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Abstract—Sign Language Recognition (SLR) poses a challenge
due to the rapid and intricately coordinated motions inherent in
gestures. This research endeavors to address this complexity by
leveraging Convolutional Neural Networks (CNNs). It presents a
comprehensive exploration of diverse studies, methodologies, and
inherent challenges in SLR, with a specific focus on harnessing
CNN-based approaches for enhanced comprehension. At the
core of this study lies a project aimed at the classification of
American Sign Language gestures using CNN models rooted
in the Visual Geometry Group 19 architecture. This initiative
seeks to enrich the understanding and interpretation of manual
gestures, fundamental to effective communication. Within this
context, the article delves into pivotal aspects encompassing data
diversification, model performance, and prospective limitations.
Practical remedies are proposed, including data set augmentation
and the incorporation of image masks, with the explicit objective
of fortifying the precision and robustness of gesture recognition.
For the validation and elucidation of classification outcomes, this
study integrates the Gradient-weighted Class Activation Mapping
(Grad-CAM) explanation model. This model uncovers salient
regions within images, shedding light on the decision-making
mechanisms of the CNN model, thereby enhancing transparency
and comprehension.
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I. INTRODUCTION

In light of accelerated progress in Artificial Intelligence
(AI) and its integration across multifaceted aspects of human
existence, the interaction between humans and technological
systems has assumed salience. The field of Human-Computer
Interaction (HCI) focuses on the exchange of information and
commands between human users and technological systems
or computer devices. Many terms are used to represent the
technology that the human interacts with, including computer,
machine, AI, agent, robot. In the same vein, many relations
could take place including interaction, cooperation, collabo-
ration, team, symbiosis, integration [1]. This interaction takes
diverse forms, such as text input, voice commands, gestures,
eye movements, etc., and is ubiquitous in our daily lives, from
smartphones and computers to cars and robots. Enhancing
these interactions is crucial to making technological systems
more user-friendly, efficient, and tailored to users’ needs.

In recent years, notably within the past decade, the field of
Sign Language Recognition (SLR) has witnessed significant
advancements, thanks to the application of AI and Computer
Vision techniques. SLR plays a pivotal role in facilitating

communication between the Deaf or Hard-of-Hearing com-
munity and the hearing population. It accomplishes this by
interpreting sign language gestures, converting them into text
or speech, and effectively bridging the communication gap to
enable seamless interaction between individuals with different
language modalities.

Recent years have witnessed the emergence of CNNs as
potent tools for image and video-based recognition tasks,
notably within the realm of SLR. These deep learning models
have demonstrated remarkable performance in recognizing
both static and dynamic sign gestures from video sequences
or individual frames. However, despite the success of CNNs
in SLR, several challenges need to be addressed to enhance
the overall effectiveness of SLR systems.

The primary focus of this scientific article is adopting and
adapting the existing model from the American Sign Language
(ASL) project. The current SLR system relies on a CNN-based
model, trained on a substantial dataset containing various sign
gestures captured as images. While the model exhibits satis-
factory accuracy on the training set, it still faces difficulties in
recognizing complex gestures and identifying specific gestures
during testing. Additionally, it lacks transparency in decision-
making and presents limitations in adapting to regional and
individual sign variations.

To overcome these limitations and enhance the performance
of the SLR system, we are exploring the integration of
Explainable Artificial Intelligence (XAI) techniques to validate
the obtained results and improve the module’s performance.
XAI has emerged to enhance the interaction between humans
and computers. XAI refers to the ability of an AI system to
provide clear and understandable explanations for its decisions
and actions. This functionality is crucial to understanding
how and why an AI makes a specific decision, enabling
the evaluation of its reliability, identification of potential
biases, resolution of trust issues, and ensuring the ethical
use of AI systems. Acknowledging the significance of XAI,
the Defense Advanced Research Projects Agency (DARPA)
initiated the “XAI Program” in 2017 [2], which propelled
research into enhancing AI explainability. This momentum has
yielded noteworthy contributions: The HAExA architecture [3]
furnishes lucid agent decision explanations. “DExAI: Driving-
X” [4] offers neural network action insights in autonomous
vehicles. “DExAI: Saliency Driven Retrieval” [5] improves

69Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-100-8

CENTRIC 2023 : The Sixteenth International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services



image search via saliency maps. RISE [6] generates neural
network importance maps. These projects aim to showcase the
use of XAI to explain and interpret artificial intelligence. XAI
is designed to enhance understanding for both users and the
machine. Additionally, its role is to elucidate the interaction
between humans and machines. In this perspective, our project
focuses on this domain.

This paper aims to contribute to the field of HCI by
enhancing an existing ASL project. The article’s structure is
organized as follows: In Section II, we provide an overview
of the fundamentals of SLR. Section III presents the existing
ASL project and its current limitations. Section IV outlines our
proposed approach to enhance the SLR system, emphasizing
the incorporation of XAI techniques and data enrichment
strategies, and covers the evaluation metrics used to assess
the improved SLR model’s performance. Finally, Section V
concludes the article with a summary of our contributions and
potential future research directions.

II. RELATED WORK

The domain of SLR has witnessed remarkable progress,
driven by the growing need for inclusive communication
within the deaf and hard-of-hearing communities. Recent
years have seen significant advancements in Deep Learning
(DL) methodologies, synergistically contributing to enhanced
accuracy in SLR systems. This section presents an in-depth
review of relevant scholarly literature, focusing specifically on
CNN-based paradigms.

An exemplary contribution in the realm of SLR is exem-
plified by Kumar et al. [7]. The mentioned study introduces
a communication system designed to assist individuals with
vocal and hearing impairments. The system employs skin color
segmentation to extract sign language gestures from videos,
utilizing a CNN to learn and classify visual features associ-
ated with these gestures. Additionally, the system utilizes the
Sphinx module to recognize spoken language and convert it
into corresponding sign language gestures.

The endeavor by Devineau et al. [8] is equally notewor-
thy. The study presents a novel approach to hand gesture
recognition using deep learning and skeletal data. The authors
use a CNN to learn features from the 3D coordinates of
the hand joints captured by a depth sensor. The CNN is
trained on a large dataset of 14 hand gestures performed by
28 subjects. The experimental results show that the proposed
method achieves high accuracy and robustness in recognizing
hand gestures, outperforming existing RGB or depth images.
The article demonstrates the potential of using skeletal data as
a low-dimensional and noise-resistant representation for hand
gesture recognition.

The landscape of CNN-based SLR is further illuminated
by the work of DeVries et al. [9]. This scholarly exposi-
tion introduces a tailored CNN-driven framework designed
for SLR. Notably, this framework navigates the multifaceted
challenges stemming from the intrinsic variability of hand
gestures. Within the mentioned work, innovative solutions
are proposed, with the overarching goal of enhancing model

efficacy and performance. Furthermore, the pursuit of real-time
applications within SLR is exemplified by Garcia et al. [10].
The authors design a custom CNN model that can process
video frames of hand gestures and output the corresponding
ASL letters. The model is trained and tested on a large dataset
of 24 ASL letters performed by 10 subjects. The experimental
results show that the proposed architecture achieves high
accuracy and speed in recognizing ASL letters, outperforming
existing methods that use hand-crafted features or other deep
learning models. The article demonstrates the feasibility and
effectiveness of using CNNs for real-time ASL recognition.

In summary, this comprehensive collection of scholarly
endeavors underscores the evolutionary trajectory of SLR
through the lens of CNN-based approaches.

III. THE EXISTING ASL PROJECT

In the scope of this work, the central focus is on the
classification of ASL gestures, a fundamental step for the un-
derstanding and interpretation of sign language. Recognizing
the inherent complexity of such systems, a current model of
ASL classification presents intrinsic limitations. Consequently,
this research strives to expand the current boundaries by metic-
ulously identifying and addressing these constraints through
targeted methodologies. The primary objective is to refine the
model’s understanding and enhance its overall performance.
To materialize this ambition, a range of meticulously designed
solutions is proposed to alleviate the identified limitations.

A. Overview

To interpret and classify ASL gestures, we enhanced a
project initiated by Damion Joyner. [11] that aims to classify
a set of RGB and depth images of ASL using a CNN
model based on the Visual Geometry Group 19 (VGG19)
architecture. The model is trained using the ASL alphabet
dataset [12]. This dataset comprises over 100,000 images of
English alphabet letters in sign language from 5 different
individuals. Given that there are 24 letters in the English
alphabet (excluding the letters ‘g’ and ‘z’ as they require
hand movement) and the images are provided by 5 pairs of
hands, the model must be capable of classifying images based
on the different letters. To comprehend the functionalities
of this model, along with the achieved results and potential
enhancements, and since the classification model based on
VGG19 is necessary to understand the VGG architecture,
starting with VGG19. This architecture plays a pivotal role in
constructing and training the ASL hand gesture classification
model.

B. Classification Model Structure

1) Visual Geometry Group: Visual Geometry Group (VGG)
is a standard CNN architecture known for its depth, signifying
the high number of convolutional layers it comprises. VGG
has been instrumental in pioneering object recognition mod-
els, surpassing benchmarks in numerous tasks and datasets.
Even today, VGG remains one of the most popular image
recognition architectures [13]. VGG19, proposed by Simonyan
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and Zisserman [14], is an enhanced version of the VGG
architecture with 19 convolutional layers. It consists of several
convolutional blocks, each comprising multiple convolutional
layers followed by pooling layers. The model utilizes small-
sized filters (3×3) with a pattern of stride of 1 and padding of
1 to preserve extracted feature sizes. Using this pattern for the
convolutional layers means that the convolutional filters move
one pixel at a time across the input data, and one layer of zero
pixels is added around the input to maintain its size during
the convolution process. After the convolutional blocks, the
network connects to fully connected layers for classification.
The classification model presented by Damion Joyner [11] is
a combination of the pre-trained VGG19 model and additional
layers added for the specific task of image classification. Here
is an overview of the breakdown between the VGG19 layers
and the added layers:

a) VGG19 Model Layers:: The VGG19 layers follow
the standard architecture of VGG19, including blocks of
convolutional layers followed by pooling layers. These layers
progressively capture features at different scales and complex-
ities.

b) Additional Layers:: Several layers are added after the
VGG19 layers to adapt the model for the image classification
task. These additional layers include:

• A flattened layer to transform the outputs into a one-
dimensional vector.

• Dense (fully connected) layers for final classification.
These layers include dropout layers for regularization.

• Batch normalization layers for normalizing activations
and stabilizing learning.

• The final dense layer, with neurons corresponding to the
number of classes (letters) in the classification problem.

The classification model is used for both RGB and depth
images. Initially, the model was applied individually to each
type of data, resulting in separate classification models. Sub-
sequently, the model was trained on the combined dataset of
RGB and depth images to explore the potential benefits of
multi-modal learning.

2) Model Performance and Limitations: The classification
model has exhibited remarkable performance, with accuracy
exceeding 95% on the test dataset, effectively showcasing
its ability to forecast the English letters corresponding to
the gestures precisely. However, it is worth noting that in
the author’s project test [11], the model faced difficulties in
correctly predicting the class for each hand gesture, indicating
a limitation that persists in the model. Despite its promising
performance, the classification model does exhibit certain
limitations:

• Lack of Diversity: The ASL alphabet dataset primarily
consists of images from 5 individuals, potentially limiting
the model’s ability to generalize to a broader population.

• Overfitting: The model might suffer from overfitting,
especially considering the dataset’s limited size and po-
tential data imbalances.

• Multimodal Integration: While the model was trained on
combined RGB and depth data, there is potential for

further exploring how to effectively integrate information
from different modalities.

3) Proposed Techniques: Addressing the limitations is cru-
cial for enhancing the classification model’s performance and
robustness. In the following sections, we discuss our potential
solutions and strategies to mitigate these limitations:

• Data Augmentation and Diversification

To address the challenge of limited diversity in the dataset,
we suggest the implementation of data augmentation tech-
niques. By applying transformations, such as rotations, flips,
and adjustments to brightness, the augmentation process can
be further enhanced by collecting additional images from a
variety of hand sources. This approach aims to enrich the
dataset, exposing the model to a wider range of hand shapes
and features. Consequently, the model’s capacity to generalize
and recognize signs performed by different individuals can
be significantly improved. The collected dataset consists of
cropped RGB images depicting ASL hand shapes correspond-
ing to the 26 letters of the English alphabet. Instead of utilizing
100,000 images, we employ 436,433 images to enhance the
dataset’s richness and diversity.

The image data utilized in our work has been sourced from
various origins, including:

• Kaggle - ASL Alphabet [15]
• Kaggle - ASL RGB Depth Finger spelling [12]
• Kaggle - ASL American Sign Language Alphabet Dataset

[16]
• Kaggle - ASL Alphabet Test [17]
• Kaggle - Synthetic ASL Alphabet [18]

These diverse data sources contribute a wide array of images,
representing distinct letters of the ASL alphabet.

• Mask Image Approach Instead of Depth Images

This approach proposes substituting depth images with im-
age masks to create a more effective representation of ASL
gestures. Rather than relying on raw depth data, the con-
cept involves using masks to accentuate the critical areas
of gestures, specifically, the regions where hand movements
occur. By leveraging masks, we can accentuate the essen-
tial intricacies of the gestures while excluding background
elements. This strategy has the potential to minimize data
noise and concentrate on the distinct characteristics of ASL
gestures, thereby enhancing the model’s capacity to generalize
and discriminate between various letters. For this purpose,
the acquisition of an image segmentation dataset is necessary.
The dataset we have come across is HGR1 [19], containing
899 images. Initially tailored for recognizing diverse signs
in both Polish and ASL, this dataset can be conveniently
adapted for alternative applications. Comprising images of
hands from various individuals, the dataset encompasses a
range of backgrounds, varying lighting conditions, and diverse
capture angles. It also provides hand segmentation masks. The
images in this dataset showcase different proportions, sizes,
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and resolutions, as they were captured using an assortment of
cameras.

IV. OUR PROPOSED SOLUTION

The realization of this work unfolds in three essential steps,
each contributing to the achievement of our ultimate goal. The
first step involves image mask extraction, where we apply
image processing techniques to isolate hand regions in the
captured images. This step serves to reduce noise and focus
on the relevant parts for gesture classification. The second step
is the training of the letter prediction model. We utilized the
model presented in the existing project, to train our model
on tailored datasets. This step is crucial to harness the visual
features of hand gestures and enable accurate classification of
ASL letters. The third and final step of our work involves
the use of an explainable AI model to validate our prediction
model. Explainability is a crucial feature to ensure users’
confidence and acceptance of AI systems. Figure 1 presents
the architecture of our solution.

A. Segmentation Model

A pivotal step for accurate gesture recognition is hand
segmentation. Hand segmentation is a highly active research
domain [20]. The primary goal of hand segmentation is to
identify the pixels composing the hands in an image and
represent them as a mask. Once the mask is obtained, various
analyses can be performed, such as separating the hands from
the background or further analysis [21]. Numerous methods
exist for performing hand segmentation, including skin color
analysis, machine learning-based modeling, and more [22].
In this work, we use U-NET, a deep learning-based method
widely acclaimed for image segmentation, particularly in
medical imagery [23]. The name “U-NE” is inspired by its
architectural shape, resembling the letter “U”. This unique
design involves connecting the outputs of corresponding layers
both above and below the U shape. Essentially, these outputs
directly link to other filters in the convolutional layers, forming
a U-shaped structure.

To maintain consistent training image dimensions, we stan-
dardize the image resolution across all training data. Following
this, we split the dataset into training and testing segments.
Moving forward, we employ data augmentation using rotated
images, ensuring caution in transformations, particularly con-
cerning skin color. We refrain from altering the color and
avoid excessive deformation, recognizing the distinctive shape
of hands that our model must recognize. Applying the U-NET
method to our dataset, we extract masks from the images to
train the gesture recognition model.

B. Model for Gesture Recognition

After extracting the image masks using the U-Net model,
we will now train two classification models using the existing
project’s classification model presented in Section III-B. As
shown in Figure 1, each model will be trained on a different
dataset. The first model will be trained on the image masks,
while the second will be trained on RGB images.

The results obtained after training the two models have
demonstrated exceptional performance in accurately catego-
rizing a wide variety of hand gesture images. The model
evaluation revealed high and consistent precision, recall, and
F1 scores for multiple classes. Specifically, precision scores
ranged from 0.81 to 0.99 for each class, reflecting the model’s
ability to make highly accurate predictions. Similarly, recalls
ranged from 0.86 to 0.99 for each class, highlighting the
models’ ability to identify instances of different classes.

The idea of using two classification models—one on the
image masks and the other on real images—and then combin-
ing their outputs to obtain the exact classification has proven
successful. After training both models, the results are very
satisfactory for both versions. However, there are some differ-
ences between the two models. The model trained on RGB
images demonstrates adeptness in accurately detecting all test
images with high precision, even in scenarios where hand
gestures are similar, effectively identifying the corresponding
letter. On the other hand, the mask-based model occasionally
makes errors, particularly when distinguishing between similar
gestures such as the letters ”A” and ”E.” Figures [2, 3]
illustrate the results of precision, F1-score, and recall for both
models. The diagram for the mask model displays lower results
than the RGB model, primarily attributed to challenges in
detecting similar gestures. To gain insight into how the model
makes decisions and to make a comparison between the two
models, an explanatory model becomes essential for visualiz-
ing image components that influence predictions. Therefore,
the incorporation of an explanatory model is imperative for a
comprehensive understanding.

C. Explanation Model

The explanation model utilized is the Grad-CAM model,
which was integrated into the classification model to validate
the classification outcomes. Grad-CAM aids in comprehending
the image regions that significantly influenced the classifi-
cation decision made by the model. The generation of an
activation map highlights the portions of the image that played
a positive or negative role in shaping the model’s prediction.
Employing the Grad-CAM model in conjunction with the
classification model allows us to visually interpret the regions
of interest leveraged by the model in reaching its classification
verdict. This insight permits verification of whether the model
is focusing on the hand and provides insight into the logic
underpinning specific decisions. The Grad-CAM algorithm
yields a heatmap as its output, accentuating the image regions
that contributed most to the classification prediction of the
target class by the model. The heatmap assigns weights to
different regions of the image, thereby indicating their relative
importance. The coloring scheme employed in the heatmap
varies based on the chosen color map. The “JET” color map
is utilized in this work, commonly employed for heatmap visu-
alization. In this color map, warmer regions are represented by
vivid colors like red, orange, and yellow, while cooler regions
are depicted by shades of blue and violet. Consequently, within
the heatmap, regions tinted in red, orange, and yellow signify
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Figure 1. The adapted solution

Figure 2. Result RGB Classification Model Figure 3. Result Mask Classification Model

the most pivotal areas governing predictions for the target
class. Conversely, regions shaded in blue and violet denote
areas of lesser significance. We will apply Grad-CAM to both
classification models to understand the regions on which the
model relies to make its decision. To do this, we will choose a
test image. The selected image contains the letter “A” Figure
4. The models successfully detected the image’s class. Now,
we will determine which region of the image enabled this
decision. Let’s start with the model trained on RGB images.
As illustrated in Figure 5, the Grad-CAM model can identify
the hand throughout the entire image. This indicates that
the predictions of the classification model, trained on RGB
images, rely on information from the entire image. When
applying Grad-CAM to the model trained on image masks (see
Figure 6), the results depicted in Figure 7 reveal that the region

primarily influencing the decision is the hand. Consequently,
the model primarily focuses on the hand to make predictions,
which is logical given that the image only contains the hand
mask. Therefore, we can conclude that the model trained with
mask images is more effective than the RGB model because
the predictions are based on the hand, which is the most
important feature.

V. CONCLUSION

This article aims to explore the potential of enhancing SLR
through the application of advanced AI techniques. Focusing
on hand image segmentation and gesture classification, we
enhance existing projects that employ approaches, such as
the VGG19 model, and we add the CNN U-NET method to
achieve promising results.
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Figure 4. Test image, RGB
Classification Model

Figure 5. Grad-CAM Visu-
alization, RGB Model

Figure 6. Mask image, mask
Classification Model

Figure 7. Grad-CAM Visu-
alization, mask Model

The examination of previous work in the field of ges-
ture recognition has underscored the importance of robust
and explainable models for effective and socially relevant
applications. By integrating explainability methods, such as
the Grad-CAM model, we were able to not only achieve
accurate classifications but also comprehend the areas of
interest guiding these classifications. Despite the successes en-
countered, it is essential to acknowledge the limitations of our
approach, particularly in terms of data diversity and the risks of
overfitting. These challenges pave the way for future research
aimed at improving performance, expanding the scope of the
approach to more diverse populations, and exploring other data
modalities. Additionally, the use of other explainable models
to enhance the explanation and interpretation of the project
is recommended. This work highlights the potential of AI
to enhance communication and accessibility for individuals
using ASL. We hope that our findings will encourage other
researchers to continue in this direction, developing more
sophisticated approaches, exploring new data modalities, and
contributing to broader inclusion and a better understanding
of gestures in society.

Ultimately, this research demonstrates the positive impact
that emerging technologies, combined with a deep under-
standing of the field, can have on individuals’ daily lives
and interactions. By combining the power of AI with the
intricacies of gesture recognition, we aspire to have laid
the foundation for improved communication and increased
inclusion for individuals using sign language.
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