
High-Level Synthesis of Hardware Accelerators for Deconvolution Engines

Cristian Sestito

Department of Informatics, Modeling,

Electronics and System Engineering

University of Calabria

Arcavacata di Rende, Italy

e-mail: cristian.sestito@unical.it

Robert Stewart
Department of Computer Science

Heriot-Watt University

Edinburgh, United Kingdom

e-mail: R.Stewart@hw.ac.uk

Stefania Perri
Department of Mechanical, Energy

and Management Engineering

University of Calabria

Arcavacata di Rende, Italy

e-mail: s.perri@unical.it

Abstract—Convolutional and Deconvolutional Neural

Networks are widespread in several modern computer vision

applications, such as high-resolution imaging, object

classification and generation, image segmentation and many

others. While several efficient hardware architectures are

known in literature to accelerate the convolution task, the

design of accelerators for deconvolution is still an open

problem. The few existing deconvolution engines are

customized to exploit in the best possible way specific

hardware resources, thus suffering from platform-dependency

that certainly allows maximizing speed performances and

power-resource efficiency, but, on the other hand makes these

designs unsuitable for the high-level synthesis approach. This

paper presents a deconvolution structure described in the C++

high-level language and then synthesized at the register-

transfer level of abstraction. Results demonstrate that, when

characterized within the Xilinx XC7VX980tffg1930-1 device,

the described architecture can up-sample a 256×256 input

image to the 1024×1024 resolution using less than 3000 LUTs,

1028 18Kb BRAMs and 640 FFs. The reached 121 MHz

running frequency guarantees a frame rate higher than 50 fps

to be achieved.

Keywords-Hardware accelerators; High-Level Synthesis;

Deconvolution; Multiply Accumulations; FPGAs.

I. INTRODUCTION

Modern deep learning applications [1]-[3], including
image segmentation, object generation and high-resolution
imaging, exploit both Convolutional and Deconvolutional
Neural Networks (CNNs and DCNNs). The former
progressively down-sample the digital images received as
input to extract relevant features, whereas the latter elaborate
the input images to extrapolate new features. As it is well
known, Convolution (CONV) and Deconvolution
(DECONV) are nothing more than Multiply Accumulations
(MACs) performed on the pixels of the received images and
the kernel coefficients of k×k filters. However, despite to
their similarity, while CONV has been extensively used in
several CNNs, such as AlexNet [4], GoogleNet [5], ResNet
[6], VGG16 [7], just to cite some of the most popular
models, DECONV has received a great deal of attention only
recently: it is an efficient approach to furnish high-resolution
images and, therefore, it has become the basic operation of
generative neural networks [8][9].

Generally speaking, a DECONV engine receives a low-
resolution H×W image and a k×k filter and produces a high-

resolution Ho×Wo output image. Several approaches can be
exploited to perform such an operation, each having its own
pros and cons. As shown in [10], DECONVs can be
computed by executing classical CONVs. In order to do this,
with S and P being the adopted stride and padding,
respectively, the input image is preliminarily strided, by
interleaving S−1 zeros between each pair of adjacent pixels,
and padded by inserting P zeros on the borders. The image
obtained in this way is processed through a classical CONV,
which is a benefit in terms of design efforts, given that
engines designed for CONV can be utilized also to perform
DECONV. However, inserted zeros cause useless zeroed
MACs and lead to unbalanced workloads. Moreover, the
input reorganization, required to stride and pad the input
images, limit the achievable speed performances.

As an alternative, the technique proposed in [11] directly
multiplies each input pixel by the filter coefficients, thus
computing a block of k×k products. In this way, the blocks
of products related to adjacent pixels are overlapped and, to
perform DECONV correctly, up to k−S overlapping rows
and columns must be properly managed, which increases
both the computational complexity and the delay.

The designs presented in [12]-[18] improve the above
approach to implement efficient hardware DECONV engines
within FPGA-based Systems-on-Chip (SoCs) able to
accelerate the complex segmentation and the super-
resolution imaging tasks.

As deeply discussed in [19], also the Winograd algorithm
can be exploited to perform DECONV. The main benefit of
this solution is the very high speed achieved, but, as a
drawback, input images and filters must be preliminarily
transformed in the Winograd domain, which introduces
significant resources and power overheads.

All the previously cited state-of-the-art papers present
efficient DECONV engines customized to exploit in the
most efficient way the hardware resources available within a
specific FPGA device. If on the one hand this choice allows
speed performances to be maximized, limiting the power
dissipation and the hardware resources requirements, on the
other hand it introduces specific realization platform-
dependency, which makes such designs unsuitable for the
High-Level Synthesis (HLS). The latter allows describing
complex tasks, like those performed by DCNNs, in a high-
level language (e.g., C/C++) letting the software tool
automatically provide the description at the Register-
Transfer Level (RTL) of abstraction. The HLS design
approach offers a precious aid to the users who: 1) must

1Copyright (c) IARIA, 2022. ISBN: 978-1-68558-009-4

CENICS 2022 : The Fifteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

comply with limited realization time; 2) are not familiar with
hardware designs at a low-level of abstraction; 3) desire
platform-independent portable design descriptions. Indeed,
HLS tools can access sets of libraries providing several
classes of synthesizable functions that can be exploited to
describe complex tasks. Moreover, proper directives and
pragmas can be used within the description code to
architecturally constrain the synthesis result. Stimulated by
these considerations, this paper presents the design of a
DECONV engine based on the HLS approach.

The rest of the paper is organized as follows: Section II
reviews the adopted DECONV method; Section III details
the synthesizable C++ code, written, verified and synthesized
with the Xilinx Vivado HLS Tool, and presents post-
synthesis results; future works are briefly described in
Section IV; finally, conclusions are drawn in Section V.

II. THE ADOPTED DECONV METHOD

The proposed DECONV engine implements the Input-
Oriented-Mapping (IOM) strategy [11]. It performs the
generic computation within three steps: 1) multiply each
input pixel by the filter coefficients, thus providing a block
of k×k products; 2) sum up the products belonging to the k–S
rows (columns) overlapped with adjacent blocks; 3) crop the

borders of the output image to modulate its size to Ho×Wo,
as given in (1), where PI and PO are the input and output
padding, respectively.

 (1a)

 (1b)
To better explain how the referred method runs, let us

examine the example reported Figure 1. It refers to the case
in which H=W=3, k=3, S=2, PI=1, PO=0. Figure 1b shows
how the 3×3 blocks of products obtained by the step 1 (i.e.,
multiplying each input pixel by the filter) should be arranged
into the output space. In this case, adjacent bocks have only
1 overlapping row (column), therefore the accumulations
performed in the step 2 lead to the 7×7 provisional image of
Figure 1c. Since the size of the output image obtained by (1)
is HO=WO=5, the gray borders are cropped in the step 3, thus
finally producing the output image reported in Figure 1d.

III. THE SYNTHESIZABLE C++ CODE AND POST-

SYNTHESIS RESULTS

The synthesizable C++ routine purposely written to
exploit the HLS design approach has been organized
assuming that the DECONV engine is the computational
core of a custom hardware module exploited within a typical

 General-
purpose

processor

 Memory
Controller

Processing
System

DECONV

Engine

Management of
Data Transfers

M
E
M
O
R
Y

Heterogeneous SoC

Figure 2. Typical structure of a heterogeneous SoC.

Custom Hardware

Input image

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

 2 4 6

 8 10 12

 14 16 18

 3 6 9

 12 15 18

 21 24 27

4 8 12

16 20 24

28 32 36

 5 10 15

 20 25 30

 35 40 45

 6 12 18

 24 30 36

 42 48 54

7 14 21

28 35 42

49 56 63

 8 16 24

 32 40 48

 56 63 72

 9 18 27

 36 45 54

 63 72 81

1 2 5 4 9 6 9

4 5 14 10 24 15 18

11 16 40 26 60 36 45

16 20 44 25 54 30 36

35 46 100 56 120 66 81

28 35 74 40 84 45 54

49 56 119 63 135 72 81

Input fmap Filter

Pixel 1 - Res Pixel 2 - Res Pixel 3 - Res

Pixel 4 - Res Pixel 5 - Res Pixel 6 - Res

Pixel 7 - Res Pixel 8 - Res Pixel 9 - Res

Output fmap
(gray locations are cropped)

Filter

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

 2 4 6

 8 10 12

 14 16 18

 3 6 9

 12 15 18

 21 24 27

4 8 12

16 20 24

28 32 36

 5 10 15

 20 25 30

 35 40 45

 6 12 18

 24 30 36

 42 48 54

7 14 21

28 35 42

49 56 63

 8 16 24

 32 40 48

 56 63 72

 9 18 27

 36 45 54

 63 72 81

1 2 5 4 9 6 9

4 5 14 10 24 15 18

11 16 40 26 60 36 45

16 20 44 25 54 30 36

35 46 100 56 120 66 81

28 35 74 40 84 45 54

49 56 119 63 135 72 81

Input fmap Filter

Pixel 1 - Res Pixel 2 - Res Pixel 3 - Res

Pixel 4 - Res Pixel 5 - Res Pixel 6 - Res

Pixel 7 - Res Pixel 8 - Res Pixel 9 - Res

Output fmap
(gray locations are cropped)

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

 2 4 6

 8 10 12

 14 16 18

 3 6 9

 12 15 18

 21 24 27

4 8 12

16 20 24

28 32 36

 5 10 15

 20 25 30

 35 40 45

 6 12 18

 24 30 36

 42 48 54

7 14 21

28 35 42

49 56 63

 8 16 24

 32 40 48

 56 63 72

 9 18 27

 36 45 54

 63 72 81

1 2 5 4 9 6 9

4 5 14 10 24 15 18

11 16 40 26 60 36 45

16 20 44 25 54 30 36

35 46 100 56 120 66 81

28 35 74 40 84 45 54

49 56 119 63 135 72 81

Input fmap Filter

Pixel 1 - Res Pixel 2 - Res Pixel 3 - Res

Pixel 4 - Res Pixel 5 - Res Pixel 6 - Res

Pixel 7 - Res Pixel 8 - Res Pixel 9 - Res

Output fmap
(gray locations are cropped)

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

 2 4 6

 8 10 12

 14 16 18

 3 6 9

 12 15 18

 21 24 27

4 8 12

16 20 24

28 32 36

 5 10 15

 20 25 30

 35 40 45

 6 12 18

 24 30 36

 42 48 54

7 14 21

28 35 42

49 56 63

 8 16 24

 32 40 48

 56 63 72

 9 18 27

 36 45 54

 63 72 81

1 2 5 4 9 6 9

4 5 14 10 24 15 18

11 16 40 26 60 36 45

16 20 44 25 54 30 36

35 46 100 56 120 66 81

28 35 74 40 84 45 54

49 56 119 63 135 72 81

Input fmap Filter

Pixel 1 - Res Pixel 2 - Res Pixel 3 - Res

Pixel 4 - Res Pixel 5 - Res Pixel 6 - Res

Pixel 7 - Res Pixel 8 - Res Pixel 9 - Res

Output fmap
(gray locations are cropped)

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

 2 4 6

 8 10 12

 14 16 18

 3 6 9

 12 15 18

 21 24 27

4 8 12

16 20 24

28 32 36

 5 10 15

 20 25 30

 35 40 45

 6 12 18

 24 30 36

 42 48 54

7 14 21

28 35 42

49 56 63

 8 16 24

 32 40 48

 56 63 72

 9 18 27

 36 45 54

 63 72 81

1 2 5 4 9 6 9

4 5 14 10 24 15 18

11 16 40 26 60 36 45

16 20 44 25 54 30 36

35 46 100 56 120 66 81

28 35 74 40 84 45 54

49 56 119 63 135 72 81

Input fmap Filter

Pixel 1 - Res Pixel 2 - Res Pixel 3 - Res

Pixel 4 - Res Pixel 5 - Res Pixel 6 - Res

Pixel 7 - Res Pixel 8 - Res Pixel 9 - Res

Output fmap
(gray locations are cropped)

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

 2 4 6

 8 10 12

 14 16 18

 3 6 9

 12 15 18

 21 24 27

4 8 12

16 20 24

28 32 36

 5 10 15

 20 25 30

 35 40 45

 6 12 18

 24 30 36

 42 48 54

7 14 21

28 35 42

49 56 63

 8 16 24

 32 40 48

 56 63 72

 9 18 27

 36 45 54

 63 72 81

1 2 5 4 9 6 9

4 5 14 10 24 15 18

11 16 40 26 60 36 45

16 20 44 25 54 30 36

35 46 100 56 120 66 81

28 35 74 40 84 45 54

49 56 119 63 135 72 81

Input fmap Filter

Pixel 1 - Res Pixel 2 - Res Pixel 3 - Res

Pixel 4 - Res Pixel 5 - Res Pixel 6 - Res

Pixel 7 - Res Pixel 8 - Res Pixel 9 - Res

Output fmap
(gray locations are cropped)

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

 2 4 6

 8 10 12

 14 16 18

 3 6 9

 12 15 18

 21 24 27

4 8 12

16 20 24

28 32 36

 5 10 15

 20 25 30

 35 40 45

 6 12 18

 24 30 36

 42 48 54

7 14 21

28 35 42

49 56 63

 8 16 24

 32 40 48

 56 63 72

 9 18 27

 36 45 54

 63 72 81

1 2 5 4 9 6 9

4 5 14 10 24 15 18

11 16 40 26 60 36 45

16 20 44 25 54 30 36

35 46 100 56 120 66 81

28 35 74 40 84 45 54

49 56 119 63 135 72 81

Input fmap Filter

Pixel 1 - Res Pixel 2 - Res Pixel 3 - Res

Pixel 4 - Res Pixel 5 - Res Pixel 6 - Res

Pixel 7 - Res Pixel 8 - Res Pixel 9 - Res

Output fmap
(gray locations are cropped)

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

 2 4 6

 8 10 12

 14 16 18

 3 6 9

 12 15 18

 21 24 27

4 8 12

16 20 24

28 32 36

 5 10 15

 20 25 30

 35 40 45

 6 12 18

 24 30 36

 42 48 54

7 14 21

28 35 42

49 56 63

 8 16 24

 32 40 48

 56 63 72

 9 18 27

 36 45 54

 63 72 81

1 2 5 4 9 6 9

4 5 14 10 24 15 18

11 16 40 26 60 36 45

16 20 44 25 54 30 36

35 46 100 56 120 66 81

28 35 74 40 84 45 54

49 56 119 63 135 72 81

Input fmap Filter

Pixel 1 - Res Pixel 2 - Res Pixel 3 - Res

Pixel 4 - Res Pixel 5 - Res Pixel 6 - Res

Pixel 7 - Res Pixel 8 - Res Pixel 9 - Res

Output fmap
(gray locations are cropped)

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

 2 4 6

 8 10 12

 14 16 18

 3 6 9

 12 15 18

 21 24 27

4 8 12

16 20 24

28 32 36

 5 10 15

 20 25 30

 35 40 45

 6 12 18

 24 30 36

 42 48 54

7 14 21

28 35 42

49 56 63

 8 16 24

 32 40 48

 56 63 72

 9 18 27

 36 45 54

 63 72 81

1 2 5 4 9 6 9

4 5 14 10 24 15 18

11 16 40 26 60 36 45

16 20 44 25 54 30 36

35 46 100 56 120 66 81

28 35 74 40 84 45 54

49 56 119 63 135 72 81

Input fmap Filter

Pixel 1 - Res Pixel 2 - Res Pixel 3 - Res

Pixel 4 - Res Pixel 5 - Res Pixel 6 - Res

Pixel 7 - Res Pixel 8 - Res Pixel 9 - Res

Output fmap
(gray locations are cropped)

a)

b)

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

 2 4 6

 8 10 12

 14 16 18

 3 6 9

 12 15 18

 21 24 27

4 8 12

16 20 24

28 32 36

 5 10 15

 20 25 30

 35 40 45

 6 12 18

 24 30 36

 42 48 54

7 14 21

28 35 42

49 56 63

 8 16 24

 32 40 48

 56 63 72

 9 18 27

 36 45 54

 63 72 81

1 2 5 4 9 6 9

4 5 14 10 24 15 18

11 16 40 26 60 36 45

16 20 44 25 54 30 36

35 46 100 56 120 66 81

28 35 74 40 84 45 54

49 56 119 63 135 72 81

Input fmap Filter

Pixel 1 - Res Pixel 2 - Res Pixel 3 - Res

Pixel 4 - Res Pixel 5 - Res Pixel 6 - Res

Pixel 7 - Res Pixel 8 - Res Pixel 9 - Res

Output fmap
(gray locations are cropped)

c)
Figure 1. An example: a) the inputs; b) step 1; c) step 2; d) step 3.

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

 2 4 6

 8 10 12

 14 16 18

 3 6 9

 12 15 18

 21 24 27

4 8 12

16 20 24

28 32 36

 5 10 15

 20 25 30

 35 40 45

 6 12 18

 24 30 36

 42 48 54

7 14 21

28 35 42

49 56 63

 8 16 24

 32 40 48

 56 63 72

 9 18 27

 36 45 54

 63 72 81

1 2 5 4 9 6 9

4 5 14 10 24 15 18

11 16 40 26 60 36 45

16 20 44 25 54 30 36

35 46 100 56 120 66 81

28 35 74 40 84 45 54

49 56 119 63 135 72 81

Input fmap Filter

Pixel 1 - Res Pixel 2 - Res Pixel 3 - Res

Pixel 4 - Res Pixel 5 - Res Pixel 6 - Res

Pixel 7 - Res Pixel 8 - Res Pixel 9 - Res

Output fmap
(gray locations are cropped)

d)

1: for (unsigned int i = 0; i < k; i++) {

2: for (unsigned int j = 0; j < k; j++) {

3: #pragma HLS PIPELINE II=1

4: filt[i][j]=filter.read();

5: for (unsigned int r = 0; r < H; r++) {

6: for (unsigned int c = 0; c < W; c++) {

7: #pragma HLS PIPELINE II=1

8: Pix=InIm.read();

9: for (unsigned int i = 0; i < k; i++) {

10: for (unsigned int j = 0; j < k; j++) {

11: // Multiply the generic pixel by the filter

12: Prods[i][j]=Pix*filt[i][j];

13: // Store the products to be reused for the column overlap

14: if (j >= S)

15: CBuff[i][j−S]=Prods[i][j];

16 // Sum up overlapped columns

17: if (j<k−S)

18: if (c==0)

19: SumCol [i][j]=Prods [i][j];

20: else SumCol[i][j]=Prods [i][j]+CBuff[i][j];

21: else SumCol[i][j]=Prods[i][j];

22: // Store the results to be reused for the row overlap

23: if (i>=S) {

24: if (j<S)

25: RBuff[i-S][j][c]=SumCol[i][j];

26: }

27: //Sum up overlapping rows

28: if (i < k-S) {

29: if (j < S) {

30: if (r == 0)

31: SumRow[i][j]=SumCol [i][j];

32: else SumRow[i][j]=SumCol[i][j]+RBuff[i][j][c];

33: }

34: }

35: else SumRow [i][j]=SumCol [i][j];

36: // Map the results to the output space

37: for (unsigned int i = 0; i < S; i++) {

38: for (unsigned int j = 0; j < S; j++) {

39: OBuff[c+i*W+r*S*H].range(16*j+15,16*j)=SumRow[i][j];

40: }

41: }

42: }

43: }

44: }

45: }

Figure 3. The synthesizable C++ code describing the DECONV task.

2Copyright (c) IARIA, 2022. ISBN: 978-1-68558-009-4

CENICS 2022 : The Fifteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

heterogeneous System-On-Chip (SoC) structured as
schematized in Figure 2. In such an architecture, data to be
processed and produced results are stored in the external
memory. As usually happens, read and write memory
accesses are managed by the memory controller that
communicates directly with the modules responsible for the
management of data transfers, like Direct Memory Access
modules (DMAs), Central DMAs (CDMAs) or Video DMAs
(VDMAs).

From Figure 3, it can be seen that the engine processes
the streams filter and InIm that collect the k×k filter
coefficients and the H×W pixels of the input image,
respectively (lines 1-8). As explained above, the generic
pixel Pix is multiplied by the filter coefficients, thus
providing the block of products Prods (lines 9-12). In order
to properly manage the overlapping columns between
adjacent blocks of products, the 2D array CBuff is exploited
to provisionally store the overlapping products that must be
summed up (lines 13-21) taking into account where the
currently processed pixel is located within the input image.
To correctly treat also the overlapping rows between
adjacent blocks of products, the 3D array RBuff is also used.
Given that the input image is fed in the raster scan order, the
3D data structure is needed to store: the results obtained by
the previous sum of overlapping columns; the results
obtained by the current sum of the overlapping rows; and the
products that are being computed on the next incoming pixel
(lines 22-35). Finally, the results are stored in the output
buffer OBuff (lines 36-45).

It is worth noting that, in order to architecturally
constrain the synthesis result, the C++ code reported in
Figure 3 uses the directive #pragma HLS PIPELINE II=1
several times to introduce pipelining with an Initiation
Interval (II) equal to 1. The latter ensures that a new input is
read at each clock cycle, thus allowing the incoming data and
the produced results to be continuously streamed-in and
streamed-out.

The above C++ code has been successfully simulated and
synthesized using the Vivado HLS 2019.2 CAD tool. Several
functional tests have been performed referring to 8-bit
unsigned input images and 8-bit signed filters with different
image and kernel sizes.

TABLE I. POST-SYNTHESIS RESULTS

Chip XC7Z020-clg484-1

k S H×W, HO×WO Tclk [ns] fps #BRAMs #LUTs #FFs

3 2

64×64, 128×128 7.81 4878 18 1648 741

128×128, 256×256 7.81 1219 66 1674 756

256×256, 512×512 7.81 304 258 1729 771

5 2

64×64, 128×128 7.81 4878 20 2256 1105

128×128, 256×256 7.81 1219 68 2282 1122

256×256, 512×512 7.81 304 260 2307 1139

5 4
64×64, 256×256 7.85 840 68 2862 795

128×128, 512×512 7.85 210 260 2887 817

Chip XC7VX980tffg1930-1

5 4 256×256, 1024×1024 8.24 53 1028 2917 641

7 4 256×256, 1024×1024 8.01 37 1036 5132 1230

Some post-synthesis results obtained with the XC7Z020-

clg484-1 and the XC7VX980tffg1930-1 devices for various

image and filter sizes and strides are summarized in Table 1.
The latter shows how the speed performances, achieved in
terms of clock period (Tclk) and number of frames produced
per second (fps), and the hardware resources requirements,
represented in terms of occupied Lookup Tables (LUTs),
Flip-Flops (FFs) and on chip 18Kb Blocks RAM (BRAMs),
change with k, S, H×W and HO×WO.

Obtained results clearly demonstrate that, while the stride
S and the output image size HO×WO directly affect the
amount of utilized BRAMs, the filter size k×k impacts on the
amount of occupied LUTs and FFs. It can also be observed
that the achieved frame rate strictly depends on H×W, which
determine how many clock cycles are required to process all
the input pixels. Figure 4 plots the number of clock cycles
required at various input image size when the stride is set to
2 and the filter size varies from 2 to 4. As expected, the
number of clock cycles varies with the image size.

From Table 1, it can also be seen that, due to the limited
amount of available BRAMs, the XC7Z020 chip is
unsuitable to host the DECONV engine when 256×256
images must be up-sampled to the 1024×1024 resolution
(i.e., S=4). For this reason, a different platform has been
chosen to synthesize and characterize the proposed
architecture in this operating condition. Obtained results
confirm the behavior previously discussed.

IV. FUTURE WORKS

It is worth noting that the design presented in the
previous Section is the preliminary version of a DECONV
engine, which is intended to be used within DCNNs to
implement DECONV Layers (DCLs). This means that the
deconvolution operation is being performed on M input
images (named ifmaps) using N different M×k×k filters, thus
furnishing N output images (named ofmaps), each obtained
by accumulating M intermediate ofmaps in a pixel-wise
manner.

Taking this into account, for future works, the
architecture above described and characterized will be
improved to employ a proper accumulation logic as
schematized in Figure 5. Moreover, an adequate level of
parallelism will be introduced to process multiple ifmaps
contemporaneously. Generally speaking, a DCL can be made
able to perform multiple deconvolutions in parallel, thus
producing OM intermediate ofmaps contemporaneously. A

H=W

Figure 4. Number of clock cycles versus the input image size.

3Copyright (c) IARIA, 2022. ISBN: 978-1-68558-009-4

CENICS 2022 : The Fifteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

certain parallelism may be exploited also at the pixel-level to
process multiple pixels of the same ifmap at the same time. It
is expected that this capability will be introduced by
exploiting the Single Instruction Multiple Data (SIMD)
paradigm.

Finally, on the basis of the desired behavior other
directives and pragmas will be used to use available
resources more efficiently, for example including the Digital
Signal Processors (DSPs). Obviously, this will further
improve the achieve speed performances.

V. CONCLUSION

This paper presented a deconvolution engine designed
using the high-level synthesis approach. In contrast to state-
of-the-art designs proposed in literature, the description
proposed here avoids specific realization platform-
dependency, thus being suitable to be implemented
efficiently in different realization platforms. The
synthesizable C++ description here described has been
characterized at different input and output image sizes,
referring to various stride and kernel sizes. Some post-
synthesis results have been presented referring to the
XC7Z020 low-end device. Then, due to the increasing
demand of on-chip memory resources, with the output image
being up-sampled to the 1024×1024 resolution, a more
expensive chip has been required. Due to its platform
independency, the presented code can be synthesized also
within different devices families. For future works, the
proposed deconvolution engine can be improved to be used
within DCNNs and to introduce proper level of parallelism at
both frame- and pixel-level.

ACKNOWLEDGMENTS

This work was supported by: “POR Calabria FSE/FESR
2014-2020 – International Mobility of PhD students and
research grants/type A Researchers” – Actions 10.5.6 and
10.5.12 actuated by Regione Calabria, Italy; The
Engineering and Physical Research Council: HAFLANG
(EP/W009447/1); Border Patrol (EP/N028201/1); Serious
Coding (EP/T017511/1).

REFERENCES

[1] I. J. Goodfellow et al., “Generative adversarial nets,” in Proc.
of the 27th International Conference on Neural Information
Processing Systems—Volume 2, Montreal, QC, Canada, 8–13
Dec. 2014, pp. 2672–2680.

[2] A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-
Martinez, and J. Garcia Rodriguez, “A review on deep
learning techniques for image and video semantic
segmentation,” Appl. Soft Comput., vol. 70, pp. 41–65, 2018.

[3] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-
resolution using deep convolutional networks,” IEEE Trans.
Pattern Anal. Mach. Intell.,vol. 38, no. 2, pp. 295–307, 2015.

[4] A. Krizhevsky, I. Sutskever, and G. Hinton, ‘‘ImageNet
classification with deep convolutional neural networks,’’ in
Proc. Neural Inf. Process. Syst. Conf. (NIPS), 2012, pp.
1097–1105.

[5] C. Szegedy et al., “Going deeper with convolutions,” in Proc.
IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), Boston (MA), USA, 2015, pp. 1-9.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual
Learning for Image Recognition,” in Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), Boston
(MA), USA, 2015, pp. 770-778.

[7] K. Simonyan, and A. Zisserman, “Very Deep Convolutional
Networks For Large-Scale Image Recognition,” in Proc. Int.
Conf. on Learning Representations (ICLR), San Diego (CA),
USA, 2015, pp. 1-14.

[8] A. Radford. L. Metz and S. Chintala, “Unsupervised
Representation Learning with Deep Convolutional Generative
Adversarial Networks,” in Proc. 4th Int. Conf. on Learning
Representations (ICLR 2016), San Juan, Puerto Rico, May
2016.

[9] Y. Yu, T. Zhao, M. Wang, K. Wang, and L. He, “Uni-OPU:
An FPGA-Based Uniform Accelerator for Convolutional and
Transposed Convolutional Networks,” IEEE Trans. VLSI
Syst., vol. 28, no. 7, pp. 1545–1556, 2020.

[10] V. Dumoulin, and F. Visin, “A Guide to Convolution
Arithmetic for Deep Learning,” [Online; Retrieved: Jul, 2022]
Available: https://arxiv.org/abs/1603.07285.

[11] D. Wang, J. Shen, M. Wen, and C. Zhang, “Efficient
Implementation of 2D and 3D Sparse Deconvolutional Neural
Networks with a Uniform Architecture on FPGAs,”
Electronics, vol. 8, no. 7, pp. 1–13, 2019.

[12] S. Liu, H. Fan, X. Niu, H. C. Ng, Y. Chu, and W. Luk, “
Optimizing CNN-based Segmentation with Deeply
Customized Convolutional and Deconvolutional Architectures
on FPGA,” ACM Trans. Rec. Technol. Syst., vol. 11, no. 3,
pp. 1–22, 2018.

[13] S. Liu, C. Zeng, H. Fan, H. C. Ng, J. Meng, and W. Luk,
“Memory-Efficient Architecture for Accelerating Generative
Networks on FPGAs,” in Proc. of the IEEE International
Conference on Field Programmable Technology, Naha,
Okinawa, Japan, 10–14 Dec. 2018, pp. 33–40.

[14] S. Liu, and W. Luk, “Towards an Efficient Accelerator for
DNN-Based Remote Sensing Image Segmentation on
FPGAs,” in Proc. of the 29th International Conference on
Field Programmable Logic and Applications, Barcelona,
Spain, 9–13 September, 2019; pp. 187–193.

[15] J. W. Chang, and S. J. Kang, “Optimizing FPGA-based
convolutional neural networks accelerator for image super-
resolution,” in Proc. of the 23rd Asia and South Pacific
Design Automation Conference, Jeju, South Korea, 22–25
January 2018, pp. 343–348.

[16] J. W. Chang, K. W. Kang, and S. J. Kang, “An Energy-
Efficient FPGA-Based Deconvolutional Neural Networks
Accelerator for Single Image Super-Resolution,” IEEE Trans.
Circ. Sys. Video Technol., vol. 30, no. 1, pp. 281–295, 2020.

[17] S. Perri, C. Sestito, F. Spagnolo, and P. Corsonello, “Efficient
Deconvolution Architecture for Heterogeneous Systems-on-
Chip,” Journal of Imaging, vol. 6, no. 9, pp. 1-17, 2020.

[18] C. Sestito, F. Spagnolo, and S. Perri, “Design of Flexible
Hardware Accelerators for Image Convolutions and
Transposed Convolutions,” Journal of Imaging, vol. 7, no. 10,
pp. 1-16, 2021.

[19] X. Di, H. G. Yang, Y. Jia, Z. Huang, and N. Mao, “Exploring
Efficient Acceleration Architecture for Winograd-
Transformed Transposed Convolution of GANs on FPGAs,”
Electronics, vol. 9, no. 2, pp. 1–21, 2020.

Deconvolution

Engine
ifmaps Accumulation

Logic

Intermediate
ofmaps

ofmaps

Figure 5. A possible DECONV layer architecture.

4Copyright (c) IARIA, 2022. ISBN: 978-1-68558-009-4

CENICS 2022 : The Fifteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

