network Cost

We now come to the cost function. As expected, we

penalize the admission control function for high values of

u; if positive, because of the large demand supply gap and if

negative, because of the oversupply and consequent wastage

of capacity. The final reward function is purely a function of

the empirical distribution of X .

f() = M.u2

t −NX2

t (13)

g() = η (XT − zT )
2

(14)

C. Existence of a Solution

We will now show that a unique solution exists, for suitable

values of M,N,A and B. We can use the technique given

in Bensoussan [18, Section 3], by taking the derivative of

the cost function at the optimal u and then setting it to zero.

The cost function can be written in terms of the perturbed

optimal cost ut(θ) = u∗
t + θvt) as in (15).

φ(ut) = ηE [XT − zT ]
2
+ E

[

∫ T

0

(

Mu2

t −NX2

t

)

dt

]

dXk
t = Aut +B

(

Xk
t − zt

)

Xk
t (u∗

t + θvt) = yt + θx̃t, dx̃t = Avt +Bx̃t (15)

Taking the derivative of φ(ut + θvt) with respect to θ and

setting it to 0,

E

[

∫ T

0

2Mutvt − 2Nx̃t.ytdt

]

+ E [ηx̃T yT ] = 0 (16)

We choose an adjoint variable ωt with the properties shown

in (17).
dωt

dt
= −Bωt + 2Nyt, ωT = ηyT (17)

Expanding d(ωtx̃t) and substituting suitable in (16), we

get the following pair of adjoint equations.

dωt

dt
= −Bωt + 2Nyt, ωT = ηyT

dyt = −
A2

2M
ωtdt+B (yt − zt) dt+ σdWt (18)

The optimal u is given by (19). The form of p(t) has to

be chosen so that u∗() is anticipatory (because ωt is not

guaranteed to be F (Y ) adapted.

u∗
t = −A/2Mp(t), p(t) = E [ωt|F (Y )] (19)

By the fixed point theorem, a solution exists if zt =
[E] [yt]. Setting E [ωt] = ǫt and E [yt] = Yt, we can write the

above equation as (20). It is clear that a fixed point solution

exists, because the matrix is invertible.

d

dt

[

ǫt
Yt

]

= −

[

B −2N
A2

2M
0

] [

ǫt
Yt

]

(20)

The equation pair in (18) has to be solved using numerical

techniques [23]. In some rare cases an analytical solution

is available. The output of the solution is an approximate

control function u(x, z), which is a function of the current
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state value x and the network state z. The control function

may be stored as a two-dimensional table or as a polynomial

function and computed at appropriate intervals. In a future

paper, we shall present the challenges of solving the MFG

and the associated performance for a large network of nodes.

V. CONCLUSION AND FUTURE WORK

In this paper, we have demonstrated the application of

mean-field stochastic optimal control to a very standard and

well-studied problem of wireless network control. As we

have seen here, even a simplified network model can capture

a rich network interaction structure and yield a sophisticated,

yet realizable solution to this problem. We have demonstrated

that a solution exists for a simple linear format of the game,

which can be solved numerically.

It is arguable that our particular model for the cell loading

problem can be significantly enhanced. For example, we

can put further constraints on the solution space. This may

include domain specific constraints, i.e., a maximum limit on

the capacity per cell or the total capacity in the network, etc.

Since our primary purpose is to demonstrate the applicability

of the Mean-field technique, we have used a simplified

model in this paper for the sake of analytical tractability.

Most existing solution techniques for MFGs are limited to

very specific models. We hope to extend our work to more

complete models as our ability to solve more complex MFGs

evolves.
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