
Cloud Capacity Reservation for Optimal Service
Deployment

Iñigo San Aniceto, Rafael Moreno-Vozmediano, Ruben S. Montero, Ignacio M. Llorente
Distributed System Architecture Research Group (dsa-research.org)

Dept. de Arquitectura de Computadores y Automática
Universidad Complutense de Madrid, 28040

Madrid, SPAIN
Email: inigosananiceto@pdi.ucm.com, rmoreno@dacya.ucm.es, rubensm@dacya.ucm.es, llorente@dacya.ucm.es

Abstract—Cloud computing is a profound revolution in the
way it offers the computation capability. The Information Tech-
nology organizations do not need to oversize their infrastructure
anymore, potentially reducing the cost of deploying their services.
The main objective now is to reduce the cost of deploying a service
in the cloud. Some research attempts have focus on deploying
one service in multiple clouds, to benefit from different billing
models. In this work, we propose a way to minimize that cost
by using a single cloud provider with an optimal mixture of
reserved and on-demand instances to take advantage of different
billing models within the same provider. We tested this optimal
combination of reserved and on-demand instances with real
world workload traces. The results show a 32% deployment cost
reduction compared to on-demand deployment.

Index Terms—Cloud computing; capacity reservation; resource
provisioning; service deployment; cost optimization

I. INTRODUCTION

Cloud computing takes advantage of workload consolidation
to operate more efficiently the resources and provide a service
at lower cost. This itself is a tremendous advantage and makes
the cloud computing services competitive in terms of prices.
Information Technology (IT) companies used to oversize their
resources to meet peak demands but now they have the option
of using cloud computing [1][2][3][4][5][6][7].

Apart from the typical on-demand instances, current
providers also offer reserved capacity. Although the pric-
ing schemes for this reserved instances vary among cloud
providers, they all offer discounts in the hour rates on one side
and obligations or one-time payments on the other [8]. This
means it is necessary a minimum amount of running hours to
reduce the final price compared to on-demand instances.

In this paper, we present a novel algorithm to cover variable
computation demands with mixed reserved and on-demand
instances with the minimum cost. The idea is to eliminate the
over-provisioning in the reserved instances to use the number
of reserved instances that minimizes the final cost for the IT
companies.

In addition, to avoid the performance degradation of the
system, this novel algorithm estimates the number of instances
that might be required in the next period, and provisions the
instances in advance to hide start-up times. The provisioned
instances are started-up and ready to use and they are a
combination of reserved and on-demand instances.

The algorithm works as follows. In the first stage, the
algorithm has to determine the optimal number of reserved
instances.

The algorithm selects the number of reserved instances to
reduce the cost of service for the IT companies This number
is directly related with the number of running hours each
reserved instance has.

Then the algorithm has to evaluate, for each period, the
optimum number of provisioned instances. If the number of
requested instances is lower than the number of reserved
instances, all the provisioned instances are mapped on reserved
instances. Otherwise, the difference would be fulfilled with on-
demand instances.

To test the algorithm, reservation and provision cost of a
standard instance in Amazon cloud provider [8] and real world
traces from the Grid Workloads Archive are used [9].

The main contributions of this paper are the following:
1) We present an algorithm that minimizes the final cost of

deploying a service in the cloud.
2) We present a model that predicts the optimal number of

reserved instances for each period and use an algorithm
to reserve them.

3) The model also predicts the optimum number of provi-
sioned instances, and make advanced provision of those
instances to hide start-up times.

This paper is organized as follows: Section II presents
the state of the art and the current cloud computing mar-
ket. Section III presents the definition of the problem with
an appropriate statistical definition. Section IV presents the
statistical analysis. Section V presents the reservation and
provisioning algorithm. Section VI presents the improvements
and Section VII presents the conclusions of the work and
future work.

II. CURRENT CLOUD COMPUTING MARKET AND STATE OF
THE ART

Currently, there are different pricing models in the market,
being On-demand, Reservation and Spot the most common
pricing schemes. Although these are the leading pricing con-
figuration groups, there are differences among different cloud
providers.

52

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

• On-demand: Probably, the most common pricing model.
The main idea of this pricing configuration is to pay for
the actual use with no other commitments. Most of the
large providers offer this pricing model: Amazon [8],
GoGrid [10], Rack Space [11] and Cloud Sigma [12]
among others. Although the pricing model is similar in
all the cloud providers, there are some differences.
Amazon, for example, has some preconfigured instances
with a certain amount of RAM, CPU, Storage, etc. For
the following analysis, it is interesting to focus on the
standard instance. It has 1.7GB of RAM, 1 Virtual core
with 1 GHz and 160GB of storage. For this standard
configuration, the price is 0.085$/h in N.Virginia [8].
The situation in RackSpace is similar to the one in
Amazon. There are preconfigured instances with different
amount of RAM and storage and each one has a fixed
price. The most similar configuration to the Amazon
standard instance has 2GB of RAM, and 80 GB of storage
and its price is 0.12$/h [11].
Go Grid also offers preconfigured on-demand instances
for 0.19$/h with 1GB of RAM, 1 CPU with 1GHz, and
50GB of storage [10].
In Elastic Host, the on-demand pricing configuration is
slightly different to the previous ones. There are not pre-
configured instances, instead the instance types are user
defined, and prices for the components are CPU(1GHz)
0.036$/h, RAM (1GB) 0.05$/h, Storage (1GB) 0.20$
/month. Comparing with the Amazon standard instance
the price would be 0.164$/h [13].
In Cloud Sigma, the on-demand pricing configuration
is similar to Elastic Host but with price variability.
The cost of RAM, CPU, Storage, etc. is not a fixed
amount, but it is conditioned by the servers load. The
boundary rates, for each charasteristic, are: CPU (1GHz)
0.0121-0.0504$/h. RAM (1GB) 0.0196-0.0579$/h. With
this prices, an instance similar to the Amazon standard
instance would cost 0.045-0.252$/h [12].

• Reserved: It is also a common pricing model. In this
price configuration, there are always long-term commit-
ments on one side, and discounts in the hour rates on the
other. It is offered by most of the big cloud providers:
Amazon [8], Rack Space [11], GoGrid [10] and Cloud
Sigma [12] among others. The different providers also
present some differences.
Amazon establishes a one-time payment for the reserva-
tion. For each standard instance it is 227.5$ for 1 year
reservation and 350$ for 3 year reservation. After the one-
time payment, the discounts in hourly rates are fixed for
each instance type, and they are approximately of 60%-
65% depending on the type. For the standard instance the
price reduces from 0.085$/h to just 0.03$/h without any
compromise of use, i.e., the hourly price is charged only
if the instances are running [8].
Elastic Host uses a similar price configuration. It estab-
lishes one-time payment for reservation as Amazon does.
The prices for the subscription are 77.76$ per month or

777.60$ per year, after the payment the instance prices
have a fixed 50% discount regardless of the subscription
period[13].
In Cloud Sigma, the situation is different. It offers differ-
ent discounts depending on the reservation period going
from 3% for 3 months up to 45% for a 3 year reservation
period, after the reservation is made the user has to pay
for each instance as running [12].
In Go Grid, the reserved price configuration is also
slightly difference from the previous ones. It requires a
monthly payment to acquire a certain quantity of usage
hours. For the smallest instance, this payment is of
199$/month acquiring 2500 RAM hours. Considering 1
month has 744h a instance with 3.35GB of RAM can be
used 100% of the time [10].

• Spot instances: This price configuration is not available
in many cloud providers. The main idea of this pricing
configuration is to set the maximum rate for the service
hour, called bid price. Depending on the servers load, on
the cloud providers, the spot pricing can change so that
if the price is smaller than the bid price, the user have
set the service will become available, on the other hand,
a higher spot price makes the service unavailable. One of
the few cloud providers that offer this price configuration
is Amazon[8] .

These differences in the pricing models have lead to the
creation of multiple cloud brokers. This cloud brokers try to
minimize the cost of deploying the cloud service choosing the
best price model across different cloud providers. There are
many commercial solutions: RightScale, SpotCloud, Kavoo or
CloudSwitch among others.

There are also some European projects especially oriented
for Multi-Cloud deployment. Mosaic [14] is one of them
and offers an open-source cloud API to develop multi-cloud
oriented applications, and Optimis [15] is another that offer
tools to simplify the construction and usage of hybrid clouds.

Finally, there is also some research works in this area:
in [5], Moreno studies with the cost per-job with different
cluster configurations. In the work we present, we also target to
minimize the cost of deploying the cloud service by choosing
the best price models, however, we do not use multiple-clouds;
instead, we use the different price models within the cloud:
on-demand and reserved instances.

For the availability problems that cloud computing might
generate, some studies [16][17] focused on how to avoid
availability problems, the algorithm we present faces the
problem of availability with advanced provisioning based on
load prediction instead of using instance leasing.

In [18], Konstanteli studies the flexible reservation periods
to schedule the workflow and maintain the QoS. In this work,
we have focused on the Amazon cloud provider and this
provider, only offers 1 and 3 year reservation periods. After a
brief study we have conclude that a 3 year reservation period
is too long because the predictions are not accurate enough,
and hence, we have used a 1 year fixed reservation period

53

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

In [19], Gardfjäll studies the credit based regulation of grid
capacity allocation to avoid the performance loss due to the
overuse also known as the ”tragedy of the commons”.

In conclusion, there are several pricing models in the
market, and cloud brokers, take advantage of these differences
to reduce the final prices. However, this produces several prob-
lems such as compatibility across different cloud providers
that researches are trying to solve with some new tools
such as Mosaic or Optimis. In this work, we targeted the
same price reduction for service deployments, but we use the
combination of reserved and on-demand instances in the same
cloud provider. Hence, we have not any compatibility issues
the multi-cloud environments produce.

III. DEFINITION OF THE PROBLEM

The goal of the IT companies is to reduce the cost of
deploying their service in the cloud provider without any
performance degradation.

To achieve that, we propose a prediction model based on
the historical data. With this prediction, the IT companies will
use a mixture of reserved and on-demand instances to cover
their demand.

This model estimates the number of reserved instances
that minimizes the final cost, and the number of provisioned
instances that fulfils the service requirements in 99.95% of
cases. With this advance provisioning, it hides the start-up
time (2-5 minutes [1]).

In order to create the prediction model, we obtain the cost
of the cloud services and define the statistic sample space.

A. Costs
First we obtain the provisioning and reservation costs. For

this analysis, we use the price configuration of a standard
instance in the Amazon cloud provider [20].

Hence, the reservation cost of an instance is 227.5$/year
with a provisioning cost of 0.03$/h, and on-demand instances
have just a 0.085$/h provisioning cost [8].

With the previous values, we calculate the cost of the service
for the IT companies. This cost will have two parts:

1) The first is the cost of reserving instances in the cloud
provider

Cost1(t) = Pres⇥ [Res(t)�Res(t� 1)] (1)

where Pres = 227.5$ is the reservation cost and Res(t)
is the number of reserved instances at t [8].

2) The second is the cost of provisioning the instances.
The cost of provisioning the instances will be Pc1 =
0.03$/h for reserved instances and Pc2 = 0.085$/h for
on-demand instances [8].

Cost2(t) = (R(t)⇥ Pc1) (2)

Cost2(t) = (Res(t)⇥Pc1) + ((R(t)�Res(t))⇥Pc2)
(3)

where R(t), is the number of requested instances at t.
The total cost will be

Algorithm 1 Instance mapping algorithm for cost calculation
if R(t)  Res(t) then

All the requested instances can be mapped to reserved
instances and equation 2 is used.

else
On-demand instances are necessary and equation 3 is
used.

end if

Cost1year =
1yearX

t=0

[Cost1(t) + Cost2(t)] (4)

This is the equation that should be minimized by optimizing
the resource reservation and provisioning of instances.

B. Definition of the Sample Space
In this work, we present a prediction tool. This prediction

tool is based in a statistical analysis of the problem and hence
it needs a proper definition of the sample space.

For now on, an instance will be treated as an indivisible
unit being the total number of requested instances a discrete
number. With this assumption the sample space will be finite
and numerable. ⌦ = (0, 1, ..., L) where L is the maximum
number of instances the service might need.

The algorithm provision a certain number of instances
dividing the sample space in two relevant subsets representing
mutually exclusive events.

The first A ⇢ ⌦ represents the case in which the necessary
instances are less than the provisioned instances and, hence,
there is no performance degradation. The second B ⇢ ⌦
where the IT companies need more instances than the ones
the algorithm has provisioned and, hence, a performance
degradation due to start-up time may occur [1]. Obviously
the sample space satisfies A\B = � and A[B = ⌦ creating
a complete event system.

IV. STATISTICAL ANALYSIS

As stated in the previous section, the goal of this work is
to reduce the cost of deploying a service in the cloud provider
without any performance degradation. The first step to get that
reduction is to develop a statistical analysis of the workload
of the IT companies. In this section, we first introduce the
data used for the statistical analysis and then we describe the
statistical analysis.

A. Trace data
We get the trace used for the study from the Grid Workload

Archive [9]. In this website, different workload traces of
different grids around the world are available.

These traces contain historical information about JobID,
SubmitTime, WaitTime, RunTime, Number of Processors, Av-
erage instances Time Used, Used Memory, Requested Number
of Processors, Requested Time, Requested Memory, Status,
among other information.

54

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

Fig. 1. Number of requested and new instances in 10 min samples from
Nordugrid

From this data, we can easily obtain the number of new
requested instances at each moment:

N(t) =
X

P

i

(S
t

= t) 8JobID (5)

where N(t) are the new requested instances, P
i

is the number
of processors of the job i and S

t

the submit time.
We can also calculate the number of terminated instances

as:

F (t) =
X

P

i

((S
t

+W

t

+D

t

) = t) 8JobID (6)

where F(t) are the instances that are not requested any more,
W

t

is the wait time and D

t

is the demanded running time. The
total number of requested instances at each moment is:

R(t) = R(t� 1) +N(t)� F (t) 8t (7)

To evaluate the implementation of the novel algorithm
we use a real world trace from NorduGrid [21]. This trace
represents the load of the NorduGrid grid for nearly 3 years.
With this trace, and using the equations (5) and (7) we get the
number of requested instances R(t) and the number of new
instances N(t) every 10 min. Figure 1 shows this values for
the 3 year period.

This information is the base for the statistical analysis.

B. Statistical data model
To calculate the optimum number of reserved and provi-

sioned instances, it is necessary to know the average usage of
each instance. The instance reservation period is 1 year; hence,
we use the normal distribution of the requested instances over
1-year to obtain the average utilization [22].

f

x

(R(t)) =
1p
2⇡�2

⇥ e

� 1
2�2 (R(t)�µ)2

, R(t)✏[0, ...L] (8)

Where µ is the average requested instances, � is the variance
of requested instances and R(t) is the number of requested
instances that can be any number from 0 to L.

However, this is not all the statistical information we have.
The number of new instances can be statistically modelled as

a Poison distribution if we assume that the number of users is
large [22].

We model the number of new instances in the period �t

with:

p

t

(N(t)) =
(�t)N(t)

N(t)!
(9)

where N(t) is the number of new instances at the moment
and �t is the expected number of new instances in provisioning
interval.

This last equation predicts the required number of provi-
sioned instances. The provisioned instances are the instances
that are started-up and ready to use. If the number of requested
instances is lower than the number of reserved instances,
all the provisioned instances will be mapped on reserved
instances. Otherwise, the difference would be fulfilled with
on-demand instances.

The reason to calculate the expected new instances for
the following provisioning interval, and provision that value
is to hide the performance degradation that the 2-5 minute
launching time [1] might cause.

V. RESERVATION AND PROVISIONING ALGORITHM

In the previous section, a statistical analysis of the histor-
ical data has been presented. Using that statistical analysis,
we present two algorithms to determine the reservation and
provisioning values. These algorithms use the historical load
data of the IT companies and make the load predictions from
different time periods.

1) With the long-term load prediction, the algorithm
chooses the optimum number of reserved instances to
reduce the cost of the service. The reason to use a long-
term prediction is that reserved instances have 1-year
utilization.

2) With the short-term load prediction, the algorithm
chooses the optimal number of provisioned resources
dynamically to hide launching delays. The algorithm
start-up the instances the IT companies might need to
offer the service to his clients.

A. Reserved Instances
In this section, we present a solution of the reservation

problem.
As previously mentioned, due to the importance Amazon

has on the cloud computing market, this is the cloud provider
that will be used for the study.

We use the expected Differential Reservation Cost (DRM)
to determine the reserved instances. Any time the expected
differential reservation cost is negative, statistically reserving a
new instance will reduce the final cost of deploying the service.
On the other hand, if the expected differential reservation cost
is positive, reserving a new instance will probably increase the
final cost of deploying the service.

The expected DRC represents the difference in the expected
statistical value of the cost of reserving one more instance in
the cloud provider.

55

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

In this section, we explain all the steps given to obtain the
optimum number of reserved instances. First, we introduce
the expected differential reservation cost and then based on
the statistical analysis, we develop a reservation algorithm that
minimizes the cost.

1) Expected differential reservation cost: Suppose the IT
company has already reserved n instances in the cloud
provider. The IT company will provision the following in-
stance only if more than n instances are provisioned.

From the statistics obtained from the users historical work-
load, the probability of provisioning more than n instances
⇢

>n

can be obtained.
The expected differential reservation cost is:

�P

R:n+1 = Pres� (Res

hours

⇥�P

c

⇥ ⇢

>n

) (10)

where �Pc = Pc2�Pc1 is the difference in the provision-
ing cost between reserved and on-demand instances, ⇢

>n

is the
probability of having more than n provisioned instances, and
Res

hours

is the period (in hours) that the instance is reserved.
Let us see this with one example: The cost of a standard

instance in Amazon is 0.085$/h for on-demand and 0.03$/h
for reserved instances. The instances are reserved for 1 year
(8760h) paying 227.5$ for this reservation. Imagine that the
provisioned instances follow a normal distribution with a mean
of 100 and a variance of 10.

An iteration starts checking the first machine to see if is
worthwhile reserving based on the expected DRC. In order
to make the example concise, we show only the two key
iterations:

• Iteration n

�1 to 100:

�P

R:n ⌧ 0 n = 1, 2, ...100 (11)

At the end of the reservation period the IT company ex-
pects to pay a lot less in each iteration. In this experiment,
the IT company pays a total of 74192.3$ with no reserved
machines and 50929.7$ with 100 reserved machines.

• Iteration n

� 101: The DRC off adding the 101-th reserved
machine is:

�P

R:101 = 227.5$� (8760h⇥ (0.085$/h� 0.03$/h)

⇥(1� normcdf(100, 100, 10))) = �13.4$
(12)

where normcdf is the normal cumulative distribution
function with the values: test value, mean and variance.
At the end of the reservation period the IT company
expects to pay 13.4$ less to the cloud provider than
reserving 100 machines. In this experiment, it pays a total
of 50923.8$ or 5.9$ less than with 100 reserved machines.
Hence, it is worthwhile to reserve the 101-th machine.

• Iteration n

� 102: The DRC off adding the 102-th reserved
machine is:

�P

R:102 = 227.5$� (8760h⇥ (0.085$/h� 0.03$/h)

⇥(1� normcdf(101, 100, 10))) = +5.8$
(13)

Fig. 2. Total cost in a year vs the number of reserved instances

This time the IT company expects to pay more to the
cloud provider because the expected DRC of the 102-
th machine is positive. In this experiment it pays a
total of 50938$ or 14.2$ more than with 101 reserved
reserving 102 machines. The 102 instance will not reach
the minimum number of hours that make the reservation
worthwhile. Hence, the reservation cost will be higher
than the discount obtained from the price difference.

The algorithm conclude that reserving 101 machines is the
most economical option. The Figure 2 shows the final cost of
the service for the IT company in this experiment after a year
with different number of reserved instances.

To make the algorithm faster, the implemented method does
not calculate the expected DRC. The method just gets the last
reserved instance with a negative expected DRC.

To obtain that number of reserved instances, the method
uses the limiting percentage of utilization that provide a
negative value of the DRC.

2) Reservation Algorithm: Applying the previous statistics
and the utilization value that makes the expected DRC negative
we have that:

F

x

(Res(t)) =

Z 1

Res(t)

1p
2⇡�(t)2

e

� 1
2�(t)2

(R(t)�µ(t))2
dR(t) =

⇢

min

res

(14)
where Res(t) is the number of reserved instances, µ is the

mean of R(t) in the last year, � is the variance of R(t) in the
last year and ⇢

min

res

is the minimum load to make the expected
DRC negative which in Amazon is 47% [8].

This equation does not get the expected DRC of each
instance, however, it calculates which is the last instance that
has a negative expected DRC.

In Amazon, we can only change Res(t) to a higher value
and it is necessary to wait one year to reduce. Hence, the

56

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

following algorithm is used to determine the Res(t) at each
moment.

Algorithm 2 Instance reservation algorithm
if Res(t) � Res(t� 1) then

Res(t)
else {Res(t) < Res(t� 1) and No reservation expires}

Res(t) = Res(t� 1)
else {Res(t) < Res(t� 1) and n reservations expire}

if Res(t)  (Res(t� 1)� n) then
Res(t)� n

else
Res(t)

end if
end if

In the next section, we present the results for reserved and
provisioned instances.

B. Provisioned Instances
In this section, we present a solution for the provisioning

problem. This problem has a direct relationship with the
possible performance degradation due to the 2-5 minute launch
time of new instances [1]. In this paper, we set this parameter
to 0.05% because this percentage will produce a negligible
performance degradation (the new provisioned instances will
be ready to use in 99.95% of the time).

With the Poisson distribution represented in (9), the algo-
rithm sets the value of provisioned instances P as

P

t

(P (t)�R(t� 1)) =
1X

P2(t)�R(t)

(�t)N (t)

N(t)!
= ⇢

opt

up

(15)

where P (t) � R(t � 1), is the difference between the
requested and the provisioned instances. The reason to use this
difference is that this statistical distribution calculates expected
new instances at t.

C. Results
The optimum algorithm would provision in advance ex-

actly the same instances that the ones requested and reserve
instances in advance, only with more than 47% of load, as
explained in the Section V-A. However, this is impossible
because it means that the IT company knows his computation
needs in advance.

Knowing which is the optimum result, the closer the algo-
rithm is to this result the better it is. A good algorithm is the
one that provision close to the requested instances, but always
provisioning more than the requested instances, because if it
provisions less a possible performance degradation occurs.

Figure 3 shows the number of provisioned and reserved
instances compared to the number of requested instances at
each moment.

In Figure 4, the percentage of time in which under-
provisioning occur is shown. This is a way to show the

Fig. 3. Provisioning and reserved instances vs requested instances

Fig. 4. Percentage of underprovisioning in each provisioning period

performance loss that occur in the system in a standardized
way. The mean time of under-provisioning is 0,05%. This was
the goal when defining the provisioning value and hence, the
prediction model is accurate.

One of the most influential factors is the cost of the service
for the user. This cost is the one that would determine if the
service is competitive or if another solution is preferable.

To show this factor the cost for the user of using this
algorithm has been recorded and compared with Amazons on-
demand instances. Figure 5 shows the cost for the service user
of using the broker.

At the end of the period the IT company have spent 5x105
dollars or 32% less in cloud computing services.

VI. IMPROVEMENTS

In this section, we present the improvements of the basic
prediction model and test the performances of each improve-

57

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

Fig. 5. Cost of the service for the user.

ment.

A. Reconfiguration based on under-provisioning

If an under-provisioning occur, the actual provisioned in-
stances and requested instances should be analysed to see if
there should be a change in the provisioned instances. This is
extremely crucial to avoid performance degradation.

Even if the prediction model forecasts the necessary provi-
sioned instances for a certain probability of under-provisioning
there may be a change in the user patterns at a certain
moment. If this change in the patterns creates continuous
under-provisioning the performance of the service drops [23].
When under-provisioning occur, the algorithm recomputes the
number of provisioned instances as the number of requested
instances at the moment plus the number of expected new
instances in the prediction interval.

B. Close control loop

The second improvement was focused in adjusting the
statistic and prediction intervals to determine which was the
one with the smaller prediction error in the expected under-
provision value.

The statistic interval is the period in which the algorithm
apply the Poisson distribution to predict the future values. The
prediction interval is the period in which this future values are
predicted.

The results presented in Table I represent the average error
in the prediction of the algorithm at the end of the trace.

What we see here is that the error is not the same for
different statistic and prediction ranges. If the predictions were
perfect, they all should present the same error value and this
value should be zero.

|⇢opt
up

� ⇢

alg

| = 0 (16)

TABLE I
MEAN ERROR OF THE PREDICTOR AT THE END OF THE TRACE

CONSIDERING DIFFERENT STATISTIC AND PREDICTION RANGES

Statistics 1 day 2 days 3 days 1 week 2 weeks 3 weeks
Prediction

3 hours 0.025 0.024 0.023 0.022 0.019 0.019
6 hours 0.023 0.024 0.02 0.02 0.019 0.018
9 hours 0.024 0.019 0.019 0.019 0.017 0.013
12 hours 0.02 0.013 0.014 0.012 0.014 0.012
18 hours 0.025 0.021 0.021 0.017 0.014 0.007
24 hours 0.013 0.02 0.011 0.02 0.012 0.002

Fig. 6. Close control loop that sets optimum ranges

where ⇢

opt

up

is the probability of under-provisioning for
which the algorithm is designed, and ⇢

alg

the real under-
provisioning it achieves.

In this experiment, it is clear that the bigger the statistics
and prediction ranges we take, the smaller the error is, but
this can not be applied in all cases. To solve that situation, we
present a tool that automatically set the optimum historic and
prediction range.

The algorithm first select many different statistic and pre-
diction ranges in a near past. With the results, it compares
the errors, and it applies the statistic and prediction range that
generates the smallest error for the next prediction .

With this method, we get the expected probability of under-
provision with the best accuracy.

This is useful because the number of requested instances
may exhibit a variance in the statistics with the time. Figure
6 shows a schematic view of the close control loop that the
algorithm implements to select the best ranges.

The algorithm used to implement this control loop is ex-
plained in the following lines.

Algorithm 3 Close control loop algorithm
for i = 1 : Statistic ranges do

for j = 1 : Prediction ranges do
| ⇢

opt

� ⇢

real

|= error

ij

if error
ij

< errormin then
errormin = error

ij

! best

ij

end if
end for

end for

58

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

Applying this solution to the trace the average under-
provisioning obtained at the end of the trace is remarkably
close to 0,05%.

VII. CONCLUSION AND FUTURE WORK

This work studies the reservation and provisioning val-
ues that minimize the cloud computing service cost with a
controlled performance degradation. To reduce the cost, the
algorithm uses mixed on-demand and reserved instances a
single cloud provider.

We tested the algorithm that reserve and provision dynami-
cally with real world traces obtained from the Grid Workload
Archive, and compared the result after different improvements.
The results show that the IT companies reduce their cost
of service deployment by up to 32% with less than 0.05%
performance degradation.

As future work, we will consider flexible reservation periods
with different discounts. As well as, other kinds of workloads
to determine, how the statistic models change and how are
results altered.

VIII. ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Unions Seventh Framework Programme
([FP7/2007-2013]) under grant agreement no 261552 (Stratus-
Lab); from Consejerı́a de Educación of Comunidad de Madrid,
Fondo Europeo de Desarrollo Regional, and Fondo Social
Europeo through MEDIANET Research Program S2009/TIC-
1468; and from Ministerio de Ciencia e Innovación of Spain
through research grant TIN2009-07146.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, and I. Stoica, “Above the clouds: A
berkeley view of cloud computing,” EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2009-28, Tech. Rep., 2009.

[2] K. Keahey, M. Tsugawa, A. Matsunaga, and J. Fortes, “Sky computing,”
Internet Computing, IEEE, pp. 43 –51, sept 2009.

[3] E. Walker, “The real cost of a cpu hour,” University of Texas at Austin,
Tech. Rep., April 2009.

[4] M. D. Assunção, A. D. Costanzo, and R. Buyya, “Evaluating the cost-
benefit of using cloud computing to extend the capacity of clusters,”
Proceedings of the 18th ACM international symposium on High Perfor-
mance Distributed Computing, pp. 141–150, 2009.

[5] R. Moreno-Vozmediano, R. S. Montero, and I. M. Llorente, “Multi-cloud
deployment of computing clusters for loosely-coupled mtc applications,”
Transactions on Parallel and Distributed Systems, 2010.

[6] M. de Assunção, A. di Costanzo, and R. Buyya, “A cost-benefit analysis
of using cloud computing to extend the capacity of clusters,” Cluster
Computing, Jan 2010.

[7] R. Harms and M. Yamrtino, “EU Public Sector Cloud Economics,”
Microsoft, Tech. Rep., 2011.

[8] “Amazon pricing web page, http://aws.amazon.com/ec2/pricing,” May
2011. [Online]. Available: http://aws.amazon.com/ec2/pricing

[9] “The grid workload archieve web page, http://gwa.ewi.tudelft.nl/
pmwiki/pmwiki.php?n=Main.Home,” May 2011. [Online]. Available:
http://gwa.ewi.tudelft.nl/pmwiki/pmwiki.php?n=Main.Home

[10] “Gogrid pricing web page, http://www.gogrid.com/cloud-hosting/
cloud-hosting-pricing.php,” May 2011. [Online]. Available: http:
//www.gogrid.com/cloud-hosting/cloud-hosting-pricing.php

[11] “Rackspace pricing web page, http://www.rackspacecloud.com/
cloud\ hosting\ products/servers/pricing/,” May 2011. [Online].
Available: http://www.rackspacecloud.com/cloud\ hosting\ products/
servers/pricing/

[12] “Cloud sigma pricing web page, http://www.cloudsigma.com/en/
pricing/price-schedules,” May 2011. [Online]. Available: http://www.
cloudsigma.com/en/pricing/price-schedules

[13] “Elastichost pricing web page, http://www.elastichosts.com/
cloud-hosting/pricing,” May 2011. [Online]. Available: http:
//www.elastichosts.com/cloud-hosting/pricing

[14] M. Armbrust, A. Fox, R. Griffith, and A. Joseph, “mOSAIC,” European
Commission: Information Society and Media, Tech. Rep., May 2010.
[Online]. Available: www.mosaic-cloud.eu

[15] “Optimis home page, http://www.optimis-project.eu/content/
welcome-optimis,” May 2011. [Online]. Available: http://www.
optimis-project.eu/content/welcome-optimis

[16] B. Sotomayor, “A resource management model for vm-based virtual
workspaces,” Master’s thesis, The University of Chicago, 2007.

[17] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster, “Capacity
leasing in cloud systems using the opennebula engine,” Workshop on
Cloud Computing and its Applications, October 2008.

[18] K. Konstanteli, D. Kyriazis, T. Varvarigou, T. Cucinotta, and G. Anastasi,
“Real-Time Guarantees in Flexible Advance Reservations,” in Computer
Software and Applications Conference, 2009. COMPSAC ’09. 33rd
Annual IEEE International, 2009, pp. 67–72.

[19] P. Gardfjäll, E. Elmroth, L. Johnsson, O. Mulmo, and T. Sandholm,
“Scalable grid-wide capacity allocation with the swegrid accounting
system (sgas),” Concurr. Comput. : Pract. Exper., vol. 20, pp.
2089–2122, December 2008. [Online]. Available: http://portal.acm.org/
citation.cfm?id=1458640.1458641

[20] “Amazon instances web page, http://aws.amazon.com/ec2/
instance-types/,” May 2011. [Online]. Available: http://aws.amazon.
com/ec2/instance-types/

[21] “Nordugrid trace web page, http://gwa.ewi.tudelft.nl/pmwiki/reports/
gwa-t-3/trace\ analysis\ report.html,” May 2011. [Online]. Avail-
able: http://gwa.ewi.tudelft.nl/pmwiki/reports/gwa-t-3/trace\ analysis\
report.html

[22] G. Zhao, J. Liu, Y. Tang, W. Sun, F. Zhang, X. Ye, and N. Tang, “Cloud
computing: A statistics aspect of users,” Cloud Computing, pp. 347–358,
2009.

[23] V. Machiraju, M. Sayal, A. V. Moorsel, and F. Casati, “Automated
sla monitoring for web services,” IEEE International Symposium on
Integrated Network Management, pp. 28–41, 2002.

59

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

