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Abstract—An existing High-Performance Computing (HPC) ap-
plication is usually optimized for a particular platform to achieve
high performance. Hence, such an application is often unable to
run efficiently on other platforms, i. e., its performance is not
portable. The purpose of this work is to establish a systematic
way to improve performance portability of HPC applications,
to which various kinds of platform-specific optimizations have
already been applied. To this end, we combine code refactoring
and auto-tuning technologies, and develop a programming tool
for HPC refactoring. Auto-tuning is a promising technology to
enable an HPC application to adapt to different platforms. In
general, however, an auto-tuning tool is not applicable to an
HPC application if the application has already been optimized
for a particular platform. In this work, a code refactoring tool
that interactively asks a user for necessary information to undo
some platform-specific optimizations in an existing application is
developed based on Eclipse, and hence auto-tuning techniques can
be applied to the application. The evaluation results demonstrate
that combining code refactoring and auto-tuning is a promising
way to replace platform-specific optimizations with auto-tuning
annotations, and thereby to improve the performance portability
of an HPC application.

Keywords–auto-tuning; code refactoring; high-performance
computing; performance portability.

I. INTRODUCTION
Legacy applications are successful and therefore mature,

and likely have been in existence for a long period of time.
Thus, legacy applications are often required to migrate to new
platforms, to use new algorithms, and to be components in
larger systems. Typical platforms are determined by a hard-
ware architecture, an operating system, and runtime libraries.
Moore’s law [1] has predicted the dramatic improvement of
computing hardware. As legacy applications are ported to meet
ever-changing requirements, even well-designed applications
are subject to structural erosion. The quality of any code
base with a long lifespan tends to degrade over time [2].
Maintenance of a legacy application can become an error-
prone, time- and resource-consuming work.

In the specific field of HPC, the main concern is to fully
utilize the potential of a specific target platform to achieve
high performance [3]. Today, an existing HPC application
is usually optimized for a particular platform. While HPC
systems (hardware and software) reach unprecedented levels
of complexity, such an application is often unable to run
efficiently on other platforms because different platforms re-
quire different optimizations, and hence its performance is not
portable. In order to maximize performance, the developer

must carefully consider optimizations relevant to each target
platform. As a result, tuning for an individual platform is a
highly-specialized and time-intensive process. The increasing
complexity of HPC systems, their long lifespans, and the
plethora of desirable source code optimizations make HPC
applications hard to maintain.

Automatic performance tuning, also known as auto-tuning,
provides performance portability, as the auto-tuning process
can easily be re-run on new platforms which require different
sets of optimizations [4]. Auto-tuning is increasingly being
used in the domain of HPC to optimize programs. However,
auto-tuning is usually designed for programs not optimized for
any specific platform. It is difficult to auto-tune an HPC ap-
plication, to which platform-specific optimizations are already
applied.

Refactoring is a promising solution to gradual software
decay [2][5]. An application code can be refactored so that
it is easier to apply auto-tuning technologies. Refactoring
is a disciplined technique for restructuring an existing body
of code, altering its internal structure without changing its
external behavior [5]. Refactoring tools that can automate the
refactoring process have shown their advantages in improving
readability, maintainability and extensibility of object-oriented
programs. Behavior-preserving code transformations, which
are simply called refactorings in the research field of code
refactoring, can help to improve the code structure, thereby
potentially setting the stage for improvements. Despite the
potential, refactorings that are specific to HPC applications
are rarely provided.

However, some refactorings for HPC applications can-
not be fully automated because the information required for
those refactorings has been lost when the platform-specific
optimizations were applied to the application code. Users
have to specify where and how the application code was
optimized. Usually, a significant part of the knowledge required
to perform the refactoring remains implicitly in the user’s
head. It is promising to use user knowledge to compensate the
lost information that is necessary for the refactoring. Semi-
automated refactoring can be a promising approach to refac-
toring application codes to be tunable with user knowledge.

Photran [6] provides some refactorings, called performance
refactorings, to facilitate some loop optimizations (interchange
loop, fuse loop, reverse loop, tile loop and unroll loop) specific
to Fortran, which is the backbone of the HPC community [7].
On one hand, these refactorings help to improve the perfor-
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mance of an application. On the other hand, loop refactorings
such as loop tiling and loop unrolling make the code difficult
to understand, and consequently make it hard for further
optimization. Due to the differences in system configurations,
an appropriate loop optimization on an HPC application usu-
ally changes depending on its target platform [8]. When the
application code is ported to a newly available platform, the
performance is usually not portable to the new platform. To
make matters worse, it is difficult to optimize the refactored
code for a new platform. Therefore, those performance refac-
torings always lead to low performance portability.

The purpose of this work is to establish a systematic way
to improve performance portability of HPC applications, to
which various kinds of platform-specific optimizations have
already been applied. To achieve this goal, we combine code
refactoring and auto-tuning technologies. A code refactoring
tool is designed to support the process of undoing platform-
specific optimizations of an existing HPC application. Note
that some information such as the original loop length may be
lost by platform-specific loop optimizations such as Photran’s
performance refactorings. Hence, we develop a refactoring
tool that is assumed to be a part of an integrated develop-
ment environment (IDE) so that the tool can interactively
ask the user to specify the missing information for “reverse
transformations” of performance refactorings. In this work,
the reverse transformations are called HPC refactorings. As
a result of HPC refactorings, platform-specific optimizations
are replaced with annotations for auto-tuning to make the
application adaptable to different platforms. Moreover, the
resulting application code becomes easy to read and maintain.
The evaluation results indicate that the HPC refactoring tool is
helpful to support replacement of platform-specific optimiza-
tions with auto-tuning annotations, and thereby to improve the
performance portability of an HPC application.

The remainder of this paper is organized as follows. Section
II introduces the related work. Section III describes the pro-
posed method and illustrates it with two examples. Section IV
shows the evaluation of the proposed method. Finally, Section
V gives the conclusion of this work, and states future work.

II. RELATED WORK
This section reviews the related researches, and classifies

them into four categories: (1) automation of refactorings; (2)
code refactorings for HPC applications; (3) platform-specific
optimizations that degrade performance portability; and (4)
refactoring and performance tuning.

A. Fully-automated versus Semi-automated Refactoring Tools
Mens and Tourwé [9] identified three activities associated

with the process of refactoring:
1) Identification of where an application code should be

refactored.
2) Determination of which refactoring(s) should be ap-

plied.
3) Application of the selected refactorings.

The degree of the automation of a refactoring tool depends on
which of the refactoring activities are supported by the tool.

Contemporary IDEs such as Eclipse [10] often support a
semi-automated approach to refactoring. Tokuda and Batory’s
research [11] indicated that a semi-automated approach can
drastically increase the productivity in comparison with manual
refactoring.

Some researchers demonstrated the feasibility of fully-
automated refactoring [12][13]. Guru is a fully automated
tool for refactoring inheritance hierarchies and refactoring
methods in SELF programs [13]. Optimization techniques that
are performed by compilers can also be considered as fully
automated refactoring techniques. Although fully automated
tools provide the ability to quickly and safely improve the
structure of the code without altering its functionality, the
lack of user input leads to the introduction of meaningless
identifiers and could make the current application become
more difficult to understand than before.

Semi-automated refactoring tools involve human interac-
tion to address the problems caused by fully-automated refac-
toring. The semi-automated refactoring tool may become time-
consuming when the application is in large scale. Despite this
problem, semi-automated refactoring remains the most useful
approach in practice, since a significant part of the knowledge
required to perform the refactoring cannot be extracted from
the software, but remains implicit in the developer’s head [9].

B. Refactorings for HPC Applications
What HPC programmers concern most is to maximize the

performance on their target platforms. While refactorings are
typically used to improve the readability and maintainability
of a code, refactorings specific to Fortran and HPC to improve
performance are rarely provided. HPC programs are more
difficult to restructure because data flow and control flow
are tightly interwoven [9]. Because of this, restructurings are
typically limited to the level of a function or a block of
code [14].

Nevertheless, many refactorings that improve performance
still have to be done manually. The parser and general language
infrastructure of a refactoring tool and performance preserving
requirements make it still a great challenge to develop a new
refactoring tool for the specific domain of HPC. Great efforts
have been made to develop tools to restructure the Fortran and
HPC codes [3][15].

Bodin et al. built an object-oriented toolkit and class
library for building Fortran and C++ restructuring tools [16]. It
requires complete understanding of the internal parser struc-
tures for users to add language extensions to Fortran or C.
CamFort [17] is a tool that provides automatic refactoring for
improving the code quality of existing models. SPAG [18] is
a restructuring tool, which unscrambles spaghetti Fortran66
code, and convert it to structured Fortran 77. New projects
such as Eclipse Parallel Tools Platform (PTP) have recently
made strides to address the needs of HPC developers [15].
It provides some refactorings such as Rename and Extract
Method. As a component of the Eclipse PTP, Photran provides
an IDE and refactoring tool for Fortran. However, since
Photran was originally designed to improve maintainability or
performance [19], it does not go far enough towards solving
the performance portability problem.

C. Platform-Specific Optimizations
Some researchers have indicated that platform-specific op-

timizations degrade the performance portability of application
codes. Ratzinger et al. [20] exploited historical data extracted
from repositories, and pointed out that certain design fragments
in software architectures can have a negative impact on system
maintainability. Then, they proposed an approach to detecting
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such design problems to improve the evolvability of an appli-
cation. Bailey et al. [21] pointed out that, an application may
not be able to run efficiently with available computer resource
unless the application has been optimized for the particular
system. Our previous research [22] has also reported that
platform-specific optimizations have a strong negative impact
on performance portability of an existing HPC application.

D. Refactoring and Performance Tuning
Fowler [5] stated that refactoring certainly will make

software go more slowly, but it also makes the software more
amenable to performance tuning. Du et al. [23] claimed that if
the architectural details are known, auto-tuning is an effective
way to generate tuned kernels that deliver acceptable levels of
performance. Moore’s research [24] applied Extract Procedure
refactoring to the performance critical regions to facilitate
performance tuning. The research also shows the possibility to
enhance refactoring tools with auto-tuning techniques. In [25],
it is verified that OpenACC directives for accelerators provide
a mechanism to stay in a current high-level language. Ope-
nACC directives are expected to enable programmers to easily
develop portable applications that maximize the performance
with the hybrid CPU/GPU architecture, and accelerate existing
applications quickly by adding a few lines of code. However,
platform-specific optimizations are still required even if Ope-
nACC directives are adopted for accelerator computing [26].

III. THE PROPOSED HPC REFACTORING TOOL

In this work, we develop an HPC refactoring tool to
improve performance portability of HPC applications. Section
III describes the methodology of the proposed HPC refac-
toring tool. This method provides an undo mechanism with
code refactoring to undo platform-specific optimizations to
make an application code tunable, and a redo mechanism of
the optimizations with an auto-tuning technique. Undoing of
optimizations is necessary because auto-tuning tools usually
assume un-optimized codes as their inputs. By using auto-
tuning to make an existing HPC application adaptive to other
platforms, the performance portability of the application can
be improved in a systematic way.

A. Overview of the Proposed Method
Given an application that is optimized for a specific plat-

form for high performance, the performance portability of this
application is the ability to retain the performance when the
application is ported to other platforms.

Figure 1 illustrates the proposed method to improve perfor-
mance portability. Original Program represents the source pro-
gram that has already been optimized for a specific platform.
In this work, we develop a code refactoring tool as a plug-in
of Eclipse IDE to automate the process of undoing platform-
specific optimizations such as loop unrolling with a certain
unroll factor. With our refactoring tool, Original Program is
refactored to Refactored Program, in which platform-specific
optimizations are undone. Hence, an auto-tuning technique
can be applied to redo the optimizations to achieve high
performance on various platforms.

While it is difficult to auto-tune Original Program, Refac-
tored Program can use an auto-tuning technique because such
a technique is usually designed for programs not optimized
for a specific platform. As a result, Autotuned Program that
is Refactored Program with an auto-tuning technique can

Autotuned ProgramRefactored ProgramOriginal Program

Opt2

Opt1

Opt2

Refactoring Auto-tuning
UndoOpt1

UndoOpt2

Opt1

Figure 1. Overview of the proposed method for improving performance
portability.

achieve high performance portability across multiple platforms
while maintaining the performance on the original platform,
for which Original Program was optimized. In this way,
we systematically improve the performance portability of an
existing HPC application.

The code refactoring tool can undo a platform-specific
optimization only if the transformation rule of the optimization
is already known. Performance refactorings, such as loop
tiling and loop unrolling, provided by Photran degrade the
performance portability of an application code. Since the
transformation rule of these refactorings are already known,
we will use these refactorings to explain the undo mechanism
and show how the proposed method can contribute to the
performance portability.

B. Undo Mechanism of the Proposed Method
The undo mechanism provides a semi-automated refactor-

ing tool to allow users to specify the necessary information
for refactoring. Users select the code region and determine
which refactoring should be applied. The refactoring tool
then checks the preconditions for behavior preserving. Once
the preconditions are guaranteed, users are asked to input
necessary information for applying corresponding refactoring.

1) Undo Loop Unrolling: Loop unrolling is a loop trans-
formation technique that attempts to optimize a program’s per-
formance by reducing instructions that control the loop [27].

The general form of the do-loop is as follows.

do var = expr1, expr2, expr3
statements

end do

Here, var is the loop index, expr1 specifies the initial value
of var, expr1 is the upper bound, and expr3 is the increment
(step). The variable defined in the do-statements is incremented
by 1 by default.

Loop unrolling replicates the code inside a loop body mul-
tiple times. The step that determines the number of replications
is called an unroll factor.

The unroll loop refactoring provided by Photran applies
loop unrolling to the outermost loop of the selected nested do-
loop. Figure 2 shows a typical do-loop unrolled by unroll loop
refactoring when the selected do-loop is the innermost loop
and the unroll factor is set to be “B.”

To perform an undoing operation, users have to specify the
do-loop nest that loop unrolling was applied to and the unroll
factor prior to the unrolled loop nest. Then the loop header
is rewritten according to the user input, and the duplicated
statements are removed. The user should input the necessary
information in the following format.

22Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-394-0

COMPUTATION TOOLS 2015 : The Sixth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking



do j=1,N
do k=1,N
do i=1,N,B

c(i,j)=c(i,j)+a(i,k)*b(k,j)
if(i+1>N) exit
c((i+1),j)=c((i+1),j)+a((i+1),k)*b(k,j)
if(i+2>N) exit
c((i+2),j)=c((i+2),j)+a((i+2),k)*b(k,j)
...
if(i+B-1>N) exit
c((i+B-1),j)=c((i+B-1),j)+a((i+B-1),k)*b(k,j)

end do
end do

end do

Figure 2. A do-loop unrolled B times by unroll loop refactoring in Photran.

!$Undo unroll(factor)

!$Undo unroll specifies the refactoring that should be per-
formed, and argument factor indicates the unroll factor that
was applied to the loop nest. The new step value will be the
current step value (B for example in Figure 2) divided by
factor. As for the duplicated statements removal, it is assumed
that the number of statements is a multiple of the unroll
factor. The number of statements remaining after undoing loop
unrolling, called NoofStat, is the current number of statements
divided by factor. The first NoofStat statements in the loop
body will be kept, and the rest statements will be removed.

With the help of our refactoring tool, the platform-specific
optimization, e. g., loop unrolling applied to the code in Fig-
ure 2, is undone. Figure 3 shows the resulting code by applying
the undo mechanism to the example shown in Figure 2. In
this case, the loop variable is set to increment by 1 and the
duplicated loop body is removed.

do j=1,N
do k=1,N
do i=1,N

c(i,j)=c(i,j)+a(i,k)*b(k,j)
end do

end do
end do

Figure 3. The resulting do-loop after applying undo mechanism.

2) Undo Loop Tiling: Loop tiling partitions a loop’s iter-
ation into smaller chunks or blocks, thus helps eliminate as
many cache misses as possible, and maximize data reuse [28].

The tile loop refactoring in Photran takes a double-nested
do-loop of unit-step loops, and creates a nested do-loop with
four levels of depth. This refactoring requires a user to provide
inputs of the tile size and the tile offset, so that the user can
set those parameters according to her/his will. The tile size
determines the size of the accessing block. For instance, if the
tile size is 3, an array will be accessed in 3 × 3 blocks. The
tile offset adjusts where the blocks start.

Let loopBound and newBound represent the loop bounds
of the double-nested do-loop before and after loop tiling,

respectively. The new bounds are computed using Equation (1).

newBound = floor((loopBound − tileOffset)

/tileSize) ∗ tileSize + tileOffset (1)

Figure 4 shows a typical do-loop format before loop tiling.
Given a tile size “IS” and tile offset “offset,” the tile loop
refactoring in Photran always generates a tiled loop with the
following format shown in Figure 5. The outer loop goes over
the “blocks” and the inner loop traverses each block in its turn.
Block size IS should be chose to fit in the cache or a memory
page (whichever is smaller).

!before loop tiling
do j=1,N

do i=1,N
a(i,j)=a(i,j)+b(i,j)*a(i,j)

end do
end do

Figure 4. A typical do-loop before loop tiling.

!after loop tiling
do j1=j_newLb, j_newUb, IS

do i1=i_newLb, i_newUb, IS
do j=max(j1,1), min(N, j1+IS-1)

do i=max(i1,1), min(N, i1+IS-1)
a(i,j)=a(i,j)+b(i,j)*a(i,j)
end do

end do
end do

end do

Figure 5. A do-loop tiled by tile loop refactoring in Photran with tile size IS.

To perform the undo mechanism of loop tiling to a do-loop
nest whose loop header has the format as shown in Figure 5,
users are required to specify the do-loop nest that loop tiling
was applied to and give the loop bounds for the new do-loop
nest. Users should provide the necessary information in the
following format prior to the do-loop nest.

!$Undo tile(loopName1,start1, end1,
loopName2, start2, end2)

!$Undo tile specifies the refactoring that is going to be per-
formed, and arguments (loopName1,start1, end1, loopName2,
start2, end2) specify the new loop index variables and cor-
responding loop bounds. When the loop index matches the
information from users and its step value does not equal to
1, its loop header is replaced as the users specified. The loop
header whose index does not match the user information is
removed.

With the help of our refactoring tool, the nested do-loop
“after loop tiling” can be restored to that “before loop tiling.”
In this way, the proposed method undoes the loop tiling that
has been applied to the program. Hence, the modified program
can be tunable for further optimization by using auto-tuning
techniques developed for un-optimized codes.
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C. Redo Mechanism of Proposed Method
The redo mechanism is supported by an auto-tuning tech-

nique. This paper assumes auto-tuning based on full parameter
search that tests all code variants of an annotated code frag-
ment and selects the best one with the highest performance,
even though any auto-tuning tools, such as the ROSE auto-
tuning mechanism [29] can be employed in the proposed
method. An annotation-based code generator, such as HMP-
PCG [30], is assumed to generate the code variants.

Generally, an auto-tuning tool is designed for un-optimized
codes. Our refactoring tool, which undoes platform-specific
optimizations, can refactor the Original Program to be tunable,
thus the Refactored Program can easily incorporate the auto-
tuning tool to obtain the best parameters for each platform.
As a result, Autotuned Program becomes adaptable to each
platform. By combining code refactoring and auto-tuning, an
existing HPC application can become adaptable to different
platforms. Accordingly, its performance portability is improved
in a systematic way.

IV. PERFORMANCE EVALUATION

This section shows the evaluation of our refactoring tool
and illustrates the benefit of the proposed method. The undo
mechanism is supported by a code refactoring tool, which
is developed by considering the Eclipse IDE [10] in mind
so that the IDE can provide an interactive user interface to
ask the user about necessary information for HPC refactoring.
The redo mechanism is supported by an empirical auto-tuning
technique that can search for the optimal tuning parameter for
each different platform.

The performance of Original Program on the specific CPU
platform, for which the program has originally been optimized,
is taken as the baseline performance on each platform. We
apply the proposed undo mechanism to Original Program
and obtain Refactored Program whose kernel code is tunable.
An auto-tuning technique based on full parameter search is
applied to Refactored Program, and thus we can get Autotuned
Program that has been adapted to another platform by using
the auto-tuning technique. Performance portability is discussed
according to the evaluation results.

A. Experimental Setup
To validate the effectiveness of the proposed method, we

measure the execution performance of a program on different
platforms to evaluate the performance portability. Platforms
with different cache sizes used in the following evaluation are
listed in Table I.

To show the effects of optimizations more clearly, we used
the “-O0” option for the GNU compiler to disable compiler’s
optimizations. For the programs running on the SX-9 system,
we used the “-O nounroll” option to disable the automatic
unrolling optimization of the FORTRAN90/SX compiler. To
evaluate the effects of HPC refactoring of unrolled loops, For-
tran matrix multiplication programs of a simple triple-nested
loop are used for multiplying two matrices of 512×512. With
the consideration of fitting the accessed array elements into
last level cache, we change the matrix size to be 3500× 3500
to evaluate HPC refactoring of tiled loops.

B. Results and Discussions
Auto-tuning based on full parameter search is used to

find the optimal unroll factor and tile size for each target

platform. The execution time of the original program whose
unroll factor and tile size are optimized for Intel Core i7
930 are evaluated on the four platforms listed in Table I.
As shown in Figure 6, the execution time changes with the
unroll factor and tile size on each platform. The experimental
results indicate that the unroll factor and tile size have a
considerable impact on performance of different platforms.
Thus, the optimal parameters can be different for individual
platforms with different configurations. It is necessary to tune
those parameters to achieve high performance on each target
platform. Therefore, auto-tuning is needed to achieve high
performance portability. The experiment based on empirical
auto-tuning found that the optimal unroll factors for platforms
1 to 4 are 64, 64, 16 and 1, respectively. The optimal tile sizes
for platforms 1 to 4 are 1201, 1280, 720 and 256, respectively.
These optimal parameters are used for further experiments to
evaluate the performance portability.

It is shown that, the performance of the SX-9 system is
sensitive to the parameter configuration. This is because the
Original Program is optimized for a totally different system
with Intel Core i7. As a simple matrix multiplication program
of a triple-nested loop is used in the evaluation, the sustained
performance of each platform is thus limited by the cache size
and memory bandwidth. The SX-9 system should achieve a
much higher performance than the others. The results indicate
that inappropriate optimizations mismatching the system ar-
chitecture could critically degrade the sustained performance,
even if the theoretical performance is high. These results hence
show the importance of making an HPC application adaptive
to other platforms to cope with system diversity.

To validate the usability of the proposed method, we mea-
sure the speedup ratios of target programs on each platform to
evaluate the performance portability. The evaluation results are
shown in Figure 7. In this figure, the horizontal axis shows the
four target platforms, and the vertical axis shows the speedup
on each target platform. “Original Program” represents the
program whose unroll factor and tile size are optimized for
Intel Core i7 930. “Refactored Program” indicates the program
after undoing the optimizations with our refactoring tool.
“Autotuned Program ” shows the program that is optimized
for each platform with the optimal unroll factor and tile size
obtained from the previous evaluation.

In Figure 7, Autotuned Program can achieve the same
performance as Original Program on the original target plat-
form, i .e., Intel Core i7 930. Even though Original Program
can get fair or higher performance on platforms with high
peak computational performance than Intel Core i7 930, the
computational ability of each platform is not well utilized,
and the performance portability of Original Program is low.
Refactored Program can incorporate auto-tuning more eas-
ily than Original Program with the help of our refactoring
tool. Thus, Autotuned Program can achieve comparable to
or higher performance than Original Program on other plat-
forms by auto-tuning optimization parameters. Accordingly,
by replacing platform-specific optimizations with auto-tuning
annotations, an HPC application can be performance-tunable
and its performance becomes, at a certain level, portable to
other platforms. These results clearly indicate the effectiveness
of our method to improve the performance portability. The
refactoring tools will be helpful to easily and safely do the
refactoring.

24Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-394-0

COMPUTATION TOOLS 2015 : The Sixth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking



TABLE I. EXPERIMENTAL ENVIRONMENT.

Platform CPU Last Level Cache Peak Computational Performance (Gflops) Maximum Memory Bandwidth (GB/s)
1 Intel Core i7 930 8MB 51.2 25.6
2 Intel Core i7 920 8MB 42.56 25.6
3 Intel Xeon CPU E5-2695 v2 30MB 230.4 59.7
4 NEC SX-9 256KB 102.4 256
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Figure 7. Performance evaluation results by applying the proposed method. Original Program is optimized for Intel Core i7 930.

Since platform-specific optimizations are removed from
Original Program, Refactored Program runs slower than Orig-
inal Program. The refactoring of undoing loop unrolling brings
performance optimization on the NEC SX-9 platform. The
vectorization processing on SX-9 is considered to be the reason
of performance improvement.

The refactoring of undoing loop tiling optimization de-
grades the performance significantly on the NEC SX-9 plat-
form. NEC SX-9 is equipped with an on-chip memory of
256KB called ADB (Assignable Data Buffer) [31] to realize
a higher memory bandwidth as well as a shorter latency on
a chip for efficient vector data accesses. The performance on

SX-9 is significantly affected by the ADB size. This indicates
that the appropriate optimization is crucial to the performance
on different platform. The platform-specific optimizations in
an application should be removed to improve the performance
portability.

V. CONCLUSION AND FUTURE WORK
This paper has proposed a systematic way for improv-

ing performance portability of HPC applications by combin-
ing code refactoring and auto-tuning technologies. A semi-
automated code refactoring tool that uses user knowledge is de-
veloped as an Eclipse plug-in to support undo platform-specific
optimizations so that the HPC applications can be refactored to
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be tunable. Then, an auto-tuning technique is applied to Refac-
tored Program to redo optimizations in different ways so that
the application can adapt to multiple platforms. Therefore, the
performance portability of an existing HPC application can be
improved. The evaluation results demonstrate that combining
code refactoring and auto-tuning is a promising way to replace
platform-specific optimizations with auto-tuning annotations,
and thereby to improve the performance portability of an
existing HPC application.

This paper considered that only one kind of optimizations
is applied to the selected code region. However, in practice,
multiple optimizations can be applied to the same code region.
In the future, we will explore more complicated codes in which
multiple optimizations are applied.
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