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Abstract—Depending on the aging society, new care concepts 

for older people are needed, especially the preservation of the 

personal mobility should be in focus. A solution could be the 

use of Information and Communication Technology (ICT) 

based solutions. A key role to preserve the autonomy and social 

interaction of older persons is their mobility. The prevention of 

fall events is a goal for the Housing Enabling (HE) Assessments 

by adaption of room, e.g., by detecting and removing tripping 

hazards. It was pointed out, that an automated HE Assessment 

executed by an autonomous service robot could reach a better 

quality and a higher acceptance. In this paper, we present the 

first try to detect relevant unevenness of the floor in home 

environments with an autonomous service robot and the 

resulting problems. For the gait analysis, we used a Microsoft® 

Kinect and for measurement of the unevenness of the floor we 

used the Primesense Carmine 1.08 depth sensor. First results 

explain which kind of influence the environment to gait 

parameters has (gait speed, step / stride length and the 

variation) and that it is mandatory to factor the conditions of 

the floor into an in-home gait analysis. 

Keywords-Mobile robot; gait analysis; floor level; Housing 

Enabling 

I.  INTRODUCTION 

Industrial countries have to cope with different problems 
caused by the demographic change [1]. A possible way to 
cope with these upcoming problems is the use of ICT in the 
Ambient Assisted Living (AAL) area. There are two 
approaches to bring the technology to the homes of elderly 
people. The first and older solutions are smart homes [8], 
where the whole technology is integrated in the flat. The 
second is the field of autonomous service robots. In this case 
the sensors, actuators and the computational unit are 
mounted on a mobile base. The simplest representatives are 
household robots like autonomous vacuum cleaners, which 
raise the acceptance of users. Advanced Systems could 
support the caretakers and assist elderly in an independent 
lifestyle and preserve their indoor mobility up to a high age 
[2][4]. One advantage of service robots is reduced costs 
compared to smart homes. They need only few sensors to 
generate a good coverage which depends on their mobility, 
so they can bring them in the area of interest [3]. We will use 
the mobility of these platforms to realize a new approach of 
the HE assessment. A first step is the evaluation of the flat, 

for example the examination of the floor to detect stumbling 
risks. The rest of this paper is organized as follows. Section 
II gives a short motivation about the topic, followed by the 
state of the art and the current limitation of it (Section III). In 
Section IV, we present our first approach to measure the 
unevenness of the floor and the results in Section V. The 
conclusions and further steps close the article (Section VI). 

II. MEDICAL MOTIVATION 

Fall-related costs are one of the major factors influencing 
the proportionally higher costs to the health care system 
caused by elderly people. From a clinical perspective long-
term monitoring of changes in mobility has a high potential 
for early diagnosis of various diseases and for assessment of 
fall risk [4]. As important as the age and potential diseases of 
the patient [5][6] are the condition of the floor for the self-
selected gait velocity and in general for the risk of stumbling. 
Especially in an unsupervised environment the additional 
information about the quality of the floor could increase the 
precision of the gait analysis [9][10] and a precise gait 
analysis could be very helpful for the HE assessment to 
estimate the personal factor. In our approach, we try to 
realize both, good results for the HE assessment and also 
additional information for a gait analysis to increase their 
precision. 

III. STATE OF THE ART 

A. Trend Analysis of mobility in Domestic Environments 

There are different approaches for gait analysis, so is it 
possible to upgrade a home with various sensors, especially 
from the home automation or security domain to a (health) 
smart home [13]. Most systems are used for a trend analysis 
and only some approaches use ambient sensors for detailed 
gait analysis. Various groups use home automation 
technologies like motion sensors, light barriers or reed 
contacts placed in door frames or on the ceiling other than 
Cameron et al. [14], which use optical and ultrasonic sensors. 
These were placed on both sides above the door frames to 
determine the walking speed and direction of a person 
passing. Kaye et al. [15] presented a study based on sensors 
covering different rooms of a flat. Also, laser range scanners 
are used for Time Up and Go (TUG) assessment [16] or for 
detailed gait analysis [31]. Poland et al. [17] used a camera 
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attached to the ceiling, recording a marked floor evenly 
divided into rectangles (virtual sensor). For persons within 
these, the approach ‘activates’ the virtual sensor in which 
they are currently located. Stone and Skubic [18] used the 
Kinect to analyse the gait in a home environment. Especially, 
the variation of different gait parameters like step length and 
self-selected gait speed over time was measured and 
identified as independent factors for the personal stumbling 
risk. Also, Gabel et al. [19] used the MS Kinect for a full 
body gait analysis which is capable for a precise in home gait 
analysis. A similar approach for a long time in house gait 
analysis by using the Kinect is published by Stone and 
Skubic [30].  

B. Mobility Assessments Using Service Robotics 

Service robots combine ideas of different fields of 
robotic research into one system to target at a specific 
application. Most available platforms are still in (advanced) 
research states. There are different fields of interest, e.g., 
acting autonomously in home environments [20], learning of 
environmental factors and user behaviour [21][29] and as 
well as robot designs itself [24]. Within our own work [23] 
we have recently presented a new approach to enhance 
mobile robot navigation in domestic environments by the use 
of mobility assessment data. The advantage of a mobile 
robot is that it can bring the needed sensor technology to the 
Optimal Observation sLots (OOL) for monitoring, as 
introduced in [24]. In the observation phase the robot stands 
at a safe place in the initial room of the flat and observes the 
human behaviour and environment. These data are used to 
compute new OOL, which fulfil different safety and quality 
criteria. After that phase the robot will travel to that OOL 
and measure different gait parameters by using the laser 
range scanner and the Kinect, which can be used in HE.  

C. Housing Enabling 

A quite popular assessment in the Scandinavian countries 
is the housing enabling assessment. It reduces the risk of fall 
in home environments and the near surrounding. The flats 
will correlate relating to the personal health status of the 
inhabitants [25] and the structure of the flat itself. This rating 
gives advice how to change the flat with its furniture etc. so 
that it is suitable for the resident. The housing enabling 
assessment is split into three parts. The first part is the 
descriptive part to collect some general information about the 
flat and the condition of the user. The second part is the 
evaluation of functional limitations and dependence on 
mobility aids. Detailed information about medical condition 
of the user is collected, e.g., severe loss of sight or limitation 
of stamina. The last part is based on different questionnaires, 
which are related to the flat and the surroundings. After 
completion of all questions, the score of the flat in relation to 
the actual health status of the user [27] could be computed 
[26]. The adaption of the flat is related to the rating [28] in 
order to reduce the risk of falling is also possible. 

D. Determine the unevenness of the floor 

There are several different building regulations [12], 
which identified different levels, which should not be 

exceed. These regulations are only obligatory for public 
buildings, but unevenness also influences the gait velocity 
[9]. To raise the validity of domestic gait analysis it is 
important to have detailed information about the floor. 
Udsatid et al. [29] used a mobile robot and a Kinect sensor to 
measure the ground and calculate a virtual ground plane. 
But, only for a background subtraction for a foot tracking 
algorithm, which was used by a side by side navigation 
algorithm. Currently, there are no mobile service robots to 
determine the unevenness of the floor. 

E. Limitation of the State of the Art 

As shown in section III-A, most of the systems use 
ambient sensors and do not observe the user continuously. 
This means, that only presence at specific known points is 
measured. The problem of this kind of monitoring is, that it 
can only be used for trend analysis instead of a detailed 
assessment to determine different mobility parameters of a 
person. For precise assessments of the mobility, laboratory 
equipment and a well-known surrounding are needed. On the 
one hand, the installation affords and costs are too high to 
install it in domestic homes, on the other hand homes are 
“floating”, this means that, e.g., the furniture changes over 
time. All of the automated gait analyses don’t respect the 
influence of the floor cover. Within the domain of health 
care and rehabilitation service robotics there are quite few 
systems commercially available. Further, there is no robotic 
system that is capable of doing HE assessments and tries to 
present advice to reduce the risk of falling. The current HE 
tests suffer from some drawbacks, e.g., the estimation of the 
personal disorders, the investigation and also the following 
adaption of the flat depends highly on the skill of the person 
executing the test. This could lead to different or insufficient 
results. Furthermore, this assessment is mostly not done as a 
continuously assessment, but rather as an event triggered 
assessment after accident. In summary, there is currently no 
system or approach available, that is capable of doing precise 
and continuous housing enabling assessments in domestic 
environments and using this additional information from to 
raise the precision of gait assessment results. 

IV. APPROACH 

A. Detection of Unevenness 

Our own approach provided an automated and 
continuous detection of relevant unevenness/texture of the 
floor assembly, which will be used to rate the flat during the 
HE Assessment and to raise the quality of the gait analysis. 
To implement a stable algorithm in an unsupervised 
environment, we include at the start a self-calibration to 
calculate the ground level and the sensor orientation for a 
better error correction. This step is necessary, because it 
could happen that the orientation of the sensor changes a 
little between runs or the sensor underlies a drift over time. 
In this case a pre-calculated ground plain would lead to a 
wrong detection of relevant unevenness of the floor. In a first 
step we estimate the quality of the current depth image of the 
sensor, by calculating the Root-Mean-Square (RMS) 
deviation of each pixel. 
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Figure 1.  Left side: Depth values from the Sensor in grayscale (White 

near, dark grey far away) with a 10mm doorstep in a distance of 80cm, 

right side: Visualisation after ground subtraction and convert to a binary 

image of depth values with the RMS as threshold 

The median value of these results is used as a quality 
factor for the selection of depth points with a low noise. To 
calculate the virtual ground two points of the middle row and 
two of the middle column of the depth frame are selected 
which satisfy three criteria. The first is that both points have 
the lowest possible RMS (minimum below the quality factor 
otherwise use other column or row), the second is to 
maximize the distance between these points and the third 
criterion is that they don’t belong to a known obstacle like 
walls. This information came from the navigation map of the 
mobile platform. In the following section we only look on 
the estimation of a vertical ground line, in fact the 
calculation of the horizontal ground line and therefore the 
ground plane is straight forward. After the selection of two 
vertical points we’re able to calculate the first ground line 
and the vertical orientation of the sensor. Only five 
parameters are known, the two distance values of the two 
selected points and the pixel distance between both points. 
The vertical aperture angle of the Primesense Sensor [11] 
and the resolution of current depth frame are known. Figure 
2 shows the aperture angle calculation of each pixel. 
Together with the pixel distance between the selected points 
we get the angle between it. For all Examples, we used a 
resolution of 640px times 480px, which is the highest 
possible depth resolution of the Primsense Carmine Sensor. 
Using the law of cosines, it’s possible to estimate the missing 
parameters like the height of the sensor or the vertical angle. 
After the complete calculation all relevant values are known 
to estimate the vertical ground line. The next step is similar 
to the background subtraction. We use the ground line as a 
kind of background and calculate the difference to the 
current depth image. Figure 1 shows the normal depth image 
and a binary picture, which is generated by a root-mean-
square deviation approach. If the difference is higher than the 
RMS, the pixel is set to 1, otherwise to 0. Now, it is easier to 
cluster this picture and find relevant trip hazards. Therefore 
many approaches are published, e.g., edge detection and 
many more. After we found interesting blobs (e.g. size or 
shape), we calculated the height of these obstacles from the 
depth picture and saved this information into the navigation 
map of the robot. After that we can use it during the scoring 
of the flat and to raise the precision of the gait analysis and 
the balance analysis on the different areas. 

 

 
 
 
 
 
 
 
 
 
 

Figure 2.  Schematic draw of the mobile service robot with the Primesense 

Sensor and the calculation of the vertical aperture angle between two 

points. 

B. Calculate Balance Parameter 

In our first approach, we use the Microsoft Kinect [31] to 
track the person because of the low price and the existing 
openNI skeleton tracking algorithm from ROS. The mobile 
platform does not move during the measurements, because of 
the specification from the openNI Algorithm. During the 
observation phase the timestamp, x-, y- and z- coordinates of 
the following skeleton joint point from the openNI tracker 
node will be saved: 

 Foot and hip (each: left, right) 

 Torso and Neck 

In respect to the low processor capacity of the Turtlebot 2 
netbook we used an offline approach. After the observation 
phase, different balance and gait analysis parameters are 
calculated. As a first validation the distances of the joint 
points are checked, whether they are between ranges of 0.80 
– 3.00m, which is the effective distance of the Primesense 
sensor. After that, we calculate the gait speed, step and stride 
length and related to those values the stance and swing phase 
for each foot. First, we estimate the different phases from 
each foot during a measurement by using formula 1.  

 

        (1) 

 

This means that a foot needs a minimum acceleration of 
approx. 0,6m/s to mark as moving. This value reflected a 
compromise of literature values and a kind of error 
correction of the drift from skeleton tracking. After that the 
middle index of each phase for each foot was calculated, 
these are used to estimate the stride and step length. Also, the 
calculation of the gait speed used these indexes, by choosing 
the first and the last stand phase of each measurement and 
calculates the distance between these points. Now the 
corresponding timestamps are used to determine the elapsed 
time and by dividing the distance through the time we get the 
gait speed for each measurement. We used two facts to get a 
better reliable between measurements, the first is that the 
mobile robot stands on a defined OOL, so the global 
coordinates and the direction are nearly equal between the 
measurements; the second helpful point is that humans used 
more or less the same path between two points in the home 
environment. These points help to get a bigger and 
comparable data base from same OOL’s 
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V. RESULTS 

A. Detection of Unevenness  

To test and verify our approach, we used the OFFIS IDE-
AAL Lab, which provides a complete demo flat for first 
measurements in a realistic environment. As mobile platform 
a Turtlebot 2 (Kobuki) is used with Primesense Carmine 
1.08 Sensor, which is mounted upside down below the third 
level of the platform and looks down to the ground with an 
angle of approx. 35 degrees at a height of approx. 34 cm. 
The resolution of the depth sensor is set to 640px times 
480px and a frame rate of 30 Hz. The platform, the sensor 
and the fixing of both have not been changed during the 
measurements. To get comprehensive measuring results, we 
used the IDEAAL Lab and the normal office space to test 
our approach on different floor types. So we got results from 
two different carpets, laminate and PVC coating. The 
measurement in between two floors represents the change 
between coatings (laminate / carpet). To measure normalized 
height difference, 5 wooden footsteps layers are used. Each 
piece has a height of 5 mm, so that we’re able to measure 
between uneven doorways (0mm) up to 25 mm. For each test 
set-up 30 single frames are saved and the mean values and 
the standard deviation for each pixel, to verify the precision 
of the sensor, are calculated. According to different buildings 
regulations [12], the requirement is to detect differences of a 
minimum of 4 mm between two surfaces. The measured 
minimal standard deviation is approx. 3.94 mm and the 
median value is 6.29 mm. This means that the precision of 
the Primesense Carmine 1.08 sensor is near to the required 
precision of 4mm. After this result we performed further 
tests to verify our first results. Therefore we made different 
measurements in the IDEAAL Lab and at the office with the 
wooden doorsteps. The proceeding for each measurement 
was the same, first we took 30 frames of the even surface, 30 
frames with a 5 mm doorstep in a distance of 80 cm followed 
by 30 frames with 10 mm doorstep and so on until we 
reached the maximum of 25 mm. After that we reduced the 
distance to 40 cm and started over without any obstacles and 
then raised the doorsteps in 5 mm steps. After the 
measurement, we calculated the virtual ground plan and 
subtracted it from the different test images.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Visualisation of the calculated ground (dotted line) and the 

measurement from the ground (double line) and the 5 mm doorstep (single 
line).  

The result was unexpected; in the first approach, we had 
only two small areas around the selected points for 
calculation the ground plane, which provided good results, 
even for a floor without any unevenness. After a small 
modification (also considered in the description of the 
approach) in the algorithm, which selects the point for 
estimate the ground plane, we had a vertical ground line 
which only matched in the lower third of the depth picture. 
Figure 3 shows that in the upper two thirds the difference 
between the calculated ground and the real ground was too 
big to detect any relevant barriers. After that failure we tried 
to solve this problem in our approach or setup. The First step 
was to verify the measurements, therefore we subtracted the 
mean value of the even ground from the mean values of the 
modified ground. After these results showed acceptable 
results for the detection of barriers from 5mm up to 25mm, 
we searched for further reasons. The next test was the 
linearity of the sensor over the distance. If it has a linear 
characteristic for the depth sensor, then our approach should 
work in general. Therefore, we made different measurements 
from an even surface, a 5 mm and 10 mm barrier in a 
distance of 40 cm. The result in Figure 3 shows the ground 
and the calculated virtual ground and a 5mm doorstep 
obstacle. This shows that the sensor has not a perfect linear 
characteristic; so, it is difficult to calculate a virtual ground 
which is represented by a plain or line and use it for a simply 
background subtraction. The difference between the 
calculated ground and the real ground is bigger than the 
standard deviation, which means that we would detect false 
positive barriers. Also, the difference to the 5 mm footstep is 
only few mm above the standard deviation and in 
comparison to the error between real ground to calculated 
ground, it seems to be difficult to detected obstacles below 
10 mm, but for the HE Assessment we need a resolution up 
to 3 – 4 mm. On the other hand, Figure 3 shows a good 
difference level between ground and 5 mm barrier, which 
points out that the choice of the points to calculate the virtual 
ground plane has a big influence on the further results. So, it 
is difficult to find a selection algorithm such that the correct 
points are chosen to get optimal result by minimal 
calculation cost. 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 4.  Visualisation of dependency of different floorings in 

comparison to the general mean ground value. One vertical row is plotted 

as reference 
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B. Sensor independence related to the surface 

Also, the independence of the sensor compared to the 
flooring was tested, by measuring 4 different floor types. 
Two different kinds of carpet, PVC coating and laminate and 
the transition from laminate to carpet were tested. For each 
surface we made 30 single measurements and computed the 
mean value over all 30 single frames on pixel base. Then, we 
used these mean values to calculate the overall mean value 
for the ground. From each measurement we selected the 
mean values of middle column and subtracted it from the 
corresponding value of the overall mean depth picture. The 
results are shown in Figure 4 and lead us to the fact, that the 
different floorings have an influence on the distance values 
and the reliability of the sensor. As you can see on Figure 4, 
only the differences in the first 50 pixel, which are 
equivalent to a distance of 40cm to 55 cm in front of the 
sensor, are between the first standard deviation (about 6mm). 
This measurement represents a distance to the sensor 
between approx. 20cm to 84 cm. This result pointed out that 
it is advisable to calibrate the sensor for each subsurface and 
every day to reduce the errors during the measurement or use 
another model of this sensor type, e.g., the Primesense 
Carmine 1.09 with higher depth resolution or a complete 
other type of sensor to detect the unevenness of the floor. 

C. Gait parameters vs. floorings 

Parallel to the test for the detection of unevenness of the 
floor we made first measurements in a domestic environment 
with 5 users (two females/ three males) in the age between 
42 – 76 years for a first validation of our approach to 
calculate gait speed, stride and step length and, when 
possible, to see differences between different floorings by 
using the Microsoft Kinect and the openNI tracker. For all 
measurements the Turtlebot 2 stands at a predefined position, 
similar to final setup when the mobile robot drives to 
different OOL’s for measurement. Each subject has to walk 
5 times in direction to the mobile robot for the same 
conditions. Each test person has to fulfil a test with 10 
different conditions. Two different coatings (carpet / 
parquet), three different doorsteps (5mm, 10mm and 25 mm 
height) and each condition under dark and normal lighted 
condition. So we get a data base of 250 measurements over 
all conditions and subjects. The first results for the step-, 
stride length and self-selected gait speed (SGS) on parquet, 
high pile carpet and different doorsteps are presented. As you 
can see in Figure 5 and Figure 6 a difference between the 
stride length and the SGS could not be only detected for 
elderly persons, also for mid-aged persons, depending on the 
floorings. Also, it seems like as if the variation of the step- 
and stride length depends on the coatings. But further tests 
with more measurements, longer walking distances and time 
periods must be evaluated to verify our first results. 
Nevertheless evidence that the floorings have an impact on 
the gait analysis in the domestic environment was shown. 
Without the knowledge of the characteristic of the flooring, 
e.g., like the most classical automated approaches it could 
lead to false decisions related to the decreasing of the SGS 
on some coatings. These give first evidence that the quality 
of balance and gait analysis depended also on the floorings. 

Further tests must be made to get reliable facts, what kind of 
obstacles has an influence and how big is the impact. 

VI. CONCLUSION 

A new approach for the detection of fall relevant uneven-
ness and a first idea of an advanced gait analysis which used 
this information for better results in the context of an 
automated Housing Enabling assessment was presented. 
Therefore, we used a mobile robot platform the Turtelbot 2. 
As depth sensor a Primesense Carmine 1.08 is used for the 
detection of unevenness with the original OpenNI driver 
v.2.1.0 and a Microsoft Kinect with the ROS openNI tracker 
Node for the balance and gait analysis. The Carmine sensor 
was mounted up-side down below the third level of the 
Turtelbot platform in a height of approx. 34 cm. The Kinect 
was mounted on the highest level (height approx. 55cm). We 
were able to determine the position and orientation of the 
sensor, only from a small knowledgebase. Our approach is 
aimed at calculate a virtual ground, which is the reference for 
barriers, because in a normal scenario it is unrealistic to have 
the chance to make a clean depth picture from each part of 
the room without any carpets on the subsurface or other 
stumping blocks. But, our measurements have shown that the 
combination of our approach with this sensor, the mounting 
and the needed resolution does not work in a proper way. 
This depends on tree facts. 

 First point is the depth resolution of the sensor. The 
noise of the sensor is near to the values that we want 
to detect. 

 Second point is the instability of the sensor, 
depending on different factors, is too big. As we can 
show, the floorings and the gloss of it have a big 
influence on the depth values. The difference is 
sometimes even more than the third standard 
deviation. 

 Third point is the quality of our algorithm to select 
the points for the calculation of the virtual ground. 
We should add a validation step if the virtual ground 
matched with the most points. Otherwise we should 
select new points or to change to a spline based 
approach. 

Finally, we could say that the Primesense Carmine 1.08 
Sensor has some advantages, like the price and the relatively 
good resolution and a low noise in fact of the price and 
range. But, the quality is not high enough for this application 
in the frame of the housing enabling Assessment or to 
determine relevant unevenness of the floor.  

Our second approach to use the additional information 
about the floorings to raise the quality of gait analysis in the 
domestic environments seems to be essential to generate 
reliable data. For the first results we could show that an 
influence of the flooring exists, but for final statements we 
have to evaluate this approach with more users and with 
more flooring and other important facts. The first results 
allow the statement that all automated gait analysis in 
unsupervised environments should consider the texture and 
unevenness of the flooring.  
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Figure 5.  Influence of floor conditions to the step-length of different subjects (grey: mid-age, black: elderly).                                                                            

Left side: two female subjects and on the right site two male subjects.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.  Influence of floor conditions to the gait speed of different subjects (grey: mid-age, black: elderly).                                                                                 

Left side: two female subjects; Right site: two male subjects. 

 
 
 
 
 
 
 
 

 

 

70Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-356-8

AMBIENT 2014 : The Fourth International Conference on Ambient Computing, Applications, Services and Technologies



REFERENCES 

[1] K. Böhle, K. Bopp, and M. Dietrich, “The "Artificial Companion" - a 
useful guiding principle for development and implementation of 
technical assistance systems in care arrangements?,” In Proceedings 
of: 6. Deutscher AAL-Kongress: "Lebensqualität im Wandel von 
Demografie und Technik", Berlin, VDE 2013. 

[2] J. Meyer, M. Brell, A. Hein, and S. Gessler; “Personal Assistive 
Robots for AAL Services at Home - The Florence Point of View,” 
3rd. IoPTS workshop, Brussels, 2009. 

[3] T. Frenken, M. Isken, N. Volkening, M. Brell, and A, Hein, “Criteria 
for Quality and Safety while Performing Unobtrusive Domestic 
Mobility Assessments Using Mobile Service Robots,” Ambient 
Assisted Living, Advanced Technologies and Societal Change 2012, 
VDE, 2012, pp. 61-76. 

[4] T. Rehrl et al., “The Ambient Adaptable Living Assistant is Meeting 
its Users,” AAL Forum 2012. 

[5] F. J. Imms and O. G. Edholm, “Studies of gait and mobility in the 
elderly”, Age Ageing, vol. 10, no. 3, Aug. 1981, pp. 147–156. 

[6] M. Montero-Odasso et al., “Gait velocity as a single predictor of 
adverse events in healthy seniors aged 75 years and older,” J Gerontol 
A Biol Sci Med Sci, vol. 60, no. 10, Oct. 2005, pp. 1304–1309. 

[7] N. Volkening, A. Hein, M. Isken, T. Frenken and M. Brell, “Housing 
Enabling – Detection of imminent risk areas in domestic 
environments using mobile service robots,” 6. Deutscher Kongress 
Ambient Assisted Living at Berlin, Germany, VDE Verlag 2013, pp. 
479-485. 

[8] D. J. Cook and S. K. Das, “How smart are our environments? An 
updated look at the state of the art,” Pervasive and Mobile 
Computing, vol. 3, no. 2, 2007, pp. 53 – 73. 

[9] S. B. Thies, J. K. Richardson, and J. A. Ashton-Miller, “Effects of 
surface irregularity and lighting on step variability during gait: A 
study in healthy young and older women,” Gait & Posture, vol. 22, 
iss. Aug. 1, 2005, pp. 26-31, ISSN 0966-6362. 

[10] D. S. Marigold and A. E. Patla, “Age-related changes in gait for 
multi-surface terrain”, Gait&Posture, vol. 27, iss. 4, May, 2008, pp. 
689-696. 

[11] Primesense – 3D Carmine 1.09 Sensor, Product Information, 
Available Online: http://i3du.gr/pdf/primesense.pdf, last access: June 
27, 2014. 

[12] Professional association rules for safety and health at work, BGR 110, 
04-2007, Federation of Trade Associations, Online: 
http://publikationen.dguv.de/dguv/pdf/10002/bgr-110.pdf, last access: 
June 26, 2014. 

[13] C. N. Scanaill et al., “A review of approaches to mobility 
telemonitoring of the elderly in their living environment,” Ann 
Biomed Eng, vol. 34, no. 4, Apr., 2006, pp. 547–563. 

[14] K. Cameron, K. Hughes, and K. Doughty, “Reducing fall incidence in 
community elders by telecare using predictive systems,” in Proc. 19th 
Annual International Conference of the IEEE Engineering in 
Medicine and Biology Society, vol. 3, 1997, pp. 1036–1039. 

[15] J. A. Kaye et al., “Intelligent Systems For Assessing Aging Changes: 
home-based, unobtrusive, and continuous assessment of aging,” The 
journals of gerontology. Series B, Psychological sciences and social 
sciences, vol. 66, iss. 1, July 1., 2011, pp. i180–i190, doi: 
10.1093/geronb/gbq095. 

[16] T. Frenken et al., “A novel ICT approach to the assessment of 
mobility in diverse healht care enviroment,” CEWIT-TZI-acatech 
Workshop "ICT meets Medicine and Health" (ICTMH 2013), April, 
2013. 

[17] M. P. Poland, D. Gueldenring, C. D. Nugent, H. Wang, and L. Chen, 
“Spatiotemporal Data Acquisition Modalities for Smart Home 
Inhabitant Movement Behavioural Analysis,” ICOST '09, 
Proceedings of the 7th International Conference on Smart Homes and 
Health Telematics, Springer, 2009, pp. 294-298. 

 

 

 

[18] E. E. Stone and M. Skubic, “Passive In-Home Measurement of 
Stride-to-Stride Gait Variability Comparing Vision and Kinect 
Sensing,” 33rd Annual International Conference of the IEEE EMBS, 
Boston, Massachusetts, USA, 2011, pp. 6491-4. 

[19] M. Gabel, R. Gilad-Bachrach, E. Renshaw, and A. Schuster, “Full 
Body Gait Analysis with Kinect,” 34th Annual International 
Conference of the IEEE EMBS, San Diego, USA, 2012. 

[20] A. Petrovskaya and A. Y. Ng, “Probabilistic mobile manipulation in 
dynamic environments, with application to opening doors,” in 
International Joint Conference on Artificial Intelligence (IJCAI), 
2007, pp. 2178-2184. 

[21] C. L. Breazeal, “Sociable machines: Expressive social exchange 
between humans and robots,” Ph.D. dissertation, Massachusetts 
Institute of Technology, Department of Electrical Engineering and 
Computer Science, 2000. 

[22] C. Ray, F. Mondada, and R. Siegwart, “What do people expect from 
robots?,” in IEEE/RSJ International Conference on Intelligent Robots 
and Systems, 2008, pp. 3816–3821. 

[23] M. Isken et al., “Enhancing Mobile Robots’ Navigation through 
Mobility Assessments in Domestic Environments,” in Proceedings 4. 
Deutscher Kongress, Ambient Assisted Living, VDE Verlag, 2011, 
pp. 223-238. 

[24] M. Brell, J. Meyer, T. Frenken, and A. Hein, “A Mobile Robot for 
Self-selected Gait Velocity Assessments in Assistive Environments,” 
in The 3rd International Conference on Pervasive Technologies 
Related to Assistive Environments (PETRA’10), Samos, Greece, June 
2010, ISBN 978-1-4503-0071-1. 

[25] G. Carlsson, B. Slaug, A. Johannisson, A. Fänge, and S. Iwarsson,. 
“The Housing Enabler - Integration of a computerised tool in 
occupational therapy undergraduate teaching,” CAL Laborate, June, 
2004, pp. 5 – 9, 

[26] T. Helle et al., “The Nordic Housing Enabler: Interrater reliability in 
cross-Nordic occupational therapy practice,” Scandinavian Journal of 
Occupational Therapy, Dec. 17, 2010, pp. 258-66. 

[27] A. Fänge, “Strategies for evaluation of housing adaptations – 
Accessibility, usability and ADL dependence”, ISBN91-974281-5-9. 
Doktorsavhandling. Institutionen för klinisk neurovetenskap, Lunds 
Universitet. Lund, Sverige, 2004. 

[28] M. Cesari et al, “Prognostic Value of Usual Gait Speed in Well-
Functioning Older People—Results from the Health, Aging and Body 
Composition Study”, Journal of the American Geriatrics Society, vol. 
53, 2005, pp. 1675–1680. 

[29] P. Udsatid, N. Niparnan, and A. Sudsang, “Human Position Tracking 
for Side By Side Walking Mobile Robot using Foot Positions,” 
Proceedings of the 2012 IEEE International Conference on Robotics 
and Biomimetics, Dec. 11-14, 2012, pp. 1374 - 1378 Guangzhou, 
China. 

[30] E. E. Stone and M. Skubic, “Unobtrusive, Continuous, In-Home Gait 
Measurement Using the Microsoft Kinect,” IEEE Transactions on 
biomedical engineering, vol. 60, no. 10, Oct. 2013, pp. 2925-32. 

[31] T. Pallej, M. Teixid, M. Tresanchez, and J. Palacn, “Measuring Gait 
Using a Ground Laser Range Sensor,” Sensors, vol. 9, no. 11, 2009, 
pp. 9133–9146. 

[32] Zhengyou Zhang, "Microsoft Kinect Sensor and Its Effect," IEEE 
Multimedia, vol. 19, no. 2, pp. 4-10, April-June 2012, 
doi:10.1109/MMUL.2012.24 

71Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-356-8

AMBIENT 2014 : The Fourth International Conference on Ambient Computing, Applications, Services and Technologies


