
Analysis and Evaluation of UI Component
Integration for Large-Scale Web Content Reuse

Hao Han∗ and Yinxing Xue†
∗Department of Information Science, Faculty of Science

Kanagawa University, Japan
han@kanagawa-u.ac.jp
†Temasek Laboratories

National University of Singapore, Singapore
tslxuey@nus.edu.sg

Abstract—Mashup has promoted new creativity and function-
ality to Web applications through the integration of informa-
tion/knowledge from multiple websites. However, there is no
uniform interface to access the data, computations and user
interface provided by the different kinds of Web content. Without
open APIs, it is difficult to integrate Web applications with other
Web content. In this paper, we present a framework for flexible
and lightweight integration of Web content for personal use. We
propose a simple Extensible Markup Language (XML) based
Web content description language to define the Web content
and configure the mashup applications. We also conduct an
exploratory analysis and evaluation of user interface components
for large-scale reuse.

Keywords–UI Component; API; Integration; Retrieval; Security.

I. I NTRODUCTION

The availability of information/knowledge is increasing
explosively on the Web with the development of the Internet,
however useful information is not always in a form that
supports end-user requirements. This is because there are no
uniform interfaces to access the data/computations (application
logic) or user interfaces provided by the different kinds of
Web content. For reuse and integration, the content used in
the majority of the current mashup applications is typically
obtained from third party sources through public Web service
Application Programming Interfaces (API). The integration of
general Web applications requires additional efforts including
programming and configuration compared to single-type Web
service integration. Such integration is beyond the skills of
typical users and restricted to specific technologies or domains.
In this paper, we present a description-based framework of
flexible and lightweight integration of Web content for cus-
tomized reuse. We define Web Content Description Language
(WCDL) to configure the mashup Web applications. Further-
more, we conduct an analysis and evaluation of User Interface
(UI) components for further large-scale reuse.

The remainder of the paper is organized as follows. In
Section II, we present the motivation for our study and an
overview of the related work. In Section III, we explain
description-based integration. We analyse and evaluate the
proposed approach for large-scale reuse in Section IV. Finally,
we conclude our approach and discuss future work in Section
V.

II. M OTIVATION AND RELATED WORK

The Majority of Web mashup technologies are based on a
combination of Web services and Web feeds. Yahoo! Pipes [1]
is a composition tool to aggregate, manipulate, and mashup
Web services or Web feeds from different websites with a
graphical user interface. Mixup [2] is a development and
runtime environment for UI integration [3]. It can quickly build
complex user interfaces for easy integration using available
Web service APIs. Mashup Feeds [4] and WMSL [5] support
integrated Web services as continuous queries. They create new
services by connecting Web services using join, select, and
mapping operations. Similar to these methods, other service-
based methods [6], [7], [8] are limited to the combination of
existing Web services, Web feeds, or generated Web compo-
nents.

For the integration of parts of Web applications without
Web service APIs, partial webpage clipping methods such as
C3W [9] and Marmite [10] are widely used. Users clip a
selected part of a webpage, and paste it into a customized
webpage. Marmite [10], implemented as a Firefox plug-in
using JavaScript and XUL (XML User Interface Language
[11]), employs a basic screen-scraping operator to extract the
content from webpages and integrate it with other data sources.
The operator uses a simple XPath pattern matcher and the
data is processed in a manner similar to UNIX pipes. Intel
MashMaker [12] is a tool for editing, querying, manipulating
and visualizing continuously updated semi-structured data. It
allows users to create their own mashups based on data and
queries produced by other users and remote sites. However,
these methods can only extract Web content from static
HyperText Markup Language (HTML) pages. Moreover, it
is not easy to realize the interaction between different Web
applications such as Safari Web Clip Widgets [13], unless there
is a special Web browser and plug-in.

The majority of the current methods are based on existing
Web service APIs or Web feeds, require a professional Web
programming ability [14], [15], or have other limitations (e.g.,
the components must be produced by portlets [16] or WSRP
[17]). To address these issues, we propose a flexible and
lightweight description-based mashup of Web content. Our
integration framework facilitates the integration of various Web
applications and services for typical users with minimal pro-
gramming experience. The range of content is extended from
Web services to the “traditional Web” (data, computations,

18Copyright (c) IARIA, 2015. ISBN: 978-1-61208-392-6

CONTENT 2015 : The Seventh International Conference on Creative Content Technologies

and the UI components of general Web applications) including
content dynamically generated by client-side scripts or plug-
ins.

III. D ESCRIPTION-BASED INTEGRATION

The propose of framework is based on the description and
integration of Web content, which includes Web services, Web
feeds and Web applications. As illustrated in Figure 1, we be-
gin by describing the target Web content in a WCDL file. Then,
client requests are sent to the target websites. According to the
defined WCDL file, partial information is extracted from the
responding webpages if the target Web content derives from
Web applications. The XML-based content (returned from the
Web services or extracted from the responding webpages) is
transformed into an HTML format and the target Web content
is integrated.

Figure 1. Outline of the proposed description and integration
approach/system

“WCDL”is XML-based and intelligible to typical users. In
this paper, a typical user is specified as a user who has basic
computer knowledge and operation skills without professional
programming ability/experience. Compared with standard Web
services, it is not easy to access and integrate Web applications
because web applications are designed for browsing, not for
parsing by program. Without interfaces such as Simple Object
Access Protocol (SOAP) [18] or Representational State Trans-
fer (REST) [19], an extraction is used to acquire the target
content, and emulation is utilized to realize the automated
process of sending requests and receiving responses.

As indicated in Figure 2, WCDL contains the following
items to describe the necessary Web application information
reflecting end-user operations (e.g., users find the text input
field, input the keywords, submit the request, and search for
the target content in the response page).StartPage is the
Uniform Resource Locator (URL) of the webpage of the
target Web application where the request of the end-user is
submitted.InputTypeis the type of request-input element such
as InputBox (text input field), OptionList (drop-down option
list), or LinkList (anchor list) in the StartPage.InputArea
is used to locate the request-input element in the StartPage.
If there are other elements with the same InputType in the
StartPage, we must define the InputArea.

ContentTypeis the type of target content: static or dynamic.
Static content is the unchangeable portion displayed on a

webpage after the page is fully loaded and during the viewing
process. It contains two kinds of information: property and
structure. The property is a text (character string), image
(instance of graph), link (hyperlink), or object (instance of
video or other multimedia file). The structure is a single, list,
or table. Dynamic content is the portion dynamically generated
or changed by client-side scripts or plug-ins in a dynamic
HTML page according to the users’ operations.ContentArea
is used to locate and extract the target content in the response
webpage using an XPath expression.ContentStyleis the layout
of the target content in the integrated resulting webpage. It is
typically limited to static Web content. The extraction results
are in an XML format and the style refers to the XML
Stylesheet Language Transformation (XSLT) files defined by
the end-user. If the webpage containing the target content is a
fixed page (e.g., a static webpage with an unchangeable URL),
the values ofInputTypeand InputAreaare null (StartPageis
the target page).

<target type="application" ID="...">
<StartPage>

URL of webpage where request is submitted
</StartPage>
<InputType>

Type of request-input element in StartPage
</InputType>
<InputArea>

Path of request-input element in HTML document
of StartPage

</InputArea>
<ContentType>

<type>
Type of a target part

</type>... ...
</ContentType>
<ContentArea>

<content>
Path of a target part in HTML document of
response webpage

</content>... ...
</ContentArea>
<ContentStyle>

<style>
Layout of a target part in resulting webpage

</style>... ...
</ContentStyle>

</target>

Figure 2. Description of a Web application

Web services and feeds are self-contained and self-
describing, and communicate using open protocols such as
HTTP. The most widely used style architectures of Web
services are SOAP and REST. Recently, new Web services are
implemented using the REST architecture rather than SOAP
because REST is lightweight, easy to build, and provides
readable results. Furthermore, Web feeds such as Atoms or
RDF Site Summary (RSS), are usually considered a kind of
simplified REST service.

As illustrated in Figure 3, we use the following items
to describe REST Web services in WCDL.BaseURL is a
reference to a method of the target Web service. It contains the
hostname, service name, version number, and method name.
Key is necessary in some Web services.Query is the query
string of the request URL. The value of each<parameter> is
the name of a query parameter. The actual query parameters
follow the method (start with a question mark) and assume the
form parameter=value, where the query parameters and values
are URL encoded. Multiple query parameters are separated by
an ampersand. TheTypeof a method specifies the format to
send requests to the target Web service. The majority of REST
API requests use the “GET” method. For the “POST” method,

19Copyright (c) IARIA, 2015. ISBN: 978-1-61208-392-6

CONTENT 2015 : The Seventh International Conference on Creative Content Technologies

there is no question mark following the method and the query
parameters are passed in the “POST” data block.

ContentStyleis the layout of the response content in the
integrated resulting webpage. It refers to a layout (template)
file. For websites that provide both REST and SOAP Web
services, we select the REST Web services as our default
selection. For SOAP Web services, we transform these into
REST queries (see Yahoo Query Language [20]). The trans-
formation is a semi-automatic process and requires some
manual configuration based on the description of the SOAP
services in the WSDL [21] files. Once the specification of
the target server endpoint URL, namespace declarations, and
body elements (Uniform Resource Identifier (URI) of the target
object, method name, parameter names) of the SOAP envelope
are retrieved, a REST query is generated automatically in the
proposed system.

<target type="service" ID="...">
<BaseURL>

Reference to a service and method
</BaseURL>
<Key>

API key of Web service
</Key>
<Query>

<parameter>
Name of query parameter

</parameter>... ...
</Query>
<Type>

GET or POST method
</Type>
<ContentStyle>

Layout of response content in resulting webpage
</ContentStyle>

</target>

Figure 3. Description of a REST Web service

Based on the abovementioned description in the WCDL
file, we search for the target Web content from the Web
application. There are two steps during this process. First, we
consider the response webpages as the target webpages. Then,
we search for the target parts in the response webpages.

Web applications normally provide the request-submit
functions for the end-users. For example, search engine appli-
cations provide the text input field in the webpage for keyword
inputting. Users input the query keywords, submit the request
to the server side, and receive the response webpages. To
submit a request, there are generally different methods such as
“POST” and “GET”. For a “more secure” mode, some websites
utilize encrypted codes or randomly generated codes during
request submitting, which are side-effects of information secu-
rity. JavaScript can be run as part of submission for validating
a request. Hidden objects, which represent hidden input fields
in an HTML form, are also widely used to record different
submitting options. Consequently, these diverse processing
methods can make it difficult to manually parse the HTML
or URL template to acquire the target webpages. To obtain
the response webpages from all types of Web applications
automatically, we implement HtmlUnit [22] to emulate the
submitting operation, instead of using the URL templating
mechanism. The emulation is based on the event trigger of
the element ofInputTypewithin the InputAreaof StartPage.

ContentAreais used to determine the target parts from the
webpage. In the tree structure of an HTML document, each
path represents the root node of a subtree and each subtree
represents a part of the webpage. Response webpages generally

have the same or similar layouts if the requests are sent to the
same request-submit function. During node searching, if a node
cannot be found using a path, a similar path can be tentatively
used to search for the node [23].

Once the target parts are located, the content is extracted
from the nodes in text format, except for the tags of the
HTML document, based on the correspondingContentType.
The extracted static content is in an XML format and can
be transformed into an HTML document byContentStyle.
For dynamic content, we use an effective Hide-and-Display
method to control visibility, as the static content extraction
method cannot retain the functionality of client side scripts.
Currently, many websites use Dynamic HTML (DHTML) or
Document Object Model (DOM) [24] scripting technology
to create interactive webpages. These contain HTML, client-
side scripts, and Document Object Model. The scripts change
variables (including the elements outside the target parts such
as the hidden values) programmatically in an HTML document
and affect the look and function of the static content. If we
remove the other parts from the target parts using a traditional
static extraction method, the original execution environment
of scripts would be broken and the scripts could execute
abnormally. Thus, we retain all the parts of each webpage
and change the visibility according to the following steps to
display the wanted target parts only and hide the other parts
of the webpage by setting the property “display” of attribute
“style” of all the nodes to “none” (style.display=“none”).

Except for the dynamic content generated by client-side
scripts, both the Web service response and the extracted partial
information from Web application are in an XML format. We
use an XSLT template processor (ContentStylein WCDL) to
transform the XML data into HTML or XHTML documents.
After the description, extraction, and transformation, we inte-
grate the content (in an HTML format) from different Web
applications or services into a resulting page. We use iframe
(or div, span) tags as the default Web content container. This is
an HTML element that makes it possible to embed an HTML
document into another HTML document. Whereas a regular
frame is typically used to logically subdivide the Web content
of one webpage, an iframe is more commonly used to insert
Web content from another website into the current webpage.
Moreover, iframe is supported by all mainstream browsers.

We illustrate an example of the generation of integrable
content using a BBC news search. As illustrated in Figure 4,
after the user inputs the search keywords and sends the request,
the proposed system sends the request to each target website
and receives the response content, which is presented as an
integrable content segment.

We also generated an example of a mashup Web applica-
tion. It integrates parts from the following seven Web appli-
cations/services/feeds and implements a country-information
search function. Table I provides a description of each tar-
get Web content. Target A (dynamic contents, mouse move
event trigger, client JavaScript): real-time local time; Target
B (mashup application): weather information from a mashup
application integrated by a weather service and Google Maps
service. The weather information part is created by client-side
scripts that can respond to click and span events; Target C
(static text and image): country’s location, basic information
and leader’s photo; Target D (search engine application): latest
corresponding news articles; Target E (flash interaction with

20Copyright (c) IARIA, 2015. ISBN: 978-1-61208-392-6

CONTENT 2015 : The Seventh International Conference on Creative Content Technologies

Figure 4. WCDL describes the flow of generation of integrable content

JavaScript): photos displayed with a map that can respond to
click events and present the relevant pictures; Target F (Web
service): simple introduction to the country; and Target G
(RSS/Atom feed): videos about the country. As illustrated in
Figure 5, after the user inputs the country name and sends the
request, the mashup Web application sends a request to each
target website and receives the response Web contents, which
are presented in a resulting integrated webpage after layout
rearrangement.

Figure 5. Resulting webpage of an example mashup application

Compared to the single mixing of static webpage segments,
in the proposed system, the integrated segments retain their
original active functionalities and can be customized into a
uniform layout style in a resulting webpage.

IV. A NALYSIS AND EVALUATION

We developed a lightweight integration of Web content
with simple description and easy configuration based on
WCDL. WSDL and WADL [25] are used to describe a series
of Web services with details such as abstract types, abstract
interfaces, and concrete binding. It cannot be expected that
all the tasks will be completed automatically using WSDL or
WADL files. For example, the main resource of a WADL de-
scription for the Yahoo! News Search application [26] contains
more than 40 parameter/attribute values. Compared with the

TABLE I. DESCRIPTION OF TARGET WEB CONTENT

Target Item Value
A Type {[application]}

ID {[A1]}
StartPage {[http://localtimes.info/]}
InputArea {[null]}
InputType {[LinkList]}
ContentType {[dynamic]}
ContentArea {[/HTML/BODY/DIV[0]/DIV[2]/DIV[1]/DIV[0]] }
ContentStyle {[null]}

B Type {[application]}
ID {[A2]}
StartPage {[http://www.weatherbonk.com]}
InputArea {[//*[@id=”searchForm”]]}
InputType {[InputBox]}
ContentArea {[//*[@id=”grid”],[//*[@id=”bonkMapColumn”] }
ContentType {[dynamic],[dynamic]}
ContentStyle {[null]}

C Type {[application]}
ID {[A3]}
StartPage {[http://news.bbc.co.uk/1/hi/countryprofiles/default.stm]}
InputArea {[null]}
InputType {[OptionList]}
ContentArea {[/HTML/BODY/DIV[0]/DIV[5]/TABLE[0]/TR[0]/TD[1]/

TABLE[2]/TR[1]/TD[0]/TABLE[1]/TR[0]/TD[0]/DIV[0]/
IMG[0]],
[//*[@id=”content”/UL[0]],
[/HTML/BODY/DIV[0]/DIV[5]/TABLE[0]/TR[0]/TD[1]/
TABLE[2]/TR[1]/TD[0]/P[28]/TABLE[0]/TR[0]/TD[0]/
DIV[0]/IMG[0]] }

ContentType {[image],[text list],[image]}
ContentStyle {[automatch.xslt]}

D Type {[application]}
ID {[A4]}
StartPage {[http://www.bbc.co.uk/search/]}
InputArea {[//*[@id=”search-form”]}
InputType {[InputBox]}
ContentArea {[//*[@id=”news-content”/UL[0]/LI[2]/UL[0]/LI[0]/

DIV[0]],
[//*[@id=”news-content”/UL[0]/LI[2]/UL[0]/LI[0]/
DIV[0]/
A[0]]}

ContentType {[text list],[link list]}
ContentStyle {[search-result-layout.xslt]}

E Type {[application]}
ID {[A5]}
StartPage {[http://www.trippermap.com]}
InputArea {[null]}
InputType {[null]}
ContentArea {[//*[@id=”maptabs”]}
ContentType {[dynamic]}
ContentStyle {[null]}

F Type {[service]}
ID {[W6]}
BaseURL {[http://en.wikipedia.org/w/api.php]}
Key {[null]}
Query {[action=opensearch],[format=xml],[search]}
Type {[GET]}
ContentStyle {[wiki-layout.xslt]}

G Type {[service]}
ID {[W7]}
BaseURL {[http://gdata.youtube.com/feeds/base/videos]}
Key {[null]}
Query {[q]}
Type {[GET]}
ContentStyle {[youtube-layout.xslt]}

programmer-orientedWSDL or WADL, our WCDL provides
a shorter and simpler description format, and is applicable to
the description of general Web applications. It is easier to read,
write, reuse, and update any part of a mashup applications than
to work with end-user programming methods. The proposed
approach allows a users with no or minimal programming
experience to integrate the Web content from multiple Web
applications and services. Because the proposed approach is
generally applicable to Web applications and services, any
content from any kind of Web application becomes integrable

21Copyright (c) IARIA, 2015. ISBN: 978-1-61208-392-6

CONTENT 2015 : The Seventh International Conference on Creative Content Technologies

and reusable.
Currently, the proposed extraction method is based on the

fact that response webpages returned from the same Web
application use the same or a similar layout. If the response
webpages use different layouts, the extraction precision would
degrade because the paths of the target parts vary with the
layouts of the webpages (XPaths are changed). Moreover, if the
layout of the webpage is updated, users must change the value
of ContentAreain the corresponding WCDL file (they can use
tools such as Firebug [?] and are not required to read the source
code of the HTML documents). In the proposed integration
system, we use emulation to submit requests and acquire
responses automatically without manual analysis of typical
URLs for templates. Nevertheless, the emulation process of
HtmlUnit is slow for some websites and requires more time
than the URL templating mechanism if the websites rely
on external scripts in the submitting process. The proposed
approach is not yet fully automated and may not be efficient
in emulation mode.

For the large-scale reuse of UI components, a challenge
is to include efficient retrieval of the UI components to
facilitate client-side integration. Users currently must locate
functionality from websites using general search engines such
as Google and Bing, or a library of predefined UI components
that is also manually created and limited to a small scale.
This conventional method of Web functionality retrieval is
inefficient because current general Web search engines primar-
ily use a content-oriented (non-functionality-oriented) search
mechanism and information about functionality is beyond the
searching scope of these current mainstream search engines.
Moreover, this method leads to time-consuming manual ver-
ification and comparison if users wish to locate the most
desirable and suitable component. In our past experiments and
implementations, we were required to spend more than one
hour to find and select each suitable component on average,
although generating the WCDL for a segment usually required
less than 5 minutes (15 senior students of CS were requested to
independently complete the construction of mashup application
integrating diverse content. The longest time consumed for the
WCDL of a segment was 25 minutes and the average time was
approximately 4 minutes).

To the best of our knowledge, there is no previous work
on large-scale UI component retrieval. We designed a novel
searching mechanism [27] that is implemented in the UI com-
ponent retrieval system. A crawler is used to collect webpages.
For webpages containing components, background information
such as URL, title, and meta data is collected. For each
submitting form and component, diverse attributes (e.g., ID,
name, and XPath) are extracted as necessary information and
other related information (e.g., alt, hidden values, and defined
event trigger JavaScript functions) are extracted as optional
information. This information is analyzed and classified to
generate a recognition pattern for each Web UI and the index
information is then created for component retrieval.

Table II displays a list of component properties as in-
dexes of the BBC news search.Category: group of web-
sites/webpages with similar subjects, which are extracted from
the meta data of webpage;Function type: functionality of
UI component;UI : UI component type (e.g., text input field,
drop-down option list, anchor list);Request candidate number:
input candidates are unlimited for a text input field or the

number of options in an option/link list.“unlimited” is the best
applicability of the interface and a larger number represents
a better applicability.Data volume: size of data transferred
between client and component/target website;Speed: average
time (ms) for the request-response process;Stability: statistics
of access success (whether the UI component normally runs)
rate compiled periodically (100% implies it normally runs
during webpage crawling);Language: primary language of the
website; andScript: whether client-side JavaScript runs in the
request-response process.

Each index has its unique characteristics. For a more objec-
tive evaluation of components, a supervised machine learning
approach is employed to perform a construction of ranking
models for the further recommendation mechanism in the pro-
posed approach. Features are assigned to represent numerical
weightings of indexes such as speed and stability, and manual
assessment results are used as training/testing data. Clustering
is used to partition components into groups (clusters). The
components in the same group are more similar to each other
than to those in other groups inCategory. Users search for
the components by providing the component type and other
search keywords. Compared with the general content-oriented
search engines, this component-oriented search mechanism can
achieve faster and more effective component retrieval (within
minutes).

TABLE II. PROPERTIES OF UI COMPONENT

Category Application, BBC, Search, news
Function type search
UI text input field
Request candidate number unlimited
Data volume 82.94 KB
Speed 2,759 ms
Stability 100%
Language English
Script no

However, actually, compared to non-context Web APIs,
context-related UI components are coarse-grained. The prop-
erty information extracted from meta data and tag names is
not enough for precise analysis. Moreover, it is also difficult
to measure the relative importance of a UI component like
PageRank since the main functionality of a UI component is
limited in the inner side of a website.

For large-scale reuse of the existing content from Web
services or even general Web applications, we must evalu-
ate the scalability of the proposed approach as well as the
reusability of the extracted content. On average, it requires
approximately 100-1000 ms to extract the contents from a
given webpage; there is not a significant difference between
a static webpage and a dynamically generated webpage. In
the proposed framework, the extraction and the integration are
implemented in different components, which allows both steps
to be executed in parallel. The extraction step can prebuild a
database of possibly useful content that is extracted during
crawling. The proposed approach is efficient in both steps and
feasible for large-scale reuse, e.g., searching and integrating
content from hundreds of thousands of webpages.

Regarding the reusability of the extracted content, the
proposed approach realizes the separation of the data and
the presentation. Using an XSLT template processor, we can
transform the XML-format content into XHTML according

22Copyright (c) IARIA, 2015. ISBN: 978-1-61208-392-6

CONTENT 2015 : The Seventh International Conference on Creative Content Technologies

to the desired layout in the XSLT file. In addition to the
data, the extracted content may include UI components. The
reusability of these UI components is not undermined as
the proposed approach adopts an effective Hide-and-Display
method: retaining the contextual client-side script that these UI
components require for a normal execution, and only setting
the irrelevant content from this client-side script as hidden.

Another important consideration in large-scale reuse is
the security issue. As the proposed approach extracts content
from general Web applications, the content from malicious
webpages could be included. However, as the proposed ap-
proach does not directly reuse the runnable JavaScript code,
the content-based reuse is not as vulnerable as script-based
reuse. For UI components extracted from potentially mali-
cious webpages, the proposed approach actually provides a
protection mechanism by dividing the searched content or UI
components into isolated subpages [28] called iframes. For
different iframes, different permissions are granted to allow
them to execute only legitimate operations. Even if an iframe
contains malicious content, it will not contaminate the others.
The modularity of iframes in our resulting webpage mitigates
the security risks.

The content searched by the proposed approach is generally
taken from public sources and includes many different types,
e.g., encyclopedias, articles of news, blogs and posters from
discussion forum, information of items or products, govern-
ment records and financial data. Among these different types,
some of them are in the well-defined format (financial data
like currency exchange ratio provided by an open service),
while some others are not (static text and image searched
from public profiles provided by a Social Networking Service
(SNS)). No matter the content is in the well-defined format
or not, the proposed approach mainly aims to describe and
integrate the content. We are not searching for private data,
usually protected by encryption or encoding, which is ignored
by the system.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented an effective approach to in-
tegrate content from Web applications and services/feeds for
personal use. The proposed approach uses WCDL to describe
the Web content and functionalities, and produces a lightweight
integration using a Web content extraction and hide-and-
display method. Using the proposed extraction and integration
system, typical users can construct mashup Web applications
easily and quickly. We also undertook an exploratory analysis
and evaluation of UI components for large-scale reuse. This
will provide reusable components in future developments.

As a future work, we plan to crawl a significant number
of websites/webpages and construct a highly precise retrieval
system for large-scale UI components. Moreover, we will
explore additional flexible methods of integration and construct
an open community for sharing mashup components.

VI. A CKNOWLEDGEMENT

This work was supported by a Grant-in-Aid for Young
Scientists B (No.26730158) from the Japan Society for the
Promotion of Science (JSPS).

REFERENCES

[1] Yahoo Pipes, URL: http://pipes.yahoo.com/pipes/ [accessed: 2015-02-
15].

[2] J. Yu, B. Benatallah, R. Saint-Paul, F. Casati, F. Daniel, and M. Matera,
“A framework for rapid integration of presentation components,” in The
Proceedings of the 16th International Conference on World Wide Web,
2007, pp. 923–932.

[3] J. Yu, B. Benatallah, F. Casati, and F. Daniel, “Understanding mashup
development and its differences with traditional integration,” Internet
Computing, vol. 12, no. 5, 2008, pp. 44–52.

[4] J. Tatemura, A. Sawires, O. Po, S. Chen, K. S. Candan, D. Agrawal,
and M. Goveas, “Mashup feeds: Continuous queries over Web services,”
in The Proceedings of the 33th SIGMOD International Conference on
Management of Data, 2007, pp. 1128–1130.

[5] M. Sabbouh, J. Higginson, S. Semy, and D. Gagne, “Web mashup
scripting language,” in The Proceedings of the 16th International
Conference on World Wide Web, 2007, pp. 1035–1036.

[6] E. M. Maximilien, H. Wilkinson, N. Desai, and S. Tai, “A domain-
specific language for Web apis and services mashups,” in The Proceed-
ings of the 5th international conference on Service-Oriented Computing,
2007, pp. 13–26.

[7] E. Wohlstadter, P. Li, and B. Cannon, “Web service mashup middle-
ware with partitioning of XML pipelines,” in The Proceedings of 7th
International Conference on Web Services, 2009, pp. 91–98.

[8] Q. Zhao, G. Huang, J. Huang, X. Liu, and H. Mei, “A Web-based
mashup environment for on-the-fly service composition,” in The Pro-
ceedings of 4th International Symposium on Service-Oriented System
Engineering, 2008, pp. 32–37.

[9] J. Fujima, A. Lunzer, K. Hornbaek, and Y. Tanaka, “C3W: clipping,
connecting and cloning for the Web,” in The Proceedings of the 13th
International World Wide Web conference, 2004, pp. 444–445.

[10] J. Wong and J. I. Hong, “Making mashups with marmite: Towards end-
user programming for the Web,” in The Proceedings of the SIGCHI
Conference on Human factors in computing systems, 2007, pp. 1435–
1444.

[11] XML User Interface Language, URL: http://developer.mozilla.org/
en-US/docs/Mozilla/Tech/XUL [accessed: 2015-02-15].

[12] R. Ennals and M. Garofalakis, “MashMaker: Mashups for the masses,”
in The Proceedings of the 33th SIGMOD International Conference on
Management of Data, 2007, pp. 1116–1118.

[13] Creating Web Clip Widgets, URL: https://support.apple.com/kb/
PH14092 [accessed: 2015-02-15].

[14] F. Daniel and M. Matera, “Turning Web applications into mashup
components: Issues, models, and solutions,” in The Proceedings of the
9th International Conference on Web Engineering, 2009, pp. 45–60.

[15] J. Guo and H. Han, “Analysis and design of programmatic interfaces for
integration of diverse Web contents,” International Journal of Software
Engineering and Knowledge Engineering, vol. 23, no. 10, 2013, pp.
1487–1511.

[16] Java Portlet, URL: http://www.jcp.org/en/jsr/detail?id=286 [accessed:
2015-02-15].

[17] Web Services for Remote Portlets, URL: http://www.oasis-open.org/
committees/wsrp/ [accessed: 2015-02-15].

[18] Simple Object Access Protocol, URL: http://www.w3.org/TR/soap/ [ac-
cessed: 2015-02-15].

[19] Representational State Transfer, URL: http://rest.elkstein.org/ [accessed:
2015-02-15].

[20] Yahoo Query Language, URL: http://developer.yahoo.com/yql/ [ac-
cessed: 2015-02-15].

[21] Web Service Definition Language, URL: http://www.w3.org/TR/wsdl
[accessed: 2015-02-15].

[22] HtmlUnit, URL: http://htmlunit.sourceforge.net/ [accessed: 2015-02-
15].

[23] H. Han and T. Tokuda, “A method for integration of Web applications
based on information extraction,” in The Proceedings of the 8th Inter-
national Conference on Web Engineering, 2008, pp. 189–195.

[24] HTML DOM Script Object, URL: http://www.w3schools.com/jsref/
dom obj script.asp [accessed: 2015-02-15].

23Copyright (c) IARIA, 2015. ISBN: 978-1-61208-392-6

CONTENT 2015 : The Seventh International Conference on Creative Content Technologies

[25] Web Application Description Language, URL: https://wadl.dev.java.net/
[accessed: 2015-02-15].

[26] News Search Documentation for Yahoo! Search, URL: http://developer.
yahoo.com/search/news/V1/newsSearch.html [accessed: 2015-02-15].

[27] H. Han, P. Gao, Y. Xue, C. Tao, and K. Oyama, “Analysis and
design: Towards large-scale reuse and integration of Web user interface
components,” in Information Reuse and Integration In Academia And
Industry. Springer Verlag, 2013, pp. 133–162.

[28] Y. Cao, V. Yegneswaran, P. Porras, and Y. Chen, “A path-cutting
approach to blocking XSS worms in social Web networks,” in The
Proceedings of the 18th ACM conference on Computer and communi-
cations security, 2012, pp. 745–748.

24Copyright (c) IARIA, 2015. ISBN: 978-1-61208-392-6

CONTENT 2015 : The Seventh International Conference on Creative Content Technologies

