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Abstract—In this paper we present a new classification
method based on Support Vector Machine (SVM) to treat
multi-class problems. In the context of multi-class problems,
we have to separate large number of classes. SVM becomes
an important machine learning tool to handle multi-class
problems. Usually, SVM classifiers are implemented to deal
with binary classification problems. In order to handle multi-
class problems, we present a new method that builds dynam-
ically a hierarchical structure from training data. Our mul ti-
class method is based on three main concepts : Hierarchical
classification, Fuzzy logic and SVM. We combine multiple
binary SVMs to solve multi-class problems. The proposed
method divides the original problem into sub-problems in order
to reduce its complexity.

Keywords-Classification; SVM; Fuzzy logic;

I. I NTRODUCTION

Solving multi-class problems with high performance is a
challenging problem because there is an important increasing
processing of data in databases. Until now, multi-class
problems remain among the primary worry in the field of
classification. Furthermore, the manual classification is not
able to keep up with the growth of data. An automatic
classification becomes necessary. Many machine learning
methods and statistical techniques has been proposed :
Decision trees [1], Nearest neighbor classifiers [2], Bayesian
models [3] and Support Vector Machine [4].

Unlike the other classifiers, SVM classifiers find an opti-
mal hyperplane maximizing the marge between two classes.
Generally, SVM is used for binary classification but its
extension to multi-class problems remains an open research
topic [5]. There are two techniques for extending SVM to
multi-class problems. The first technique consists in resolv-
ing optimization problems where the whole training data set
is used [6]. This technique requires huge time to train all
the data set. The second technique consists in constructing
binary classifiers from the root until leaves [7]. The original
problem is subdivided into simple binary sub-problems.
Each sub-problem contains a small portion of data and is
less complex than the original problem. In this paper, we
are interested in subdividing the original problem into binary
sub-problems. We propose a new classification method based
on SVM to treat multi-class problems. The proposed method
uses a fuzzy hierarchical structure to extract relationships

between objects. It introduces the transitive closure measure
to discover fuzzy similarity between objects. Training data
set of SVM obtained a priori by the transitive closure Min-
Max assures discriminating between positive and negative
classes. Introducing membership values extracted from tran-
sitive closure matrix to SVM optimization problem allows
high performance.

The remainder of this paper is organized as follows. In
section II, we provide an overview of related works. In
section III, we give a brief review of SVM. In section IV,
we describe the fuzzy hierarchical classification method. In
section V, we present our experimental results. Our future
research works are presented in section VI.

II. RELATED WORKS

The most important issue in multi-class problems is the
existence of confusion classes [8]. The hierarchical structure
is among techniques used to solve the confusion classes. The
multi-class problems based on SVM is mainly related to
hierarchical multi-class pattern recognition problems. Most
of recent works used hierarchical structure to address the
classification task. In [9], they proposed a new classification
algorithm based on a hierarchical structure. The algorithm
consists of the following stages : (i) generating category
information tree (ii) hierarchical feature propagation (iii)
feature selection of category information and (iv) single path
traversal. The proposed hierarchical classification system
allows adding new categories as required, organizing the
web pages into a tree structure and classifying web pages
by searching through only one path of the tree structure.
In [10], authors explore a hierarchical classification to
classify heterogenous collections of the web content. They
used hierarchical structure in order to distinguish a second
level category from other categories within the same top
level. They introduced SVM at each level to obtain a
hierarchy. In [11], authors added fuzzy membership values
to each input data and reformulate the SVM optimization
problem. The membership values make more contribution
in the classification process. The proposed fuzzy SVM can
solve different kinds of multi-class problems. In [12], the
fuzzy set theory is introduced in the classifying module.
The authors proposed a One-against-all fuzzy SVM (OAA-
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FSVM) classifier to implement a multi-class classification
system. The empirical results obtained by the proposed
system show that OAA-FSVM method performs better than
OAA-SVM method.

III. SUPPORTVECTORMACHINE

In this section we give a brief review of Support Vector
Machine. We present respectively binary and multi-class
classification.

A. Binary classification

Generally, SVM classifiers are designed to solve binary
classification problem [13]. It consists in minimizing the
empirical classification error and finding optimal hyperplane
with large margin [14]. Suppose a data set(xi, yi) : (i =
1, ..., n), wherexi corresponds to the attribute set for the
ith element. Letyi ∈ {−1, +1} be a labelled class. The
optimal hyperplane can be found by minimizing the margin
w in equation III-A :

(P ) =

{

Min 1
2‖w‖2

yi(wxi + b) ≥ 1 : i ∈ 1, n : ∀x ∈ Rn

Wherew andb are parameters of the model. The solution
of optimization problem is given by Lagrangian :

Lp =
1

2
‖w‖

2
−

n
∑

i=1

αi[yi(wxi + b) − 1] (1)

Where αi are called the Lagrange multiplier. We can
simplify the problem given by equation 1 as follows :

LD =

n
∑

i=1

αi −
1

2

n
∑

ij

αiαjyiyjxixj (2)

In several cases, linear solutions could not solve the
optimization problem. In this situation, a non linear separator
is required. The formulation of the problem is given bellow :

f(x) =







f(x) = wxi + b ≥ (1 − ξi) if yi = 1
wxi + b ≤ (1 − ξi) if yi = −1
ξi > 0, ∀i

The objective function will change as follows :

f(w) =
1

2
‖w‖

2
+ C

n
∑

i=1

(ξi)
κ (3)

WhereC and ξi are specified by the user and represent
the penalty of mis-classification. The Lagrangian is written
as follows :

Lp =
1

2
‖w‖2+C

n
∑

i=1

(ξi)−

n
∑

i=1

αi[yi(wxi+b)−1+ξi]−

n
∑

i=1

µiξi

(4)

We can however, simplify the problem given by equation 4
as follows :

LD =

n
∑

i=1

αi −
1

2

n
∑

ij

αiαjyiyjxixj (5)

The problem given by equation 5 becomes identical to the
linear discrimination problem given by equation 2.

B. Multi-class classification

In order to treat multi-class problems by constructing bi-
nary problems, several methods have been proposed. The are
three methods developed to deal with multi-class problems
using SVM classifier at each node :

1) One-against-one method:To resolve multi-class prob-
lem, one-against-one method requires one classifierSV Mij

for each pair of classes(i, j). It builds [n(n−1)/2] classifiers
for n-class classification problem. During the test phase, the
test set is evaluated by allSV Mij .

Let E = (xi, yi)i=1,n, be a training data set, where
xi ∈ Rn and yi ∈ {1, 2, ..., k}. For k class problem, the
optimization problem to constructSV Mij that separate two
classesCi andCj is given as follows :

(P ) =



























min
wi,bi,ξi

1

2
(wij)T wij + C

∑

t

ξij
t

(wij)T φ(xt) + bij ≥ 1 − ξij
t : yj = 1

(wij)T φ(xt) + bij ≤ −1 + ξij
t : yj 6= 1

ξij
t ≥ 0 : j = 1, ..., k.

(6)

To determine the decision function (fij(x) = Sgn(wijx+
bij)) which separates classesCi andCj , we use Max-Win
strategy :

Sgn(x) =

{

+1 : x > 0
−1 : x ≤ 0

x ∈

{

Ci : fij(x) = 1
Cj : fij(x) = −1

The process of Max-Win strategy is given as follows :

• For eachxi :

fij(x) =

k
∑

j 6=i,j=1

Sgn(fij(x)) (7)

• The class ofxi is obtained by :

arg max
i:1,...,k

fi(x) (8)
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2) One-against-all method:The one-against-all method
is simple and efficient. It requiresn classifiersSV Mi : (i =
1, n), for n-class classification problem. During the test
phase, the test set is evaluated by theSV Mi. SV Mi which
shows highest decision value is chosen.

Let E = {(x1, y1j), (x2, y2j)..., (xl, ylj)} be a training
data set, wherexi(i=1,l)

represents theith observation and
yij(j=1,k)

represents thejth class of theith observation. For
k class problem, the formulation of thejth SVM is given
as follows :

(P ) =































min
wi,bi,ξi

1

2
(wj)T wj + C

l
∑

j=1

ξj
i

(wj)T φ(xi) + bj ≥ 1 − ξj
i : yj = j

(wj)T φ(xi) + bj ≤ −1 + ξj
i : yj 6= j

ξj
i ≥ 0 : i = 1, l; j = 1, k

(9)

We solve the problem in (9) and obtaink decision
functions :

(P ) =















(w1)T φ(xi) + b1,
·
·
(wk)T φ(xi) + bk

(10)

The class ofxi is obtained as follows :

Class(x) = arg max
(i=1,...,l)

((wj)T φ(xi) + bj). (11)

3) Directed Acyclic Graph SVM (DAGSVM):The
DAGSVM method constructs also[n(n − 1)/2] classifiers
SV Mij . During the test phase, it creates a list of all
candidates classes. At each test, the class that obtained
negative score is eliminated from the list.

IV. SVM FUZZY HIERARCHICAL CLASSIFICATION

METHOD

The new method we propose in this paper supplies an
alternative to the three methods : One-against-one, One-
against-all and DAGSVM. Our method is based on a fuzzy
hierarchical classification technique we developed for the
specification software reuse [15]. It provides also advantages
to treat hierarchical multi-class problems. The method we
propose consists of three steps : (A) Training data set
compression by K-Mean (B) Fuzzy hierarchical classifica-
tion building and (C) Introducing membership function for
training SVM.

A. Training data set compression

Several works focused on reducing the number of training
data set of SVM [16]. The first step in our method is
compressing training data set of SVM. We apply basic K-
Mean algorithm in order to regroup similar data in the
same cluster and reduce time spent in training data set of

SVM. The goal of this step is expressed by an objective
function that depends on the proximities of the points to
their centroids. To assign each object to the closest centroid,
we apply equation 12 :

gi =
1

mi

∑

x∈Ci

x (12)

Wheregi represents the centroid of clusterCi, mi repre-
sents the number of objects in theith cluster andx is an
observation.

In order to measure the quality of clustering, we use the
sum of the squared error (SSE), given by :

SSE =

k
∑

i=1

∑

x∈Ci

dist(gi, x)2 (13)

Wherek represents the number of clusters.

B. Fuzzy hierarchical classification building

1) Similarity measure:The notion of a distance between
x andy has long been used in many contexts as a measure of
similarity or dissimilarity between a set’s elements. In this
work, we define a relative generalized Hamming distanceδ
to compute similarity between clusters which is defined by :

δ(ςi, ςj) =
1

n
× d(ςi, ςj) =

1

n

n
∑

i=1

|µςi
(xi) − µςj

(xi)| (14)

Wheren represents the number of clusters andd(ςi, ςj) is
the Hamming distance between clustersςi and ςj .

Sinceµςi
(xi) andµςj

(xi) ∈ [0,1], ∀ i = 1, n ⇒

0 ≤ δ(ςi, ςj) ≤ 1. (15)

2) Fuzzy subsets:Let K be a universe of discourse,A ⊂
K, andK = {xi}. An elementx of K belonging toA is
defined as :x ∈ A. Let µA(x) be a characteristic function
whose value indicates whetherx belongs toA according to :

µA(x) =

{

1 if x ∈ A
0 if x /∈ A

(16)

The characteristic functionµA(x) takes its values in the
interval [0,1]. It is defined as a mapping :

µA(x) : A → {0, 1} (17)

The fuzzy logic is based on partial membership function.
An object is belonging to one or more than a class in the
same case. LetA be a sub set, defined by its membership
function µA. The membership functionµA(x) of an object
x used in fuzzy set theory is defined as follows : An object
x does not belong to classC if the membership function
µC(x) = 0, belongs a little to classC if µC(x) border to
0, belongs enough to classC if µC(x) does not border to0
nor to 1, belongs strongly to classC if µC(x) border to1
and belongs completely to classC if µC(x) = 1.
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3) Fuzzy operators:Let A and B be fuzzy subsets of
universeK. The fuzzy operators on the fuzzy subsetA and
B of K are given as follows :

• Intersection operator (AND)
The membership function used by [17] to define the
set (A ∩ B), is given by the minimum of membership
functionsµA andµB as follows :

∀x ∈ X : µA∩B(x) = min{µA(x), µB(x)}. (18)

• Union operator (OR)
The membership function defines the set (A ∪ B) is
given by the maximum of membership functionsµA

andµB as follows :

∀x ∈ X : µA∪B(x) = max{µA(x), µB(x)}. (19)

4) Transitive closure of a fuzzy relation:To extract am-
biguous relationships between objects, we used the theory of
fuzzy sets [17]. It is defined by their memberships function.
In our work, we used Min-Max transitivity relation to find
fuzzy relationships between objects :
∀ x, y, z ∈ K× K × K :

µR(x, z) ≤ Miny[Max(µR(x, y), µR(y, z))] (20)

We compute the transitive closure Min-Max given by equa-
tion 20 until we obtain transitive closureΓ equals to
Γ=Rκ−1=Rκ at κ levels. This equality assures the existence
of a hierarchy. This relation gives the transitive distanceMin-
Max which locates the level of each objects and find the
short link between these objects. LetCi = {xi1, xi2..., xin}
and Cj = {x1j , x2j , ..., xnj} be two clusters obtained by
the similarity matrix. The fuzzy shortest link between two
clusters is given as follows :Γij = ∨[(xi1 ∧ x1j), (xi2 ∧
x2j), ..., (xin ∧ xnj)].

C. Introducing membership function for training SVM

In this step, we train fuzzy SVM at each node of the
hierarchy to subdivide the original problem into binary sub-
problems.

Let M be a set of classesC = {c1, c2, ..., ck}, wherek is
the number of clusters obtained by K-Mean in the first step
(k ≤ n).

First, we compute the average transitive closure of all
classes from the transitive closure matrix by the equation :

X̄ =
1

n

n
∑

i=1

n
∑

j=1

Γij (21)

Where n represents the number of values ofΓij in
transitive closure matrix andΓij represents fuzzy similarity
value betweenCi and Cj that are obtained by transitive
closure.

Second, we compute the average of transitive closures of
each class according to the following equation :

υi =
1

k

n
∑

j=1

Γij , j : 1, n (22)

The fuzzy membershipυi, which is the average similarity
betweenCi and the rest(k−1) of classes, is extracted from
the transitive closure matrix.

Suppose thatE = {(C1, y1, υ1), ..., (Ck, yk, υk)} a set of
training data with associated membership, whereCi ∈ Rk,
yi = {−1, +1} and0 ≤ υi ≤ 1.

In our work and in order to handle multi-class with high
precision, we introduced fuzzy membership function in the
training SVM step. Each rowi of the transitive closure
matrix defines the membership between classi and the
others classes. To construct positive and negative classes,
we compute for each classCi the membership valueυi. At
each node of the hierarchy, the problem can be defined as
follows :

SV M =

{

{Ci} ∪ SV M+
ij : υi > X̄

{Ci} ∪ SV M−
ij : υi ≤ X̄

(23)

The optimization problem given by our fuzzy SVM in (23)
is given as follows :



















1
2wT · w + C

k
∑

i=1

υiξi

yi(w · xi + b) > 1 − υiξi

υiξi ≥ 0 : i = 1, ..., k

(24)

WhereC, ξi represent the penalties of mis-classification
and υiξi represents error of classification with different
weights.

Using the Lagrangian multiplier, the problem is given as
follows :























Max : w(α) =
k

∑

i=1

αi −
1

2

k
∑

i=1

k
∑

j=1

αiαjyiyjK(xi, xj)

Subject :
k

∑

i=1

yixi = 0, 0 ≤ αi ≤ υiC : i = 1, k

(25)
We repeat the process at each node of the hierarchy until

reaching leaves containing only one class. Consequently, we
obtain a descendant hierarchical classification represented by
a succession of classes. Each class contains similar objects.
The advantage of our method is that training data set of
SVM obtained a priori by the transitive closure assures
discriminating between positive and negative classes.
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V. EXPERIMENTAL RESULTS

A. Data

In this paper, we compareded the performance of our
method with those of the methods : One-against-one, One-
against-all and DAGSVM. We used three different prob-
lems available in [18]. The first problem is Iris database
which contains 150 records grouped equally in three classes.
The second problem is Glass database which contains 214
records distributed in six classes. The third problem is Letter
database which contains 16000 records distributed in twenty
six classes. We give detail of the three problems in Table I.

Table I
PROBLEM DETAIL

Problem Data Class Attributes
Iris 150 3 4
Glass 214 6 9
Letter 16000 26 16

B. Experimental

• Compression step
To show how the compression step is usefull, we conducted
two experiments. The first experiment consists in applying
K-Mean to training data set step with the original data set
replaced by clusters centroid. In the second experiment, we
apply our method,without calling K-Mean. Table II shows
results given by the two experiments.

Table II
COMPRESSION STEP INFLUENCE ONSVM-CHF PERFORMANCE

With K-Mean Without K-Mean
Data # Training Accuracy # Training Accuracy

SVM time SVM time
Iris 2 0.021 98.00 3 0.05 98.23

Glass 4 0.05 77.63 6 11 78.10
Lettre 21 110 98.35 24 255 98.45

In the first step, our method performs better in number of
SVMs and training time criteria. Using K-Mean algorithm
reduced automatically the number of SVMs and cost training
time. In the second step we used the original data set
wich allows slightly better accuracy compared with accuracy
result obtained in the first step. Since the two first criteriain
the classification domain are very important, we introduced
the K-Mean algorithm in the process of our method.

• Kernel function
In order to choose the best kernel function of each problem,
we tested different kernel functions : Polynomial (d=2,3,...,8)
and RBF (γ = 0.1, 0.2, ..., 1). We choose only results where
SVM performs well. The results are given in Table III.

For Iris (k=3) and Glass (k=6) problems, polynomial
function gives best results. ForLetter (k=26) problem, RBF
function performs best. In our case, polynomial function

Table III
ACCURACY OBTAINED BY POLYNOMIAL AND RBF KERNEL

FUNCTIONS

Data
SV MPoly:d SV MRB:γ

2 4 6 8 0.1 0.2 0.4 1.0

Iris 0.98 0.95 0.94 0.94 0.97 0.96 0.90 0.96
Glass 0.66 0.77 0.76 0.69 0.66 0.69 0.72 0.65
Letter 0.54 0.67 0.88 0.87 0.78 0.93 0.98 0.92

performs better when the number of classes is small. High
accuracy is obtained whenC = 210, C = 211 andC = 211

for Iris, Glass and Letter problems respectively. The pro-
posed method proved high performance for the three prob-
lems (Iris : 98.00%, Glass : 77.63% and Letter : 98.35%).

• Accuracy comparison
We use accuracy criterion to evaluate our results with results
obtained by methods : One-against-one, One-against-all and
DAGSVM. To obtain high accuracy, we tested our method
with different values ofC : (22,...,212). Accuracy is obtained
from confusion matrix. Our accuracy comparison results
are compared with : One-against-one, One-against-all and
DAGSVM (see Table IV). The proposed method proved high
performance for the three problems.

Table IV
ACCURACY COMPARISON

Problem One- One- DAGSVM Our
gainst- gainst- Proposed
one rest Method

Iris 97.33 96.67 97.36 98.00
Glass 71.49 71.96 72.22 77.63
Letter 97.98 97.88 96.73 98.35

• The fuzzy membership function influences on the
classifier performance

In this section, we tested the influence of the fuzzy mem-
bership function on the classifier performance. We variedυi

in the range from0.1 to 0.8. Figure 1 shows that the high
performance is obtained whenυi is equal to 0.31, 0.22 and
0.32 for problems Iris, Glass and Letter respectively. These
fuzzy values are extracted from the transitive closure matrix.
The valuesυi are introduced to train SVM. Choosingυi

from transitive closure matrix allows our method to perform
better.

VI. CONCLUSION

In this paper, we proposed a new fuzzy SVM hierar-
chical method to handle multi-class problems. The fuzzy
hierarchical structure consists in subdividing the original
problem into simple binary problems. Our method takes
its advantage from using fuzzy hierarchical classification
and fuzzy Support Vector Machine. Furthermore, it has the
advantage of using only values from the similarity matrix
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Figure 1. Fuzzy membership influence.

for the SVM training rather than using values randomly.
Similarity matrix assures a priori separate classes in the
hierarchy.

Unlike other classification methods, our method requires a
number less than or equal to(k−1) SVM classifiers from the
root until leaves (see Table II). The number of SVM required
reduce automatically the cost of training SVM time.

In this work, we find that introducing the membership
values extracted from transitive closure matrix to SVM
optimization problem gives a high accuracy.

Our future works consists in adapting our method to
video sequencing problem in order to extract fuzzy relations
between objects. Moreover, we will create a new dynamic
kernel function to handle automatically classification pro-
cess.
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