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Abstract—A recognition method for simple gestures is pro-
posed and evaluated. Such gestures are of interest as they
are the primitive elements of more complex gestures utilized
in natural communication and human computer interaction.
The input to the recognition method is obtained from a head
tracker that is based on images acquired from a depth camera.
Candidate gestures are detected within continuous head motion
and recognized, acknowledging that head pose estimates might be
inaccurate. The proposed method is evaluated within the context
of human-computer dialog.The reported results show that the
proposed approach yields competitive recognition results to state-
of-the-art approaches.

Index Terms—head gesture recognition; head gesture detection.

I. INTRODUCTION

The ability to recognize purposeful head motions, or ges-
tures, is a special problem both in computer vision and human-
computer interaction. Solving this problem accurately and
robustly is of particular interest, because such head motions
convey information that can be used in the natural communica-
tion of a person with a computer, or an intelligent environment.
In this work, head gesture recognition targets purposeful head
motions that are responses to a user interface dialog.

A central component of any head gesture recognition system
is the estimation of head pose ([1]–[3]) and motion. Head
pose information is of particular importance in a variety of
applications and has received considerable attention in the
recent years [4]. The selection of the sensory modality is
important, as it relates to the reliability of this estimation
which can, in turn, affect the performance of recognition.
Practicality and applicability through cost-efficient and off-the-
shelf hardware is also of concern and, thus, this work employs
a state-of-the-art head tracker that is based on commodity
depth cameras, nowadays widely available as Red Green Blue
Depth (RGBD) sensors [5].

In most cases, natural gestures can be analyzed in simpler
motions. For example, a horizontal shaking of the head to
express negation, is usually repetitive. Moreover, each one
of the repeated motions can be further analyzed. In the
aforementioned example, the gesture can be regarded as a
leftward and a rightward head rotation (or vice versa). In this
work, we focus on the recognition of such simple motions,
which we call primitive gestures. Our interest is twofold. First,
due to their simplicity, these gestures are suitable for use
in human computer dialogues. Second, primitive gestures are
elements of higher order gestures and, thereby, their robust

recognition is relevant to the recognition of more complex
gestures.

In the context of this work, we use the notion of a reference
head pose which, in our case, is the frontal (or, “looking
straight ahead”) pose. We also parameterize, human head
3D orientation upon the natural head rotations, which are
called yaw, pitch, and roll (see Fig. 2). In this reference,
primitive gestures correspond to a peak in the values of an
angular component, while no significant rotation occurs in the
remaining two angular components.

To determine the extent that the proposed method can be
useful in human computer interaction we evaluate it through
quantitative evaluation, in which recognition performance is
measured. At the same time, this evaluation serves a secondary
goal. By observing and profiling the way that subjects perform
primitive gestures (i.e., how fast or how steep is a head ro-
tation), information regarding the corresponding user motions
is collected. In turn, this information can be exploited in the
better recognition of these gestures and the design of systems
that utilized them.

The rest of this paper is organized as follows. Section II
presents related work on head gesture recognition methods
and applications, Section III includes implementation details,
Section IV discusses experiments and results, Section V briefly
presents the applicability of head gestures within a specific
example application, and Section VI concludes the presented
work and suggests further applications in which head gestures
can be employed.

II. RELATED WORK

Work on the recognition of head gestures has started to
emerge as long as two decades ago, but has been recently
reinforced after the wide availability of depth cameras, which
facilitate the pose estimation of the human head.

Some approaches to head gesture recognition capitalize on
a special type of sensor (i.e., inertial [6] or pupil tracking
[7]) and setup, which provides confidence to the input signal
from head pose estimation. In turn, this input signal exhibits
increased continuity and reduced noise and its processing is,
thereby, simpler. At the other end, some approaches employ
a fully passive (RGB or monochrome) camera to estimate
head pose. Pertinent methods rely on facial feature detection
(i.e., mouth, nose, eyebrows) and tracking to acquire head
pose and motion [7]–[9]. In [10], direct measurements (pixel
intensities) are utilized, but resorting to assumptions about the
facial appearance of the subject and providing less accurate
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results. In terms of sensory input, this work falls in the middle
of the above range, utilizing a commodity RGBD sensor, as in
[11]. Only the depth information is utilized to avoid sensitivity
to illumination. However, although depth information is much
more robust than color/intensity, input cannot be considered
neither noise nor error free. In this context, this work accounts
for poor, erroneous, or missing estimates provided as input.

The methods employed for head gesture recognition can
be classified into two main categories, those which employ
a Finite State Machine (FSM) and those which are based on
learning, typically through an instantiation of Hidden Markov
Models (HMMs).

Simple gestures, such as the one of interest in this work,
have been recognized by a number of methods that employ
FSMs. FSMs are simple to formulate but, in the other hand,
do not scale with ease. In [7], an FSM recognizes nodding
and shaking gestures, which are then used in the context
of a dialog-based user interface. The same FSM is used by
[8] in a self-portrait camera which is controlled by nodding
and shaking gestures. In [12], an FSM is introduced for
detecting nodding and shaking gestures, useful for interacting
with avatars on mobile devices. In [13], FSM-detected head
gestures have been used along with hand gestures in order to
achieve interaction within a multi-modal user interface. The
above methods lead to the use of rather complex FSMs in
order to accommodate multiple gestures, while still support
a smaller vocabulary of gestures (typically 4, based on up,
down, left, and right motions).

Methods based on machine learning and recognition of
temporal patterns techniques are also present in the literature.
Recently, in [11], two HMMs are trained to recognize nod
and shake gestures; “other” gestures are recognized by a third
HMM as fallback. In [9], a HMM is trained for each of three
different head movement gestures; right, left, left-forward,
which are used in the context of sign language sentences.
In [14], shaking, neutral and nodding gestures are detected
by continuous HMMs and then provided to a dialog manager
which operates a coffee machine. Similarly, in [15], Ordered
means models (OMMs) are trained to recognize nod, shake, tilt
and look gestures among two participants in a conversation;
OMMs, are described as “rigorously reduced versions of
HMMs. In [16], a multi-class Support Vector Machine (SVM)
is augmented with contextual features, to recognize nod and
shake gestures. These gestures are evaluated in the context of
document browsing and dialog box confirmation. Finally, in
[17], a multi-class SVM is trained to detect “Yes” and “No”
head gestures, along with other hand gestures. In the same
context, some methods learn gestures directly from posture
data such as [6] which operates on head orientation readings
to detect nodding and shaking gestures. In [10], a set of ten
gestures is recognized by Continuous Dynamic Programming
which compares live images with previously trained image
sequences, annotated respectively.

The works above employ HMMs to treat gestures that
contain multiple more simple gestures, resulting in complex
gesture models, while considerable effort is required for the

Fig. 1. The raw input depth from the tracker (left) and the head pose estimate
superimposed on the input color image.

training of the system. In comparison to HMMs and SVMs the
proposed work does not require a preceding training phase, but
capitalizes upon the examination of each rotational component
of the head pose. Moreover, it is concluded that the results of
the proposed work, as shown in Section IV-A1, are not only
comparable but, in most cases, outperform recognition rates
in the literature.

III. METHOD

A. Sensory input

A head tracker [1], that receives input from an RGBD
camera is employed to sense the current pose of the subject’s
head, in real-time. Fig. 1 illustrates the result of the tracker
for a given input image. It is noted that any other head tracker
(i.e., [2], [3]) could be used instead of this one, however
the particular one was selected due to its reported increased
accuracy and execution speed. The input is either the estimated
3D pose or null (in case of tracking failure) and is received
multiple times per second. Acknowledging that erroneous
or inaccurate estimates may be provided, as well as, that
tracking may exhibit transient failures this information stream
is adopted as the “sensory input” to the proposed system.

As the head tracker and the recognition system which we
developed are implemented in different programming environ-
ments, their communication was achieved through a service
interoperability platform [18].

3D pose is defined as the 3D translation and 3D rotation of
the head from a reference pose and is, thereby, represented by
6 degrees of freedom (6 DoF ). These DoF correspond to a
translation 3D vector and a 3D rotation which is parameterized
as in terms of Euler rotations, that is, as a rotation of the head
about the xx′, yy′, and zz′ axes. These rotations are referred
as Pi, Yi and Ri respectively (see Fig. 2).

In the context of this work, translation does not play a
primary role as we assume the expression of gestures to be
invariant to the translational motion of the head and that they
can, also, be expressed while the subject is in motion. We
also assume that rapid and large motions of the subject’s head,
which would influence the comprehension of a gesture do not
occur as they are not typically performed by subjects.

B. Parsing of candidate gestures

Before describing recognition approach, we model the pur-
sued primitive gesture, as a motion which starts and ends at
the reference pose and, in between, a single peak of significant
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Fig. 2. Head rotation axes.

amplitude in the value of an orientation component occurs.
Candidate gestures consist of a sequence of three head states;

1) postured and approximately motionless for a brief time
interval at the reference pose,

2) performing a rotational motion and, possibly, a mild
translation motion, and

3) postured again at the reference pose for a brief time
interval,

Using this description we are able to “parse” the continuous
sensory input into constituent, discrete elements. Each such
element is then considered as candidate gesture. A candidate
gesture is a head motion that might be expressing a gesture,
or not. Each such candidate, is attempted to be, correctly,
recognized as a gesture or as non-gesture. For candidates
recognized as expressing a known gesture, labeling of the
particular gesture is also attempted.

Depending on the type of motion of the second state,
the gesture may be recognized as an instance of the known
gestures, or not. The reference pose is defined as the pose
of the head at approximately zero rotation in all the 3 axes.
We have extrinsically calibrated our camera and estimated its
relevant posture to the ground plane through, conventional,
grid-based calibration [19]. In this way, we performed a
change of reference coordinate and poses so that the reference
pose, in our setup, this corresponds to the user’s head facing
frontally without any inclination of the head. The reference
pose is defined to occur when ∀ p ∈ {Pi, Yi, Ri}, |p| < τr,
where τr is a configurable threshold relaxing the requirement
for exact frontal posture and is in the order of a few degrees
(10◦).

To parse candidate gestures we defined a simple state-
machine, with parameterization in the transition of the states.
We call it Buffered State Machine because the transition from
a state to another is performed when a buffer is completed by a
number n of valid tokens. This means that we have to acquire
n consecutive poses in reference position to start identifying
the gesture. This stabilizes the system against small estimation
errors. The value of n is configurable with respect to the frame
rate that the head tracker operates. In our implementation the
value n = 5 was selected, based on preliminary observations
of user behavior, adjusting the head rest at the reference pose

In-motionRoot

buffer size = 5

buffer size = 1

"Act"

"Stand"

"Stand" "Act"

Fig. 3. The state machine which was employed to parse candidate gestures.

to have an (approximate) duration between 1/3 − 1/2 sec.
Fig. 3 illustrates the described state-machine, being in “In-
motion” state. In the particular case, if we receive one more
“Stand” token (command), a transition to “Root” will be
performed. Otherwise, the buffer will be invalidated, since we
want 5 consequent “Stand” tokens.

When the subject’s head is detected by the sensor, the pose
estimation is continuous and the recognition component stores
the estimations in a double buffer. Whenever the transition to
the reference pose occurs, the current buffer is “parsed” and
passed to the next stage for recognition, while the other buffer
stores the more recent poses. The above is feasible because
poses are received as events via the interoperability platform
and are handled by a different thread. In cases of head pose
estimation failures, a null result (estimate) is produced. In
such cases, the recognition will stop receiving events until
the tracker resumes operation. If such an event occurs during
the expression of a gesture then, typically, the gesture fails to
be recognized.

C. Gesture detection and recognition

Upon parsing of the gesture, the signal segment acquired
during the “In-motion” state is assessed, in order to reason
whether the candidate is indeed a primitive gesture and, if so,
recognize which one it is.

To detect a gesture we investigate the content of the ro-
tational components of this signal segment. We test for two
conditions, for this purpose. The first is that the motion in
the rotational component corresponding to a particular gesture
matches the prototype of the gesture. Fig. 4 illustrates a
prototype motion as assumed above. The second is that the
remaining 2 rotational components do not correspond to a
significant motion.

To test for the first condition, we consider the values of
the 3 rotational components (pitch, yaw, roll) of the pose
estimates. Each component is independently processed and
its input is treated as a stream. Prior to its consideration,
each stream is passed through a low-pass, Gaussian filter to
eliminate tracking jitter. Henceforth, we call the signal of
a rotational component within the time interval [tA, tB ] as
dominant, if it is the sole one exhibiting significant motion.
For example, Fig. 5(a) illustrates the acquired sensory input
for the Y rotational component, at a time interval which is
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Fig. 4. Prototype of head motion as a function of the rotational component
corresponding to the axis of the particular rotation.

segmented (dashed blue lines) by the Buffered State Machine,
while Fig. 5(b) shows the output from its low-pass filtering.
Note that, in Fig. 5(b), only the part between the two dashed
blue lines is shown and, thus, they are omitted.

The second condition implies that, in addition to detecting
a dominant motion we need to determine that motions in
the remaining 2 components are insignificant, or henceforth
“neutral” motions. For this purpose, “soft” thresholds (sT )
are defined. A “soft” threshold specifies the accepted amount
of motion in a rotational component, when it is considered
irrelevant to a gesture. For instance, when a “Head Up” gesture
is performed, we do not expect significant motion in the yaw
component. Henceforth, we call the signal of a rotational
component within the time interval [tA, tB ] as neutral if it
does not surpass the soft threshold sT .

In order to recognize a gesture, each rotational component
is investigated separately. Let f be a function of time which
represents the value of the rotational component in consider-
ation (pitch, yaw, roll). Let also [tA, tB ] the time interval for
which the signal of the above component was acquired. As the
primitive gestures to be recognized have the form of a peak, in
the dominant rotational axis, candidate gestures are first tested
as to whether they exhibit the potential of containing such a
peak. This consists of the fulfillment of the following three
conditions:

1) a single peak of f occurs during the entire interval
2) f advances in a strictly positive (negative) followed by

a strictly negative (positive) manner around the peak
3) a threshold hT is overcome, so that the peak exhibits

significant amplitude to be attributed to an intensional
gesture rather than an unintentional head motion.

In Fig. 5, characteristic data are shown for the Y component
of rotation for the ideal model of a Head Down gesture,
the acquired sensory input, and the output from its low-pass
filtering. The implementation of these three conditions is as
follows.

First, the peak has to be single; ∀ti ∈ [tA, tB ], f has a single
peak e. The reason is that recurring motions during the “In-
motion” state should be omitted. Thereby, the zero-crossings
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Fig. 6. A close-up of the special case displayed in Fig.5(d).

of the first derivative of f , f ′, are detected and counted.
Detection of zero-crossings is performed by a, conventional
rule, which is that if f ′ exhibits a zero-crossing within [ti−1, ti]
then f ′(ti−1) · f ′(ti) < 0 should hold for exactly one i.
Fig. 5(c) shows a filtered signal in which two peeks occur
and recognition fails.

Second, the sign of the peak is specified. When the sign of
the peak is positive the following condition must hold:

∀ti ∈ [tA, e), sgn(f) = 1 ∧ ∀ti ∈ (e, tB ], sgn(f) = −1, (1)

while when it is negative the corresponding condition be-
comes:

∀ti ∈ [tA, e), sgn(f) = −1 ∧ ∀ti ∈ (e, tB ], sgn(f) = 1 (2)

In the above, sgn() denotes the sign function. Two options
regulate how literate the requirement for the function f being
strictly positive or negative. The accepted jitter is specified by
threshold σ in rotation axis and τ in time axis, so that the
following should hold:

f(ti)− f(ti − 1) ≤ σ ∀ti ∈ [tA, e)

f(ti) > f(tj), tj < ti + τ, j ∈ [i, i+ τ ]

f(ti − 1)− f(ti) ≤ σ ∀ti ∈ (e, tB ]

f(ti) < f(tj), tj < ti + τ, j ∈ [i, i+ τ ]
(3)

Fig. 5(d) illustrates such case of a permitted peak, that is
treated as jitter. The segment of interest is presented along
with the fulfilled requirements σ and τ in Fig. 6.

Third, a “hard” threshold (hT ) has to be overcome, such
that |e| > hT . Thresholds may be different across rotation
axes, due to anatomical differences in head rotation about each
axis. In particular for the pitch axis, the positive and negative
thresholds are different as well; |h+T | 6= |h

−
T | and |s+T | 6= |s

−
T |.

Both thresholds hT , sT , are empirically adjusted, based on
the experimental user studies of Section IV. In total, 12 differ-
ent thresholds were adjusted, based on the following combina-
tions of hT , sT with each rotational component and the sign of
the peak as note by the Cartesian product of the corresponding
sets: {hT , sT } × {pitch, yaw, roll} × {positive, negative}.
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Fig. 5. Characteristic cases of acquired data, showing head motion as a function of the Y rotational component, for expressed “Head Down” gestures. See
Section III-C.
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Fig. 7. A demonstration of the thresholds. See Section III-C.

The combination of the the three rotational axes with the
sign of the peak results into 6 primitive gestures. Thereby, fol-
lowing the examination of the motion, a gesture is recognized
as follows:

• “Head Up” when pitch is negative and dominant, while
yaw and roll are neutral

• “Head Down” when pitch is positive and dominant, while
yaw and roll are neutral

• “Head Right” when yaw is positive and dominant, while
pitch and roll are neutral

• “Head Left” when yaw is negative and dominant, while
pitch and roll are neutral

• “Roll Right” when roll is negative and dominant, while
pitch and yaw are neutral

• “Roll Left” when roll is positive and dominant, while
pitch and yaw are neutral

Fig. 7 illustrates the recognition processing by providing
an example of a rotational component, in this case pitch. The
signal has been already parsed in three segments, indicated by
the corresponding three colors of the curve, by virtue of the
process described in Section III-B.

The blue segment is positive and dominant, so we have to
examine yaw and roll; if they are neutral then a “Head Down”
is recognized. The red segment is negative. Its peek is below
hT but above sT , which means none of the gestures will be
recognized. The magenta segment is positive and neutral on
the shown axis; a gesture might be recognized if one of the
other rotational components (not shown) is dominant during

this time interval.

IV. EXPERIMENTS

The system was run on a personal computer (PC) with
an Intel Core i7, at 2.67GHz with 6GB of random access
memory and an NVIDIA GTX680 graphics processing unit
(GPU). The head tracker was executed on the GPU while
gesture recognition on the central processing unit of that PC.
The head tracker offered estimates at a rate of 15Hz.

The system was evaluated with the help of 13 test users,
all naive to the experimental hypotheses. All test users had
normal hearing and did not experience any kinetic problems.

The setup of the experiment included a 480 × 640 depth
camera (an RGBD Kinect sensor) adjusted to a floor mount,
and a chair in front of the mount at a distance of ≈ 1m
(see Fig. 8). The sensor was adjusted so that it was at a
height comfortable for each individual user. To avoid visual
disruption during the experiment, the monitor of the PC was
not present.

The evaluation task was enabled by a software module that
was developed for the purposes of this evaluation. The system
employed a speech synthesizer to prompt the user to perform
a gesture and to provide feedback regarding its recognition.
During an evaluation session, the system attempted to rec-
ognize gestures performed by the user, in individual trials.
Each evaluation session, was comprised of 18 trials, testing
the recognition of the 6 studied head gestures; 3 trials were
dedicated for each gesture type. The execution order of the
trials was decided randomly at each session, by the system.

The evaluation task was the following. The system would
prompt the user to perform a particular gesture. Upon an-
nouncement of this prompt, the system monitored the user.
If a gesture was recognized thereafter, the user was informed
of the occurrence of the recognition event and the label of
recognition. If a gesture was not recognized or if a different
than the prompted gesture was recognized the system provided
feedback. This feedback pointed out the unexpected outcome
and, also, prompted the user to repeat the trial, up to two
additional times. A trial was complete upon recognition of
the prompted gesture or if three recognition failures occurred.
When a trial was complete the system proceeded to the next
trial. During the evaluation, the user had the option to pause
the process in order to rest and continue later.
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Fig. 8. The experiment setup. A user is sitting in front of a sensor which is
adjusted to his height.

Before each session the test user was informed about the
required gestures, and was asked to rehearse, in order to
validate their comprehension. Also, in the beginning of each
session, the system was initialized by acquiring a frontal head
pose that was the reference pose for the individual user.

During the evaluation, we kept notes of the events. At the
end of each session, the test users were interviewed about their
experience, whether they had any difficulties achieving the
task, whether they fully comprehended the provided feedback
etc.

A. Quantitative analysis

1) Recognition accuracy: The recognition accuracy of the
method was measured in terms of percentage of correct
recognitions. The results are shown in Tab. I and in Tab. II. The
first column of Tab. I shows the percentage of correct detection
in the first gesture attempt, while the second column shows
the percentage of correct detection after the third attempt. The
high percentages of the second column indicate that users
adjusted their gestures after the first or second failure to match
the user expected recognition requirements of the system.

The first column of Tab. II, shows the sum of misses in
all trials and the second column shows the proportion of the
recognition errors, or otherwise, how many of the misses were
recognized as another gesture. In all cases, recognition errors
occurred due to pose estimation failures.

It is important to note that no false positives detections of
gestures occurred in any of the experiments and this is due to
mainly two reasons: the head tracker is very accurate in the
pose estimates that it provides and the time interval for the
detection of gesture was constrained by the experiment task
(i.e., the time the user had to perform the gesture was guided
by the system).

In further analysis of the results shown in Tab. I and II, more
conclusions can be drawn for the gestures that received lower
recognition accuracy scores. For example, in the case of the
”Head Down” gesture, it was concluded that the lower score is
due to the inability of the head tracker to calculate the position

TABLE I
RECOGNITION ACCURACY

Gesture First time
recognized

Any time
recognized

Head Up 95% 100%

Head Down 72% 100%

Head Right 92% 100%

Head Left 64% 90%

Roll Left 74% 100%

Roll Right 74% 97%

TABLE II
MISSES DURING THE EXPERIMENTS

Gesture Sum of
misses in all
trials

Recognition er-
rors

Head Up 2 0%

Head Down 12 16.67%

Head Right 3 0%

Head Left 22 9.09%

Roll Left 13 0%

Roll Right 13 7.69%

of the head because the face becomes self-occluded and the
image avails less facial information. In the case of the ”Roll
left” and ”Roll Right” gestures, the lower recognition accuracy
percentages are not due to any shortcomings of the tracker, but
rather due to the fact that since this gesture is not a commonly
performed gesture, its execution range varies from person to
person. Finally, an interesting result is related to the accuracy
of the “Head Left” gesture in contrast to its relevant “Head
Right”. From our investigation, half of the failures occurred
because s−T of the pitch component was surpassed, meaning
that participants unexpectedly inclined their head to the up
direction while turning to the left. Such behavior should be
investigated in further experiments though.

Some of the proposed works mentioned in Section II
provide accuracy evaluations in order to prove the reliability
of their systems. Though they are not directly comparable due
to differences in gestures and head pose estimation method,
we discuss the relationship of the proposed work to the
state of the art. In [10], where a training phase is preceded,
a ratio of 97% of the gestures are successfully recognized
when the test user is the same with the person used for the
training, while this ratio falls to 80% when they are different
persons. In [14], accuracy depends on the states of the trained
HMM, and it varies from 88% to 100%. In [17], “yes” and
“no” gestures are recognized with a ratio of 88% and 77%
respectively, while most of the other hand-based gestures are
recognized at higher ratios. In [13], the recognition rate on
the head gestures is over 92%, while in [6], 76.4% of the
“nodding” and 80% of the “shaking” gestures are recognized.
In [11], a recognition average ratio of 86% is reported. The
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context-based approach in [16], increases the recognition ratio
of the “nod” gestures which reaches 91%. Finally, in [15],
the classification rates range from 75.95% to 98.4% when
the training subjects are different from the testing. For a
particular gesture, the ratio is 44.84%, though. It is noted
that all classification-based methods include mismatches in
recognitions, because a decision is made among all classes,
but in most cases such a ratio is acceptable. Furthermore, all
recognition methods with support of natural interaction have
a failure rate. In general, the recognition accuracy depends on
the number of the recognized gestures, on their complexity, but
are also related to the proposed method. As it was presented
in Section IV-A1, the average recognition ratio of our method
ranges from 78.5% average, to 97.8% average when users
familiarize with the system. We conclude that the proposed
work offers results that are not only comparable but, in most
cases, outperform reported recognition rates.

In our case, the results indicate that the proposed method
can be reliably employed in human-computer dialog appli-
cations. As shown, false positive recognitions are rare, but
are also undesirable in many cases. In order to overtake such
situations, a dialog could expect from the user an extra confir-
mation. For example if a “Head Down” gesture is utilized as
a “yes”, then the dialog could expect it twice. Alternatively,
the dialog could inform the user about the recognized gesture,
permitting a period of cancellation which will be triggered
by a gesture or by a simple posture outside the reference
position; an invalid gesture. A different option for reducing
false positives is to place a restricted time interval for gesture
expression, as discussed below.

2) Gesture execution time: Another measurement we ac-
quired, was the execution time of each gesture. Fig. 9 shows
the distribution of the recognized or non-recognized gestures
at each time-slot. The chart shows that, for the majority of
gestures, execution time was below 2 sec. As we noticed
during the experiments, large execution times were sometimes
present due to pose estimation failures and thereby measured
execution times were greater than actual (that is, due to a
recognition failure the system kept waiting for a gesture to
occur but to no avail).

We conclude that as gestures typically occur during a
2 sec limited interval, it is for the benefit of an application
that uses such gesture to avail a similar time interval for
gesture expression, during a user interface dialog (and, in
case of recognition failure, prompt the user to execute the
gesture again). In this way, gesture recognition becomes more
reliable as potential false positive recognitions are avoided. In
addition, in cases of recognition failure, the system becomes
more responsive, quickly prompting the user to execute the
unrecognized gesture again, instead of letting the user wait
for an unnecessary longer timeout.

3) User investigation: In preliminary experiments, the hard
and soft thresholds hT and sT were initially fixed at the
same values for all of the rotational components. However,
we noticed that subjects did not perform rotations of the same
magnitude on each axis, due to anatomical reasons (i.e., users
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Fig. 9. Distribution of the gestures depending on the execution time. Most
of them performed at below 2 sec..

typically do not lower the head as many degrees as they rotate
it horizontally). We also observed that when performing dif-
ferent rotations, amplitude of the neutral (irrelevant) rotations
differed. Hence we analyzed the behavior of the subjects in
order to see if the thresholds required for the recognition could
be adapted for each rotational axis to the benefit of recognition
rates.

The resulting per-axis maximum angle for each single
gesture of the evaluation was stored and two types of diagrams
were formed (Fig. 10 & Fig. 11). The dominant angle diagram
(Fig. 10) displays the distribution of the angle on an axis
when a gesture related to this axis was required. Fig. 10
shows the performed angles when a “Head Left” gesture was
required; that is the graphs shows the values of the dominant
rotational component. The yellow line depicts the hT . The
neutral angle diagram (Fig. 11) shows the distribution of the
same angle for the neutral rotational components. Fig. 11
depicts the distribution in the yaw axis, when gestures different
than “Head Left” were prompted. The yellow line shows the
sT , which is equal to hT in this case. Both diagrams show
additional information about the first attempt to perform the
gesture, which is marked by the green dots, while magenta
dots mark the repeats.

Following the preliminary experiments, the thresholds were
tuned. The tuning accomplished for both hT and sT in the
following ranges;
• [10◦, 25◦] for the h+T and s+T of the pitch component
• [15◦, 25◦] for the h+T and s+T of the yaw and roll compo-

nents
• [−15◦,−25◦] for the h−T and s−T of the pitch, yaw and

roll components
Eventually, all the thresholds were adjusted as Tab III

shows. We notice that the h+T and s+T of the pitch component,
which are related to the “Head Down” gesture, have a lower
absolute value than the others. This can be explained by the
anatomy of the neck, which allows a smaller inclination of the
head when it is directed down.

For the similar reasons as above, we measured also the
ranges of rotational motions for the recognized gestures. As
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Fig. 10. Distribution of the peaks of the yaw rotational component, when a
dominant to negative yaw gesture was expressed.

Fig. 11. Distribution of the peaks of the yaw rotational component, when an
neutral to yaw gesture was expressed.

mentioned in SectionIII-C, each gesture is related with an axis
of rotation. Tab.IV shows the ranges of the per gesture relevant
axis, of the truly recognized gestures, and the mean and
standard deviation, as well. These observations complement
the analysis for tuning the thresholds and besides the general
interest as a user study, can be used to tune parameters of
the head tracker for optimization of its performance (i.e., by
bounding the head pose estimation search space).

B. Qualitative analysis of head gestures

At the end of the experiment, the participants were asked
to express any thoughts they had during the execution of the
gestures, i.e., if they felt that the tracker was recognizing them
easily, if they experienced any fatigue, and so on. Eight of

TABLE III
RECOGNITION THRESHOLDS

h+
T h−

T s+T s−T

pitch 15◦ -20◦ 15◦ -20◦

yaw 20◦ -20◦ 20◦ -20◦

roll 20◦ -20◦ 20◦ -20◦

TABLE IV
RANGES OF RECOGNIZED GESTURES

Min Max mean stdev

Head Up -51.44◦ -21.49◦ -35.41◦ 9.55◦

Head Down 17.10◦ 58.49◦ 30.92◦ 8.30◦

Head Right 26.65◦ 57.22◦ 42.82◦ 8.38◦

Head Left -65.08◦ -28.45◦ -43.94◦ 8.24◦

Roll Right -44.72◦ -21.56◦ -31.21◦ 6.09◦

Roll Left 20.15◦ 54.01◦ 35.44◦ 8.89◦

the participants said that the instructions given were clear and
that the tracker behaved as expected. One participant said he
was uncertain of the ‘required’ speed the gesture had to be
performed in, in order to be recognized by the system. Another
participant said that he intentionally performed the gestures in
a wider than usual range in order to facilitate the system in
recognizing it. The above two comments indicate that some
users are just not aware or familiar with the hardware system
capabilities. In addition, three participants mentioned neck fa-
tigue especially caused by the “Roll” gestures, another thought
that “Roll” is an unnatural motion, suggesting diagonal ones
instead. Finally, two participants named issues with the “Head
Down” gesture, but as of our observation during the evaluation,
these caused by estimation errors due to the self-occlusion of
largely bent head relative to the camera.

V. PILOT APPLICATION

The evaluation discussed in Section IV targeted the interac-
tion with dialogs. In a dialog application the system prompts
the user to provide input in the form of gestures. Other
applications though, let the user interact with the system in
a continuous manner; they handle events which are emitted
by the available input devices (i.e., mouse clicks or keyboard
strokes). Considering this, every gesture recognition system
can be regarded as an input device. A primary difference
of these systems with an everyday input device, is that the
user is supposed to concentrate in the interaction, with limited
habitual or natural movements, in favor of preventing false
recognitions. In a spectrum of applications this user cooper-
ation can be assumed, as gesture interaction is an essential
communication modality for people with mobility difficulties.

For our demo the publicly available labyrinth/puzzle game
called Bloxorz [20] was adopted. The recognized gestures
were associated with keyboard events, which were then op-
erated the subject of the game, which is a box. The box has
two degrees of freedom, controlled with “Head{Up,Down}”
and “Roll{Left,Right}” gestures, forming a natural mapping.
Moreover the game’s puzzle nature doesn’t expect successive
fast movements, qualifying the head gestures modality as
suitable for the interaction. In Fig. 12 a user is shown using
the system.

Following the employment of the application, it is con-
cluded that the utilized gestured recognition system provided
the ability to fully control it. However, it is noted that further
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Fig. 12. The game application is shown in the left screen. Right screen shows
the output window from the pose estimation.

work is required in order to use head gestures as the sole
method of user interaction with an application.

VI. CONCLUSION

A method for simple gesture detection and recognition
that is based on 3D head tracking was presented along with
its evaluation. The proposed work explores the potential of
recognizing robustly primitive head motions as a means for
natural human computer interaction.

In this context, the proposed method was evaluated indicat-
ing that recognition provides sufficiently reliable recognition
rates for employment in human-computer dialogs. The pro-
posed method has been, also, utilized beyond the context of
such a dialog. We concluded that the detection and parsing of
gestures from continuous head motion of the proposed method,
is a property that sets the foundations for the generic use of
these gestures in human computer interaction. In that respect,
investigation of usability issues is the topic of future work.

The evaluation of the proposed method indicated that ad-
vances in head tracking accuracy are the most important topic
of future work, as recognition failures are mainly due to
shortcomings of the underlying head pose estimation technol-
ogy. Based on this finding, we conclude that the proposed
technology is suitable to be applied at the spatial range of op-
eration of the corresponding head trackers. In turn, this range
is determined by the accuracy of the utilized depth sensor,
which is in the order of .5m to 1.5m. As a consequence, in
the context of an intelligent environment one could envisage
utilization of head gesture at special locations, such as when
the user is situated at location related to a particular activity.

In the evaluation, a study of user behavior in terms of
gesture execution time and steepness of head rotation was
performed. We have observed that downward head rotations
are, usually, performed in smaller amount of rotation, with
reasons that can be probably traced to the head rotation
ergonomy and anatomy. Given a constant, with respect to axis
of rotation, accuracy of head pose estimation this indicates the
increased vulnerability of downward gestures, which can be of
interest in the design of pertinent applications. Alternatively,
the purposeful placement of the imaging sensor may be

considered, so as to better image corresponding head motions.
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