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Abstract—Convolutional and Deconvolutional Neural 

Networks are widespread in several modern computer vision 

applications, such as high-resolution imaging, object 

classification and generation, image segmentation and many 

others. While several efficient hardware architectures are 

known in literature to accelerate the convolution task, the 

design of accelerators for deconvolution is still an open 

problem. The few existing deconvolution engines are 

customized to exploit in the best possible way specific 

hardware resources, thus suffering from platform-dependency 

that certainly allows maximizing speed performances and 

power-resource efficiency, but, on the other hand makes these 

designs unsuitable for the high-level synthesis approach. This 

paper presents a deconvolution structure described in the C++ 

high-level language and then synthesized at the register-

transfer level of abstraction. Results demonstrate that, when 

characterized within the Xilinx XC7VX980tffg1930-1 device, 

the described architecture can up-sample a 256×256 input 

image to the 1024×1024 resolution using less than 3000 LUTs, 

1028 18Kb BRAMs and 640 FFs. The reached 121 MHz 

running frequency guarantees a frame rate higher than 50 fps 

to be achieved. 

Keywords-Hardware accelerators; High-Level Synthesis; 

Deconvolution; Multiply Accumulations; FPGAs. 

I.  INTRODUCTION 

Modern deep learning applications [1]-[3], including 
image segmentation, object generation and high-resolution 
imaging, exploit both Convolutional and Deconvolutional 
Neural Networks (CNNs and DCNNs). The former 
progressively down-sample the digital images received as 
input to extract relevant features, whereas the latter elaborate 
the input images to extrapolate new features. As it is well 
known, Convolution (CONV) and Deconvolution 
(DECONV) are nothing more than Multiply Accumulations 
(MACs) performed on the pixels of the received images and 
the kernel coefficients of k×k filters. However, despite to 
their similarity, while CONV has been extensively used in 
several CNNs, such as AlexNet [4], GoogleNet [5], ResNet 
[6], VGG16 [7], just to cite some of the most popular 
models, DECONV has received a great deal of attention only 
recently: it is an efficient approach to furnish high-resolution 
images and, therefore, it has become the basic operation of 
generative neural networks [8][9]. 

Generally speaking, a DECONV engine receives a low-
resolution H×W image and a k×k filter and produces a high-

resolution Ho×Wo output image. Several approaches can be 
exploited to perform such an operation, each having its own 
pros and cons. As shown in [10], DECONVs can be 
computed by executing classical CONVs. In order to do this, 
with S and P being the adopted stride and padding, 
respectively, the input image is preliminarily strided, by 
interleaving S−1 zeros between each pair of adjacent pixels, 
and padded by inserting P zeros on the borders. The image 
obtained in this way is processed through a classical CONV, 
which is a benefit in terms of design efforts, given that 
engines designed for CONV can be utilized also to perform 
DECONV. However, inserted zeros cause useless zeroed 
MACs and lead to unbalanced workloads. Moreover, the 
input reorganization, required to stride and pad the input 
images, limit the achievable speed performances.  

As an alternative, the technique proposed in [11] directly 
multiplies each input pixel by the filter coefficients, thus 
computing a block of k×k products. In this way, the blocks 
of products related to adjacent pixels are overlapped and, to 
perform DECONV correctly, up to k−S overlapping rows 
and columns must be properly managed, which increases 
both the computational complexity and the delay.  

The designs presented in [12]-[18] improve the above 
approach to implement efficient hardware DECONV engines 
within FPGA-based Systems-on-Chip (SoCs) able to 
accelerate the complex segmentation and the super-
resolution imaging tasks.   

As deeply discussed in [19], also the Winograd algorithm 
can be exploited to perform DECONV. The main benefit of 
this solution is the very high speed achieved, but, as a 
drawback, input images and filters must be preliminarily 
transformed in the Winograd domain, which introduces 
significant resources and power overheads. 

All the previously cited state-of-the-art papers present 
efficient DECONV engines customized to exploit in the 
most efficient way the hardware resources available within a 
specific FPGA device. If on the one hand this choice allows 
speed performances to be maximized, limiting the power 
dissipation and the hardware resources requirements, on the 
other hand it introduces specific realization platform-
dependency, which makes such designs unsuitable for the 
High-Level Synthesis (HLS). The latter allows describing 
complex tasks, like those performed by DCNNs, in a high-
level language (e.g., C/C++) letting the software tool 
automatically provide the description at the Register-
Transfer Level (RTL) of abstraction. The HLS design 
approach offers a precious aid to the users who: 1) must 
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comply with limited realization time; 2) are not familiar with 
hardware designs at a low-level of abstraction; 3) desire 
platform-independent portable design descriptions. Indeed, 
HLS tools can access sets of libraries providing several 
classes of synthesizable functions that can be exploited to 
describe complex tasks. Moreover, proper directives and 
pragmas can be used within the description code to 
architecturally constrain the synthesis result. Stimulated by 
these considerations, this paper presents the design of a 
DECONV engine based on the HLS approach. 

The rest of the paper is organized as follows: Section II 
reviews the adopted DECONV method; Section III details 
the synthesizable C++ code, written, verified and synthesized 
with the Xilinx Vivado HLS Tool, and presents post-
synthesis results; future works are briefly described in 
Section IV; finally, conclusions are drawn in Section V.   

II. THE ADOPTED DECONV METHOD 

The proposed DECONV engine implements the Input-
Oriented-Mapping (IOM) strategy [11]. It performs the 
generic computation within three steps: 1) multiply each 
input pixel by the filter coefficients, thus providing a block 
of k×k products; 2) sum up the products belonging to the k–S 
rows (columns) overlapped with adjacent blocks; 3) crop the 

borders of the output image to modulate its size to Ho×Wo, 
as given in (1), where PI and PO are the input and output 
padding, respectively. 

                 (1a) 

          (1b) 
To better explain how the referred method runs, let us 

examine the example reported Figure 1. It refers to the case 
in which H=W=3, k=3, S=2, PI=1, PO=0. Figure 1b shows 
how the 3×3 blocks of products obtained by the step 1 (i.e., 
multiplying each input pixel by the filter) should be arranged 
into the output space. In this case, adjacent bocks have only 
1 overlapping row (column), therefore the accumulations 
performed in the step 2 lead to the 7×7 provisional image of 
Figure 1c. Since the size of the output image obtained by (1) 
is HO=WO=5, the gray borders are cropped in the step 3, thus 
finally producing the output image reported in Figure 1d. 

III. THE SYNTHESIZABLE C++ CODE AND POST-

SYNTHESIS RESULTS 

The synthesizable C++ routine purposely written to 
exploit the HLS design approach has been organized 
assuming that the DECONV engine is the computational 
core of a custom hardware module exploited within a typical 
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Figure 2. Typical structure of a heterogeneous SoC. 
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1: for (unsigned int i = 0; i < k; i++) { 

2:      for (unsigned int j = 0; j < k; j++) { 

3:            #pragma HLS PIPELINE II=1 

4:            filt[i][j]=filter.read();           

5: for (unsigned int r = 0; r < H; r++) { 

6:      for (unsigned int c = 0; c < W; c++) { 

7:            #pragma HLS PIPELINE II=1 

8:            Pix=InIm.read();           

9:            for (unsigned int i = 0; i < k; i++) {  

10:  for (unsigned int j = 0; j < k; j++) {  

11:                         // Multiply the generic pixel by the filter 

12:        Prods[i][j]=Pix*filt[i][j]; 

13:                       // Store the products to be reused for the column overlap 

14:        if (j >= S)  

15:           CBuff[i][j−S]=Prods[i][j]; 

16                          // Sum up overlapped columns 

17:        if (j<k−S)   

18:                           if (c==0)  

19:                                SumCol [i][j]=Prods [i][j]; 

20:             else SumCol[i][j]=Prods [i][j]+CBuff[i][j]; 

21:        else SumCol[i][j]=Prods[i][j]; 

22:                      // Store the results to be reused for the row overlap 

23:        if (i>=S) { 

24:                           if (j<S)  

25:               RBuff[i-S][j][c]=SumCol[i][j];  

26:                      } 

27:                      //Sum up overlapping rows  

28:        if (i < k-S) {  

29:            if (j < S) { 

30:                if (r == 0)  

31:                     SumRow[i][j]=SumCol [i][j]; 

32:                 else SumRow[i][j]=SumCol[i][j]+RBuff[i][j][c]; 

33:            } 

34:        } 

35:            else SumRow [i][j]=SumCol [i][j]; 

36:        // Map the results to the output space 

37:        for (unsigned int i = 0; i < S; i++) { 

38:               for (unsigned int j = 0; j < S; j++) { 

39:                  OBuff[c+i*W+r*S*H].range(16*j+15,16*j)=SumRow[i][j];      

40:               } 

41:                       } 

42:   }    

43:             }      

44:        } 

45: } 

Figure 3. The synthesizable C++ code describing the DECONV task. 
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heterogeneous System-On-Chip (SoC) structured as 
schematized in Figure 2. In such an architecture, data to be 
processed and produced results are stored in the external 
memory. As usually happens, read and write memory 
accesses are managed by the memory controller that 
communicates directly with the modules responsible for the 
management of data transfers, like Direct Memory Access 
modules (DMAs), Central DMAs (CDMAs) or Video DMAs 
(VDMAs). 

From Figure 3, it can be seen that the engine processes 
the streams filter and InIm that collect the k×k filter 
coefficients and the H×W pixels of the input image, 
respectively (lines 1-8). As explained above, the generic 
pixel Pix is multiplied by the filter coefficients, thus 
providing the block of products Prods (lines 9-12). In order 
to properly manage the overlapping columns between 
adjacent blocks of products, the 2D array CBuff is exploited 
to provisionally store the overlapping products that must be 
summed up (lines 13-21) taking into account where the 
currently processed pixel is located within the input image. 
To correctly treat also the overlapping rows between 
adjacent blocks of products, the 3D array RBuff is also used. 
Given that the input image is fed in the raster scan order, the 
3D data structure is needed to store: the results obtained by 
the previous sum of overlapping columns; the results 
obtained by the current sum of the overlapping rows; and the 
products that are being computed on the next incoming pixel 
(lines 22-35). Finally, the results are stored in the output 
buffer OBuff (lines 36-45).  

It is worth noting that, in order to architecturally 
constrain the synthesis result, the C++ code reported in 
Figure 3 uses the directive #pragma HLS PIPELINE II=1 
several times to introduce pipelining with an Initiation 
Interval (II) equal to 1. The latter ensures that a new input is 
read at each clock cycle, thus allowing the incoming data and 
the produced results to be continuously streamed-in and 
streamed-out.  

The above C++ code has been successfully simulated and 
synthesized using the Vivado HLS 2019.2 CAD tool. Several 
functional tests have been performed referring to 8-bit 
unsigned input images and 8-bit signed filters with different 
image and kernel sizes.  

TABLE I.  POST-SYNTHESIS RESULTS 

Chip XC7Z020-clg484-1 

k S H×W, HO×WO Tclk [ns] fps #BRAMs #LUTs #FFs 

3 2 

64×64, 128×128 7.81 4878 18 1648 741 

128×128, 256×256 7.81 1219 66 1674 756 

256×256, 512×512 7.81 304 258 1729 771 

5 2 

64×64, 128×128 7.81 4878 20 2256 1105 

128×128, 256×256 7.81 1219 68 2282 1122 

256×256, 512×512 7.81 304 260 2307 1139 

5 4 
64×64, 256×256 7.85 840 68 2862 795 

128×128, 512×512 7.85 210 260 2887 817 

Chip XC7VX980tffg1930-1 

5 4 256×256, 1024×1024 8.24 53 1028 2917 641 

7 4 256×256, 1024×1024 8.01 37 1036 5132 1230 

 
Some post-synthesis results obtained with the XC7Z020-

clg484-1 and the XC7VX980tffg1930-1 devices for various 

image and filter sizes and strides are summarized in Table 1. 
The latter shows how the speed performances, achieved in 
terms of clock period (Tclk) and number of frames produced 
per second (fps), and the hardware resources requirements, 
represented in terms of occupied Lookup Tables (LUTs), 
Flip-Flops (FFs) and on chip 18Kb Blocks RAM (BRAMs), 
change with k, S, H×W and HO×WO. 

Obtained results clearly demonstrate that, while the stride 
S and the output image size HO×WO directly affect the 
amount of utilized BRAMs, the filter size k×k impacts on the 
amount of occupied LUTs and FFs. It can also be observed 
that the achieved frame rate strictly depends on H×W, which 
determine how many clock cycles are required to process all 
the input pixels. Figure 4 plots the number of clock cycles 
required at various input image size when the stride is set to 
2 and the filter size varies from 2 to 4. As expected, the 
number of clock cycles varies with the image size.  

From Table 1, it can also be seen that, due to the limited 
amount of available BRAMs, the XC7Z020 chip is 
unsuitable to host the DECONV engine when 256×256 
images must be up-sampled to the 1024×1024 resolution 
(i.e., S=4). For this reason, a different platform has been 
chosen to synthesize and characterize the proposed 
architecture in this operating condition. Obtained results 
confirm the behavior previously discussed. 

IV. FUTURE WORKS 

It is worth noting that the design presented in the 
previous Section is the preliminary version of a DECONV 
engine, which is intended to be used within DCNNs to 
implement DECONV Layers (DCLs). This means that the 
deconvolution operation is being performed on M input 
images (named ifmaps) using N different M×k×k filters, thus 
furnishing N output images (named ofmaps), each obtained 
by accumulating M intermediate ofmaps in a pixel-wise 
manner.  

Taking this into account, for future works, the 
architecture above described and characterized will be 
improved to employ a proper accumulation logic as 
schematized in Figure 5. Moreover, an adequate level of 
parallelism will be introduced to process multiple ifmaps 
contemporaneously. Generally speaking, a DCL can be made 
able to perform multiple deconvolutions in parallel, thus 
producing OM intermediate ofmaps contemporaneously. A 

 

H=W 

Figure 4. Number of clock cycles versus the input image size. 
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certain parallelism may be exploited also at the pixel-level to 
process multiple pixels of the same ifmap at the same time. It 
is expected that this capability will be introduced by 
exploiting the Single Instruction Multiple Data (SIMD) 
paradigm.  

Finally, on the basis of the desired behavior other 
directives and pragmas will be used to use available 
resources more efficiently, for example including the Digital 
Signal Processors (DSPs). Obviously, this will further 
improve the achieve speed performances. 

V. CONCLUSION 

This paper presented a deconvolution engine designed 
using the high-level synthesis approach. In contrast to state-
of-the-art designs proposed in literature, the description 
proposed here avoids specific realization platform-
dependency, thus being suitable to be implemented 
efficiently in different realization platforms. The 
synthesizable C++ description here described has been 
characterized at different input and output image sizes, 
referring to various stride and kernel sizes. Some post-
synthesis results have been presented referring to the 
XC7Z020 low-end device. Then, due to the increasing 
demand of on-chip memory resources, with the output image 
being up-sampled to the 1024×1024 resolution, a more 
expensive chip has been required. Due to its platform 
independency, the presented code can be synthesized also 
within different devices families. For future works, the 
proposed deconvolution engine can be improved to be used 
within DCNNs and to introduce proper level of parallelism at 
both frame- and pixel-level.  
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Figure 5. A possible DECONV layer architecture. 
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