
On-demand Data Integration On the Cloud

Mahmoud Barhamgi
1
, Parisa Ghodous

2
, Djamal Benslimane

3

Claude Bernard University (Lyon1)

69622 Villeurbanne, France
1Mahmoud.barhamgi@liris.cnrs.fr

2Parisa.Ghodous@liris.cnrs.fr
3Djamal.benslimane@liris.cnrs.fr

Abstract— On-demand data integration is among the key

challenges in Cloud Computing. In this paper, we present an

ontology-based framework for describing and integrating data

on the fly to answer transient business needs. We provide a

semantic modeling for cloud’s data services. The proposed

modeling makes it possible to automatically resolve the

different types of data heterogeneity that would arise when

data from heterogeneous and autonomous providers need to be

combined together to answer the business’s data needs. We

validate our approach with a prototype.

The main contribution of this paper is an efficient on-demand
integration system for the clouds.

Keywords— On-demand data integration; Ontologies;

Services.

I. INTRODUCTION

Cloud computing has recently emerged as a new

paradigm for hosting and delivering services over the

Internet. Cloud computing is attractive to business owners

as it eliminates the requirement for users to plan ahead for

provisioning, and allows enterprises to start from the small

and increase resources only when there is a rise in service

demand. However, despite the significant benefits offered

by cloud computing, the current technologies are not mature
enough to realize its full potential. Many key challenges in

this domain need to be addressed and solved. Data

management and integration is among the key challenges

that will keep receiving a particular attention from the

research community over the coming years [6] [8] [14]. The

Data-as-a-Service concept has been introduced in recent

year as first step to virtualize access to data sources in

clouds and SOA architectures [2][3][5][12]. A DaaS (Data-

as-a-Service) service provides a simplified, integrated view

of real-time, high-quality information about a specific

business entity, such as a Customer or Product. The

information that it provides may come from a diverse set of
information resources, including operational systems,

operational data stores, data warehouses, content

repositories, collaboration stores, and even streaming

sources in advanced cases.

Even though the introduction of DaaS services has

allowed to shield the applications developers from having to

directly interact with the various data sources that give

access to business objects (i.e., customers, orders, invoices,

etc.) and enabled them to focus on the business logic only,

most of the time the business needs require the combination

of multiple DaaS services from different service providers

[13]. For instance, let us consider the following query:
“what are the driving directions for a facility of a given type

(e.g., Restaurant, Theater, etc.) in a given city?” -this is a

typical application of Google maps maps.google.com. Let

us assume that we have the following two DaaS services: S1

returns the addresses of facilities of a given type in a given

city; S2 returns the driving directions between two given

addresses. The execution of the above mentioned query

involves the composition of S1 and S2 services. However,

DaaS services composition is a hard task that may involve

many data integration challenges. First, the semantics of

DaaS services needs to be formally defined to automate

their selection. The standardized service description
languages (e.g., WSDL [17]) do not provide means for

defining the services’ semantics. Second, services may

define different data structures for their manipulated data

entities. For instance, the same piece of data such as

“Address” may be represented differently by different DaaS

services; i.e., the same data item has different XML

structures. Structural data heterogeneities need to be

addressed to allow for the automatic composition of DaaS

services.

In this paper, we present an approach to compose

cloud’s DaaS services on the fly for the purpose of
answering on-demand data integration needs. In the

proposed approach, the semantics of DaaS services are

defined using domain ontologies. This allows for

automating their selection and composition and makes it

possible to resolve the schematic data heterogeneities (a.k.a.

structural data heterogeneities) of data items exchanged

among heterogeneous DaaS services. We present also a

system that exploits the proposed semantic modeling to

compose DaaS services.

181

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

Semantic Data

Integration

Annotating Service

description files with

views over domain

ontologies

Composition

Query

(SPARQL)

Interface to the

Composition /

Results

Proprietary

Data

Sources

Sa

Sb Si

Sk

Sj

DB

Service

Registry

WSDL-S

Files

Cloud DaaS

Services

SOAP Messages

DBDB

SfSn

Client

RDFS Domain

ontology

RDF Views

Interactive query

formulator

RDFS Domain

ontology

Service

Locator

Composition

Plan Generator

Execution

Engine

RDF Query

Rewriter

UP Cast/Down Cast

messages Transformer

Figure 1: An overview of the proposed declarative approach to cloud services composition

The rest of this paper is organized as follows. In

Section 2, we describe our framework for on demand data

integration. In Section 3, we present our modeling to cloud

DaaS services and users’ queries. In Section 4, we

showcase through an example how data integration queries

are resolved by query rewriting and DaaS service

composition. In Section 5, we overview related work. We

provide concluding remarks in Section 6.

II. A DECLARATIVE APPROACH TO COMPOSE CLOUD

DAAS SERVICES

In this section, we present a declarative framework for

composing cloud DaaS services that addresses the

challenges discussed earlier in the introduction. We show

the different phases involved in DaaS services composition,

starting from the service modeling to the generation of the

final composition that will be returned to users.

Figure 1 presents our DaaS service composition

framework. The first step towards the automation of DaaS

services composition is to semantically represent their

capabilities. In our approach, we model DaaS services as
RDF views over domain ontologies. An RDF view uses

concepts and relations whose meanings are formally defined

in domain ontologies to define the semantics of a DaaS

service. The RDF views are then used to annotate the

service description files (e.g., WSDL files, SA-Rest, etc.).
Users (i.e., cloud application developers) in our approach

formulate their composition queries over domain ontology
using the do facto ontology query language SPARQL [18].
Non-savvy users can be assisted in formulating their queries

by the Interactive Query Formulator component.
Based on our proposed modeling to DaaS services (i.e., RDF
views), the well-known query rewriting techniques can be
used to compose them; i.e., our composition system rewrites
the received queries in terms of available DaaS services
using a query rewriting algorithm. For that purpose, we have
devised an efficient RDF-oriented query rewriting algorithm

[1]. The algorithm is implemented by the RDF Query

Rewriter component and exploits the semantic
annotations that we added in the service description files to
select and compose the DaaS services that are relevant to the
query. The composition system will then arrange the selected
services in the composition execution plan (this is carried out

by the Composition Plan Generator component).
The composition plan will be displayed to the users, who can
then invoke the compositions with their inputs. Note that
when service providers define the semantics of their DaaS
services using the RDF views over domain ontologies, they
also provide the mappings between the defined views and the
XML schemas of input and output messages of their

182

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

O:Facility

F

O:address

rdf:type

$t

O
:ty

pe

?n

O
:nam

e

O:Route

R
O:Start_Address

rdf:type

?r

O:route

description

A2

$c2

O
:c

it
y

$b2

O
:bulding

$s2

O
:street

O:Address

O:End_Address

A1

$c1

O
:c

it
y

$b1

O:bulding

$s1

O
:street

O:Address

rdf:type rdf:type

A

$c

O
:c

it
y

?b

O
:bulding

?s

O
:street

O:Address

rdf:type

S1($t,$c,?n,?s,?b) S2($c1,$s1,$b1,$c2,$s2,$b2,?r)

O:Facility

F

O:address

rdf:type

$x

O
:ty

pe

?z

O
:nam

e

O:Route

R
O:Start_Address

rdf:type

?u

O:route

description

A2

$x2

O
:c

it
y

?w2

O
:bulding

?y2

O
:street

O:Address

O:End_Address

A1

$x1

O
:c

it
y

$w1

O:bulding

$y1

O
:street

O:Address

rdf:type rdf:type

(B) Composition Query

(A) DaaS Services

Figure 2: (A) the RDF views of services in the running example; (B) the user mashup query formulated on domain ontologies.

services. The mappings are also attached to the service

description files as annotations and are used by the Up-
Cast/Down-Cast Messages Transformer
component when invoking component services. This is
necessary since the same data item may have different
structures between the ontology and the XML schemas of
Input and Output messages (for instance, a (datatype)
property in the ontology like “NAME” may be represented
by two elements “FirstName” and “LastName” in an Input or
Output XML schema). We detail all of the previous steps in
the subsequent subsections.

III. A SEMANTIC DESCRIPTION FOR DAAS SERVICES AND

COMPOSITION QUERIES

In our approach, we model DaaS services as RDF views

over domain ontologies. An RDF view describes the

semantics of a DaaS service in a declarative way using

concepts and relations whose meanings are formally defined

in domain ontologies. Consider, for example, the services:

S1($t,$c,?n,?s,?b) and S2($c1,$s1,$b1,$c2,$s2,$b2,?r) that we

will use throughout the paper. Inputs are prefixed with “$”

and outputs with “?”. S1 returns the facilities of a given type

“t” (e.g., hospitals, hotels, etc) in a given city “c”. The

service S2 returns the driving directions “r” between two

addresses represented by the cities (“c1” and “c2”), the

streets (“s1” and “s2”) and the buildings (“b1” and “b2”).

These two services can be composed together to look for

facilities of a given type and obtain the driving directions to

them. Figure 2 (Part-A) shows a graphical representation of
the RDF views defined for S1 and S2. The RDF views in

Figure 2 describe the semantics of services from the

ontology point of view, where the blue ovals are concepts in

ontology (e.g., Facility, Address and Route) whereas the

arcs are properties. The defined RDF views are then used to

annotate the service description files (e.g., WSDL files, SA-

Rest, etc). These views define the semantics of services in a

formal way and will be used during the selection and

composition of DaaS services.

In the proposed approach, users (i.e., application

developers) need only to focus on the needed data by

formulating their composition queries over domain
ontologies. They are not required to manually select services

and build the composition plan by mapping the inputs and

outputs of component services to each other and drop code to

resolve data incompatibilities. Figure 2 (Part-B) shows a

graphical representation of the query in the running example.

183

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

We will see in subsequent sections that they are still able to

select the services participating in the resulting composition.

IV. COMPOSING DAAS SERVICES BY QUERY REWRITING

Our proposed composition approach relies on an RDF
query rewriting algorithm (presented in [1]) to resolve the
users’ composition queries. Specifically, users’ queries are
matched against the RDF views of available services. These
RDF views can be retrieved from the services description
files (e.g., WSDL files). In the matching process, our
matching algorithms identify the RDF sub-graphs of the
query that can be covered by individual DaaS services. For
example, as we can see in Table 1, the service S1 covers the
following nodes of the query: F($x,?z), A2($x2,?y2,?w2) and
the object property linking the two address(F,A2). The
service S2 covers the following nodes of the query:
A2($x2,?y2,?w2),R(?d), A1($x1,?y1,?w1) and the object
properties : end_address(R, A2), start_address(R,A1).

Service Covered sub-graphs

S1($x,?z,$x2,?y

2,?w2)

F($x,?z), A2($x2,?y2,?w2),

address(F,A2)

S2($x1,$y1,$w1,$

x2,$y2,$w2, ?u)

A2($x2,?y2,?w2), R(?d),

A1($x1,?y1,?w1),end_address(R,

A2), start_address(R,A1)

Table 1: the query’s sub-graphs that are covered by services in the running

example

If these two services are combined together, the whole

nodes and object properties sets of the query will be

covered. Therefore, our composition algorithm will combine

both of these services and consider the combination as a

rewriting of the query as follows:

Q(?z,?y2,?w2,?u):- S1($x,?z,$x2,?y2,?w2)×

S2($x1,$y1,$w1,$x2,$y2,$w2,?u)

The composition algorithm will then orchestrate the used
DaaS services in the rewriting to produce the composition
execution plan that will be displayed to the user for further
customization (if desired).

Figure 3 (A) shows the interface to the composition
system. Users formulate their composition queries in the
query panel using SPARQL language and submit the query
to the system. The composition system will compose the
DaaS services and present the user with composition plan in
Figure 3 (B), where users can refine the composition by
selecting the desired services among the possible ones and
validate the composition. The composition system will then
present the user with an interface where the users can specify
specific values for the mashup parameters and invoke it.
Figure 3 (A) shows the composition inputs values and the
obtained outputs for the running example.

 V. RELATED WORKS

Since the DaaS services composition research problem is
relatively new, there has been only a small amount of

research work addressing it. In the following, we review the
most prominent ones of these works.

A considerable body of recent work addresses the

problem of composition (or orchestration) of multiple web

services to carry out a particular task, e.g., [15][16]. In

general, that work is targeted more toward workflow-

oriented applications (e.g., the processing steps involved in

fulfilling a purchase order), rather than applications

coordinating data obtained from multiple DaaS services, as
addressed in this paper. Although these approaches have

recognized the importance of automating the composition

process, they have not, as far as we are aware, addressed the

DaaS services.

The Web Service Mediator System WSMED [9] allows

users to mashup data services by defining relational views

on top of them. Users can then query data by formulating

their mashup queries over defined views. Users can also

enhance defined views with primary-key constraints which

can be exploited to optimize the mashups. The main

drawback of the WSMED system is its high reliance on
users; i.e. users are supposed to import the services relevant

to their needs; define views on top of them and enhance the

views with primary key constraints. The latter task requires

from users to have a good understanding of the services’

semantics. In our system, DaaS Web services are modeled

as RDF views over domain ontologies where primary key

constraints are defined explicitly by the concepts’ skolem

functions, thus the discussed Primary key based

optimizations are included by default in our query

processing model.

In other academic mashup systems [4][7][10][11], data
mashup users are required to select the data services

manually (which assumes they are able to understand their

semantics), figure out the execution plan of selected services

(i.e. the services orchestration in the mashup) and connect

them to each other and drop code (in JavaScript) to mediate

between incompatible inputs/outputs of involved services.

This prevents average users from mashing up DaaS services

at large. Our composition system addresses this limitation

by proposing a declarative composition approach, where

users need only to focus on the required data and the system

will find and compose the services for them.

VI. CONCLUSION

In this paper, we presented an approach that caters for

on-demand data integration for cloud business’s data needs.

We presented an ontology-based semantic modeling for

cloud DaaS services. The proposed modeling makes it

possible to automatically combine heterogeneous DaaS

services and resolve the different types of data heterogeneity

that would arise when data needs to be exchanged between

composed services. We also validated our approach with a

prototype. As a future work, we intend to contextual data

heterogeneities between composed services (i.e., when

composed services have different interpretation contexts for
the data they exchange).

184

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

(Figure 3-A): The Mashup Interface: users type their mashup queries in the query panel, they will be presented then with the interface “Mashup Inputs”
that is used to specify the values of input parameters to execute the mashup

(Figure-3-B): The Mashup Customization Interface MCI: the MCI allows users to select the desired services among the possible ones.

185

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

REFERENCES

[1] Mahmoud Barhamgi, Djamal Benslimane, and Brahim Medjahed, "A

Query Rewriting Approach for Web Service Composition," EEE

Transactions on Services Computing (TSC), pp. 206-222, 2010.

http://www.computer.org/portal/web/csdl/doi/10.1109/TSC.2010.4

[2] Michael J. Carey, "Data delivery in a service-oriented world: the BEA

aquaLogic data services platform.," in SIGMOD Conference, 2006,

pp. 695-705.

[3] Asit Dan, Robert Johnson, and Ali Arsanjani, "Information as a

Service: Modeling and Realization," in International Conference on

Software Engineering (Workshop on Systems Development in SOA

Environments), 2007, pp. 2-10.

[4] Hazem Elmeleegy, Anca Ivan, Rama Akkiraju, and Richard

Goodwin, "Mashup Advisor: A Recommendation Tool for Mashup

Development," in 2008 IEEE International Conference on Web

Services (ICWS 2008), Beijing, China, pp. 337-344.

[5] Mike Gilpin et al., "Information-As-A-Service: Waht's Behind This

Hot New Trend?," Forrester Research, Research Report 2007.

http://www.forrester.com/rb/Research/information-as-a-

service_whats_behind_this_hot_new_trend/q/id/41913/t/2, accessed

on 29 June, 2011.

[6] Hector Gonzalez et al., "Google fusion tables: data management,

integration and collaboration in the cloud," in SoCC, 2010, pp. 175-

180.

[7] Anne H. H. Ngu, Michael Pierre Carlson, Quan Z. Sheng, and Hye-

young Paik, "Semantic-Based Mashup of Composite Applications,"

IEEE Transactions on Services Computing, vol. 3, no. 1, pp. 2-15,

2010.

[8] Raghu Ramakrishnan, "Data Management in the Cloud," in ICDE

2009, pp. 5, 2009.

[9] Manivasakan Sabesan and Tore Risch, "Adaptive Parallelization of

Queries over Dependent Web Service Calls," in 1st IEEE Workshop

on Information & Software as Services, WISS 2009, Shanghai, China,

2009.

[10] Junichi Tatemura, "UQBE: uncertain query by example for web

service mashup," in SIGMOD Conference, Vancouver, Canada, 2008,

pp. 1275-1280.

[11] Junichi Tatemura, "Mashup Feeds: : continuous queries over web

services," in SIGMOD Conference, 2007, pp. 1128-1130.

[12] Hong-Linh Truong and Schahram Dustdar, "On Analyzing and

Specifying Concerns for Data as a Service," in The 2009 Asia-Pacific

Services Computing Conference (IEEE APSCC 2009), Singapore,

2009, pp. 7-11.

[13] Qi Yu, Xumin Liu, Athman Bouguettaya, and Brahim Medjahed,

"Deploying and managing Web services: issues, solutions, and

directions," VLDB Journal, vol. 17, no. 3, pp. 537-572, 2008.

[14] Qi Zhang, Lu Cheng, and Raouf Boutaba, "Cloud computing: state-

of-the-art and research challenges," Journal of Internet Services and

Applications, vol. 1, no. 1, pp. 7-18, 2010.

[15] Mazen Shiaa, Jan Ove Fladmark, and Benoit Thiell, “An Incremental

Graph-based Approach to Automatic Service Composition” Proc. of

the Int. Conf. on Services Computing (SCC’08), Honolulu, pp. 212-

220, 2008.

[16] Patrick Hennig and Wolf-tilo Balke, “Highly Scalable Web Service

Composition Using Binary Tree-Based Parallelization,” Proc. of the

Int. Conf. on Web Services (ICWS’10), Los Alamitos, pp.123-130,

USA, 2010.

[17] http://www.w3.org/TR/wsdl, accssed on 29 June, 2011

[18] http://www.w3.org/TR/rdf-sparql-query/, accssed on 29 June, 2011

186

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

http://www.forrester.com/rb/Research/information-as-a-service_whats_behind_this_hot_new_trend/q/id/41913/t/2
http://www.forrester.com/rb/Research/information-as-a-service_whats_behind_this_hot_new_trend/q/id/41913/t/2

