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Abstract—This paper presents a novel context-aware system 

for deictic gestures interaction with smart environments. The 

system tracks multiple users; moreover, it recognizes 

inhabitants’ postures and gestures in real-time. This 

information, enriched with smart objects coordinates, is 

reconstructed in a 3D model to allow the recognition process. 

Finally the system executes the programmed tasks to support 

the users’ activity. Two Microsoft Kinect depth cameras have 

been used to acquire the data and a framework for the 

communication with the smart objects has been adopted. A 

first prototype has been developed and an evaluation test with 

13 users has been conducted in order to assess the usability of 

the system. Results show that this interaction experience has 

been really appreciated by the users. 

Keywords-Ambient Intelligence; Smart Environment; 

Gesture Interaction; Posture Recognition; Depth Cameras 

I.  INTRODUCTION 

Norman‟s invisible computer [1] and Weiser‟s ubiquitous 
computer [2] theories led to the conception of Ambient 
Intelligence (AmI). This multidisciplinary paradigm is 
intended to create new smart infrastructures that seamlessly 
integrate intelligent services [3]. This new conception of 
computing is thought to be invisible but always active in the 
background to grant all the services that are supposed to be 
necessary to the user. This novel anthropomorphic human-
machine model of interaction permits the user to move into 
the foreground in complete control of the smart, augmented 
environment which interprets actions to support and enhance 
the abilities of its occupants in executing tasks [4]. Such a 
system has awareness about the user‟s current activity, 
situation and intention before the activity is actually 
completed to provide appropriate support. A technology that 
allows reading the human mind does not exist yet, and 
capturing actor‟s intention implicitly is a very hard challenge 
[5]. For this reason, a smart environment cannot limit its 
decisions to the elaboration of context information, but it has 
to allow the inhabitants to interact with the environment in 
order to explicit their intentions and goals. According to the 
current trends, the design of an interactive environment 
interface aims especially to solve important issues related to 
the usability and the adaptiveness of such interfaces. In order 
to create an end-user friendly interface, many researchers are 

focused on natural ways of interaction as speech and gestures 
[6]. In particular, deictic gestures play an important role 
since they are intuitive and commonly used by humans to 
reference objects and devices by pointing at them [7]. 
Therefore, deictic gestures are really significant for human-
environment interaction. On the other hand, correct deictic 
gestures interpretation by the system depends on the user 
context (e.g., position and orientation in the 3D space) and 
this involves the need of a situational awareness about the 
smart objects placed in this interactive space.  

A real-time context-based system for deictic gestures 
interaction with smart environments is presented in this 
paper. This system grants human actors to interact with a 
smart environment pointing at the smart objects. The context 
information comes from the data related to the states and 
positions of the smart objects, and to the tracked inhabitants‟ 
postures. All this information is modeled in a 3D virtual 
space. The sensors that are used to acquire the data are two 
Microsoft Kinect depth cameras. Hence the user does not 
need to wear any special device. 

The 3D camera technology is positioned to become 
ubiquitous; in fact the Microsoft Kinect is a really cheap off-
the-shelf device which can provide quite accurate depth 
information (11 bit data for 2,048 levels of sensitivity) at a 
good frame-rate (30 Hz). The research community has 
already manifested strong interest in this new device, also for 
applications that go far beyond simple video-gaming 
[8][9][10]. 

The rest of the paper is organized as following. In 
Section 2, the related work is presented and the scenario is 
described in Section 3. The tests and the considerations 
related to the use of multiple Kinects are discussed in Section 
4; the architecture of the system is described in Section 5. 
Section 6 presents the tests that have been made in order to 
evaluate the system. Section 7 is dedicated to the conclusion 
reporting also the future work. 

II. RELATED WORK 

Interaction between human beings and smart 
environments is a real demanding research area [6]. Gestures 
are really significant for this kind of applications [11].  

Many research works are focused on deictic gestures and 
often they prefer cameras as sensors to capture the 
inhabitants‟ movement information, as in [12] and [13]. 
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Information extraction from 2D video streams involves many 
limitations because pointing in a real room needs 3 
dimensions for a complete representation. In fact, the authors 
of [14] adopted stereo-cameras to extract depth information 
from disparity map.  

Postures recognition is another research domain that 
captured researchers‟ interest [15]. Most of the works 
adopted video-cameras as sensing device [16][17][18]. The 
elaboration of data deriving from a single 2D video flow 
involves many problems, e.g., occlusion and cluttered 
background, and puts many limits in recognizing human 
postures. Indeed, Chu and Cohen adopted a system based on 
four synchronous cameras to recognize postures and gestures 
[19]. Another solution to add important spatial information 
to recognize postures consists in using a depth camera, as in 
[20].  

Depth cameras can really improve system performances 
for the interaction in a smart environment, as Wilson and 
Benko demonstrated in [21]. On the other hand, this kind of 
systems allows the interaction only with selected surfaces.  

In this paper, a novel system that recognizes 3D deictic 
gestures and human postures using multiple depth cameras is 
presented. It reconstructs context information elaborating 
spatial coordinates of the smart objects (that are previously 
inserted in the system) and of the inhabitants (that are 
constantly tracked in the 3D space), combining them with 
the deictic gestures and postures data to improve the 
interaction experience. 

III. SCENARIO 

Youngblood et al. defined a smart environment as one 
that is able to acquire and apply knowledge about the 
environment and its inhabitants in order to improve their 
experience in that environment [22]. Designing a smart room 
that can achieve this goal involves the context awareness and 
the possibility of interaction with the people. Gestures are a 
natural way of interaction for humans and integrating these 
commands with information coming from the situation can 
make the environment to support user‟s tasks. A smart room 
that can achieve this goal has to recognize the inhabitants‟ 
activity, it has to understand the direct commands ordained 
by the users and it must integrate many smart objects to 
communicate with. Therefore, the smart environment detects 
the human posture and the smart objects state; indeed it can 
create context information. Commands, acquired from the 
users present in the environment, are interpreted referring to 
the previously modeled context. Our context information 
comes from the data related to the states and positions of the 
smart objects, and to the tracked inhabitants‟ postures.  

The target scenario deals with a smart living room which 
recognizes deictic gestures and human postures, tracks the 
inhabitants and allows them to interact with smart objects 
that are present in the interactive space, see Figure 1. The 
novel approach of this system assigns different meanings to 
the pointing gesture according to the user‟s posture. If the 
user is sitting on the couch in front of the TV and points at 
the media center, then the TV is turned on. If the user is 
standing in the center of the room and he points at the media 
center, then the radio is turned on (the environment is set to 

interpret this situation as the user would like to listen to 
music). The spatial coordinates and the postures are crucial 
for the interpretation of the meaning of the gestures 
performed by the user, but the state of the smart objects is 
important as well. If the human points at the lamp, which is 
turned off, then the system turns it on; on the contrary if the 
lamp is already on, the system turns it off. Another 
application deriving from the posture recognition part is 
aimed to emergency purposes. When the system detects a 
person lying on the ground for a period superior to a guard 
time that has been previously set, the system calls the 
rescues. On the other hand if the human is lying on the sofa, 
the smart environment closes the blinds and turns off the 
lights to permit to the user to rest comfortably. 

IV. USING MULTIPLE KINECTS 

Robust interactive human body tracking has many 

applications, in particular it can be important in human-

computer interaction; depth cameras can simplify reaching 

this task and the Microsoft Kinect represents the first down-

market device that can allow capturing 3D general body 

motions and shapes at interactive rates [20]. However, using 

multiple Kinects involves interference between the infrared 

laser patterns that are at the base of the functioning of this 

device. Each Kinect projects its own infrared pattern for the 

calculation of the depth information and interferences can 

degrade the information quality creating black spots on the 

3D image. In order to assess if the interferences change 

significantly referring to the number of active Kinects and 

their positions, 5 different configurations have been tested. 

Figure 2 represents the camera configurations that have 

been tested. The Kinects have been positioned in A, B and 

C. The colored triangles represent the field of view of the 

cameras from the A, B and C positions. The striped areas of 

the triangles represent the interactive areas, or rather, the 

areas where people can be easily tracked. This area begins at 

a distance of 0.8 m from the Kinect and arrives to 3.5 m. A 

person was present in the test scenario and he was 

positioned on the white circle in the center of the figure. The 

A, B, and C positions are at the same distance from the 

person, in order that the points of the patterns projected 

from the infrared lasers have same brightness and 

dimensions on the person. The optical axis of the Kinect 

positioned in A intersects the optical axis of the Kinect 

 
Figure 1. Scenario. 
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positioned in B forming an angle of 45°. The optical axis of 

the Kinect positioned in A intersects perpendicularly the 

optical axis of the Kinect positioned in C. In configuration 1 

there was only one active Kinect and it was positioned in A. 

In configuration 2 there were two active Kinects and they 

were both positioned in A. In configuration 3 there were two 

active Kinects, one was positioned in A and the other one in 

B. In configuration 4 there were two active Kinects, one was 

positioned in A and the other one in C. In configuration 5 

there were three active Kinects, one was in A, one in B and 

one in C. In Figure 3, the captures for every configuration 

taken from the Kinect that has always been in A are 

reported. The black pixels in the captures represent the 

pixels without depth information. 

To quantify the interference effect, the number of pixel 

without depth information has been calculated. Since the 

pixels without depth information change during time also on 

a static scene, then this number has been calculated making 

an average on 1000 frames for every configuration. The 

depth sensor of the Kinect captures 640x480 pixel frames; 

therefore, every frame has got 307200 pixels with depth 

information. For the configuration 1, an average of 5325 

pixels without depth information has been calculated (with 

standard deviation of 165 pixels); for the configuration 2 the 

average was of 14018 pixels and the standard deviation was 

of 404 pixels; for the configuration 3 the average was of 

12502 pixels and the standard deviation was 319 pixels; for 

the configuration 4 the average was of 13000 pixels and the 

standard deviation was of 295 pixels; for configuration 5 the 

average was of 21813 pixels and the standard deviation was 

of 432 pixels. After these tests, we verified that the 

interference caused by two Kinects is not significant for the 

skeleton tracking and it remains almost constant regardless 

the relative position of the two cameras. However, using 

two Kinects in configuration 4 permits capturing the tracked 

users‟ movements from very different perspectives. This 

configuration permits to capture a very big portion of the 

users‟ bodies avoiding in many cases the occlusion of some 

limbs. In Figure 4 a), an example is shown; on the upper 

part the Kinect can capture the left side of the user and 

cannot see the legs; in the lower part of this figure there is 

the view from the other Kinect present in the system that 

can capture the information about user‟s legs, but it cannot 

track his left arm. The system combines the data coming 

 
Figure 3. Scene captures during the interference test for every 

configuration. 

 

 
Figure 2. Representation of the interference test configurations. 
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from the two Kinects to reconstruct the whole user‟s 

skeleton as explained in the next section. 

Using three Kinects in configuration 5 doubles the 

number of the pixels without depth information generated 

by the interference but it does not add significant 

information for the user‟s skeleton reconstruction. More 

tests with three and four Kinects surrounding the users will 

be executed soon.  

According to the results of these tests, in our system we 

decided to use two Kinect cameras positioned as in 

configuration 4. The developed system is presented in the 

next section. 

 

V. SYSTEM ARCHITECTURE 

The developed system has been designed to be modular. 
It consists of two acquisition modules (one for each Kinect 
camera) and a central module. 

The acquisition modules are based on the OpenNI 
libraries [23] and can track the people present in the vision 
area. Each module constructs a skeleton model of each 
tracked user that will be represented in a specific XML 
structure. These data will be sent to a central module for the 
3D modeling. These modules communicate with XML 
messages using the UDP protocol. Every XML message 
contains the information about the coordinates of every joint 
of every tracked person (that is uniquely identified) and the 
ID number of the Kinect camera that sent these data. 
Moreover, in the XML message there is also the destination 
IP address since this system has been designed to 
communicate with other machines in order to make possible 
a future distributed version to spread the global interactive 
area.  

The central module makes the fusion of the data 
concerning the same tracked user to create a 3D skeleton, as 
shown in Figure 4. This 3D skeleton is calculated with 
coordinates of the different joints and it is placed in the 3D 
model of the environment. The fusion algorithm calculates 
the difference between the coordinates of every joint, and 
then it makes an average of these coordinates weighting the 
information of the more reliable data. In fact, the system 
assigns a higher weight to the coordinates that come from the 
Kinect capturing the highest number of joints information. 
Depending on the user‟s position and posture, a Kinect can 
see a bigger or smaller part of the user‟s body. When a 
Kinect cannot track a specific part of the body to calculate 
the joints coordinates, it does not send any information to the 

central module about that joint. For this reason, the algorithm 
for the fusion assigns a higher weight to the Kinect that can 
detect more joints. When the coordinates of a specific joint 
are provided from only one Kinect because the other one 
cannot track this body part, the algorithm uses directly the 
unique received data. When both Kinects cannot provide the 
coordinates of a specific joint, then the system ignores that 
joint waiting for new data. 

The data related to the coordinates of the smart objects 
present in the interactive area must be inserted in the 3D 
model of the environment using a dedicated interface of the 
central module. The advantage of this data representation 
consists in the possibility of setting spatial constrains in 3 
dimensions for the interaction with the smart objects. 

A. Calibration 

The cameras calibration is crucial to reconstruct a 3D 
model using simultaneously multiple depth cameras. The 
coordinates of the joints coming from the two cameras must 
be represented in the 3D reconstruction of the environment. 
In order to find the right relative coordinates of the points 
captured from the two different points of view, a 
transformation matrix must be determined. The 
transformation matrix in 3D is a special 4x4 matrix and is 
based on quaternions [24]. This transformation matrix 
provides a rotation around the x, y and z axis. The calibration 
phase aims to calculate the 16 values of this matrix. To solve 
this matrix it is necessary to obtain the coordinates of 4 fixed 
points from the two cameras. The resolution of quaternion 
matrix aims to resolve the transformation point from a 
relative coordinated system to the main coordinated system. 

Considering four common points on the two different 
Kinect cameras with known exact coordinates, then it is 
theoretically possible to calculate the transformation matrix. 

The calculation of the transformation matrix based on 
quaternion aims to resolve 16 equations with 16 unknowns. 
All the calibration process is effectuated from the central 
module. 

The cameras calibration phase must be effectuated during 
the set-up of the system. The calibration permits to position 
the two Kinects in every desired configuration, the only 
constrain is that they must capture the same scene. In fact, 
the two Kinects must see at least four common points to 
accomplish the calibration. This system has been 
programmed to register up to 10 common points to calculate 
several transformation matrixes. Afterwards, the system 
computes for each transformation matrix the average delta 
between the main coordinates and the transformed 
coordinates of all the captured points; therefore, the 
transformation matrix with minimum average delta is 
chosen. The system can utilize the calculated transformation 
matrix as long as the Kinects remain in the same positions. 

B. Gesture and Postures Recognition 

The 3D model of the environment includes the users‟ 
skeletons and the smart objects. The system recognizes the 
users‟ postures and pointing gestures from the coordinates of 
the joints in real-time. This recognition process is based on 
simple conditions referred to some values of the joints and 

 
Figure 4. Modeling the user information: a) user‟s skeleton in the two 

Kinect views; b) 3D model of the user‟s skeletons captured by the two 
Kinects; c) 3D fusion of the user‟s two skeletons in one skeleton 
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the relative distances between them. The postures that are 
recognized by the system are two: standing and sitting. This 
information is completed with the relative positions of the 
objects in the 3D model of the environment. When the joints 
of the arm assume specific values, the system projects a 
prolongation of the arm and calculates if it intersects the 
active area attributed to a specific object. Our system has 
been integrated in the NAIF framework [25]. NAIF 
framework handles the creation and management of a smart 
environment. It manages the set-up and the communication 
between smart objects and devices present in the 
environment. Thanks to NAIF, our system can check the 
current object state and generate the suitable command, e.g., 
if the lamp state is off then it sends the appropriate command 
to turn it on. 

VI. SYSTEM EVALUATION 

In order to have a feedback about the system usability 
and to understand the limitations of our prototype, we 
performed an evaluation test composed of two phases. The 
subjects of this test are 13 users (9 men and 4 women) with 
different backgrounds and origins, and with age between 19 
and 28 years.  

A. First Phase 

The subjects have been conducted to the smart living 
room where a simple scenario has been prepared. One user at 
a time has been asked to enter in the room and to interact 
with the system (see Figure 5). After the skeleton tracking 
initialization stage (the user has to remain in a pose for few 
seconds in front of each Kinect device), the user had to point 
at a lamp to turn it on; afterwards the user had to point at the 
media center to turn on the radio and later he had to do it 
again to turn it off. Afterwards, he had to sit down on the 
couch and to point at the media center to turn on the TV. The 
system never failed the gesture or the posture recognition 
during the test. Once finished the interaction session in the 
smart living room, every subject evaluated the experience 
through a System Usability Scale (SUS) [26] questionnaire 
rating the system features according to a 5-point Likert scale. 
The statements covered a variety of aspects of system 
usability, such as the need for support, training, complexity, 
efficiency (how much effort is necessary in achieving those 
objectives) and experience satisfaction. 

 

The users‟ evaluations assessed the system usability as 
excellent with an average SUS score of 90.6 points and a 
standard variation of 5 points. 

B. Second Phase 

This phase consisted in an interview where the users have 

been asked to express their impressions and suggestions. 

Most of them said that the skeleton tracking initialization 

stage could be really annoying for an everyday interaction in 

a real smart room. The subjects have been asked to say if 

they have missed the voice interaction modality in this test 

scenario and everybody answered negatively, moreover they 

expressed their appreciation about this interaction modality 

through deictic gestures. Some of the users remarked that 

they would like also other gestures to go beyond the turning 

on or off the household appliances, e.g., they would like to 

interact with the media center to change TV program or the 

volume. 

Another limitation that came from our analysis is the pre-

determined set of tasks that the system executes referring to 

the users‟ gestures and postures. In fact, a system that 

automatically learns user‟s habits could be preferable to a 

programmed one. Therefore, in order to make this system 

more human-centered, the integration of learning algorithms 

has been thought in order that the system can learn users‟ 

habits. 

VII. CONCLUSION AND FUTURE WORK 

In this paper, a real-time context-based system for deictic 

gestures interaction with smart environments has been 

presented. The system tracks multiple users and reconstructs 

situational information collecting data about the people‟s 

postures and coordinates. Moreover, this software realizes a 

3D model of the environment where only the tracked users 

and the smart objects are present. The users‟ skeletons are 

modeled referring to the joints coordinates captured by two 

calibrated Microsoft Kinect cameras; the smart objects 

coordinates have been inserted previously in the system and 

their current states are provided by NAIF framework. The 

3D model of this information makes the postures and deictic 

gestures recognition easy. The context awareness makes 

possible to interpret the pointing gesture referring to the 

posture and coordinates of the user, giving different 

meanings to the same gesture in order to execute different 

tasks. In the current prototype the tracked people can point 

at two lamps and at the media center. Pointing at the lamps 

turns them on or off (it depends from the previous state). 

Pointing at the media center turns on or off the radio if the 

user is standing, otherwise turns on or off the TV if he is 

sitting on the couch. The usability tests assessed that this 

interaction modality with the smart environment is really 

intuitive; indeed the users do not need training to interact 

with the smart objects and they affirmed that they had a 

really pleasant experience. Future works are already planned 

in order to shorten, or if possible, eliminate the skeleton 

tracking initialization stage (resulted annoying for the users 
 

Figure 5. One of the users testing the system. 
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during the evaluation tests) and to add the learning 

algorithms for a more human-centered system that learns 

users‟ habits. Afterwards, more gestures for an augmented 

environment control will be implemented. Adding more 

gestures will increase the recognition complexity and the 

precision of the Microsoft Kinect could become critical, for 

this reason a comparison with a ground truth will be 

conducted. Finally, the system will be tested with multiple 

users interacting with the environment at the same time. 
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