
Exploring Statistical Information for Applications-Specific

Design and Evaluation of Hybrid XML storage.

Lena Strömbäck, Valentina Ivanova, David Hall

Department of Computer and Information Science

Linköpings Universitet

S-581 83 Linköping, Sweden

lena.stromback@liu.se, valentina.ivanova@liu.se, david.hall@liu.se

Abstract — Modern relational database management systems

provide hybrid XML storage, combining relational and native

technologies. Hybrid storage offers many design alternatives

for XML data and in this paper we explore how to aid the user

in effective design of hybrid storage. In particular we

investigate how the XML schema and statistical information

about the data can support the storage design process. We

present an extended version of our tool HShreX that uses

statistical information about a data to enable fast evaluation of

alternative hybrid design solutions. In addition we show the

benefit of the approach by a first evaluation where we discuss

how the tool aids in the storage design and evaluation process.

Keywords – XML, Hybrid XML management, indexing, storage

design

I. INTRODUCTION

The rapid increase in web based applications yields an
increasing interest in using XML for representation of data.
XML is able to represent all kinds of data ranging from
marked-up text, through so called semi-structured data to
traditional, well structured datasets. Supporting the flexibility
that makes XML appealing is challenging from data
management and technical perspectives. Several approaches
have been used including native databases and shredding
XML documents into relations. In practice, hybrid storage
that combines native and relational solutions is of large
interest. Hybrid storage is provided by the major relational
database vendors (Oracle, IBM DB2 and Microsoft SQL
Server). They offer interesting options for storage design
where native and relational storage can be used side by side.

Several studies evaluate different solutions for XML
management (e.g., [22][24][26][31]). For shredding, it is
well known that the choice of translation strategy affects the
efficiency (e.g., [5][8][10][12]) while hybrid XML storage,
has so far only been studied in a few cases, (e.g.,
[16][17][27][28]). The above studies discuss a number of
features that may have an impact on how to achieve efficient
storage; the complexity and regularity of the XML structure;
how the data is queried, i.e., the access patterns for different
entities in the data set; and the frequency of references to
other sources.

In this paper, we further explore these issues by
investigating the impact of the application on the
performance of the database. The properties we are focusing

on are the XML schema structure and statistical properties of
the data set. We first give some further motivation and
discuss the goals of our work. This is followed by a
discussion of properties and measurements relevant for
storage design. We then present a tool that enables fast
evaluation and exploration of storage solutions and present a
first evaluation to show the feasibility of the tool. The paper
is summarized by presenting our future vision. Our long term
goal with the work is to present a method that can suggest a
set of plausible hybrid storage models for an application.

II. MOTIVATION AND GOALS

Previous work (e.g., [1][3][5][8][23]) have defined
efficient shredding methods for XML data into relational
databases that result in fast query times. For hybrid storage
the situation is more complex where an inappropriate choice
of storage design can lead to poor performance [25]. In
general automatically shredded relational XML mappings
can lead to a rather large and complicated structure of
relations. On the other hand, storing entire XML documents
natively in XML storage keeps the structure completely
intact to the cost of slow access to the data. For hybrid XML
storage we have the choice to store parts of the XML
structure as relations and other parts as XML and can gain
from the benefit of a good data model and relatively fast
performance. The design of a good hybrid storage model is
complex and dependent on the requirements for the specific
application [25].

Exploration and evaluation of alternative solutions is a
time consuming task. Methods and tools, to aid the user in
design of hybrid storage, and measurements, that could give
hints on how to make choices, are of high importance. In a
preliminary evaluation we compared the query efficiency
with the amount of data stored as XML in the hybrid
solution. In our tests, we adopt the shredding principles used
in ShreX [1][6] as these principles give a mapping that
captures the semantics of a given XML schema for the XML
data. To explore hybrid storage we used the extended system
HShreX [27][29], which also allows hybrid XML mappings.
The general principle behind the mappings of these systems
is that complex elements are translated to relational tables.
Simple elements and attributes are shredded to a column in
their parent table if they occur at maximum once in its parent
element. HShreX extends this basic shredding by providing

108

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

hybrid XML storage, i.e., to allow parts of the structure to be
kept as XML in the final database representation. In our
study the complexity of the created models varies between
one or two relations for the models stored in pure XML to
over 100 relations for the fully shredded data models.

The results of these tests are illustrated in Figure 1. The
first two graphs show the results for two real data sets from
the IntAct [2] and UniProt [30] databases. In this case we can
see that the amount of data stored as XML gives a good
estimation of the expected query time. For the Michigan
Benchmark data [19] the estimation is not as good as for the
two other datasets. This means that the amount of data is a
good indicator for the performance, but also that further
statistics about the data could give us better indicators and
aid in effective storage design.

III. AVAILABLE INFORMATION

In principle there are three sources of information that
can be used to learn more about the features and storage
requirements of a computer application. These are; The
general data schema, i.e., the data model; Samples of data to
determine how the data model is used and what parts of the
data model are in most common use; Samples of queries to
determine what kind of queries are often performed for the
data. In this work, we will examine how to use the data
model and statistical information for a particular dataset.

As shown in the previous section the amount of data

stored as XML is related to the query performance.
However, the prediction we get from simply measuring the
amount of data is not enough, we also need to collect more
detailed information about the structure of the data. In
practice, different parts of the XML schema are populated
differently in different data sets. The XML schema carries
information about the general structure, but, as for relational
databases, the schema does not give a full picture of how this
structure is instantiated for a particular dataset. We want to
capture this information to create an effective hybrid storage
model. In previous work [13], where we worked with
generated data, we could see that also the amount of data at
various positions in the XML file and the structure of this
data had an impact on query performance. We wanted to
explore this further and collected the following information:

 Overall statistics for the dataset. With this we mean
characterizing the general structure of the dataset.
For this purpose we use simple measures, such as,
the total number of attributes, elements, and levels in
the XML. We also collect the number of elements at
each level of the dataset to determine the fan out of
the data.

 Diversity of the dataset. To get estimations of
diversity we collect the number of elements and
attributes for each element or attribute string, at
which depths they occur and compare those to the
number of overall elements. We also collect
information on how many unique search paths occur
within the data set and the number of their
occurrence.

 Detailed information at each position in the file.
This is collected by counting the occurrence of
element names at each level in the file. For each
combination of parent/child node we count how
common the child node is for this parent and collect
the minimum, maximum and mean number of times
this child occurs for the parent.

Our work on generated data has shown that parent/child
statistics were of particular interest since this had a large
impact on query performance. Figure 2 shows an example of
the parent/child statistics. In the XML schema tree we show
how common the different child nodes are in the parents.

Figure 1. Run times [ms] (black) and data size [bytes] (grey) for PSI-MI (left), UniProt (middle) and Michigan Benchmark (right)

Figure 2. Statistics in HShreX

109

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

IV. A TOOL FOR EVALUATION

To allow easy access to the statistics and aid in
evaluating storage alternatives we extended our tool
HShreX to include this new information. The new version
of the tool can be used to create and evaluate different XML
storage models. The system analyses an XML schema and
represents it as a tree structure, which facilitates its visual
perception. The tree structure helps to easily understand and
navigate the schema components as well. The relational
schema, which the HShreX user can create in a database, is
likewise created during the schema analyses. Once the
database structures are created, large datasets, which
corresponds to the currently parsed schema, can be quickly
shredded in the database. Each step starting from the XML
schema parsing and ending in datasets loading is logged and
available for review in a panel under the main work area.

The relational schema is created following the shredding
strategy, mentioned above. The user can alter the data
shredding rules using HShreX annotations [27]. In this way,
the XML data can be represented in purely native, mixed and
shredded storage models. The HShreX annotations provide
the opportunity to switch rapidly and flexibly between
different storage models, create them in a database and
evaluate their performance features.

HShreX‟s user interface provides three panels, which
give more details of the schema elements and their
mappings. The first panel lists specific details, such as
currently applied HShreX annotations, children elements and
attributes and their occurrences, for the currently selected
element in the XML schema tree. The second shows HShreX
mapping of the selected element or attribute in the tree. The
relational tables and their relations are available in figures in
the third panel.

In this work, the user interface was extended in two
directions – to provide more convenient work with HShreX
annotations and to visualize more information for a particular
dataset. Figure 3 shows the dialog that facilitates
manipulation of HShreX annotations. While navigating in
the schema tree, we can open the dialog for the element or
the attribute of interest and process its annotations. The
dialog provides functionality for adding annotations,
updating, i.e., changing values of available annotations and
deleting annotations. Since some combinations of
annotations for an element or an attribute are not valid, we
validate each annotation regarding the already available
annotations prior to adding. A useful feature is provided
through the “Apply all changes to all elements of this type”
button i.e., the currently added/removed annotations will be
applied to all elements of this type in the XML schema with
a single action. The basic data and the annotations, which
apply to the element or the attribute of interest, are listed in
the right side of the dialog.

The second improvement in the user interface is
orientated towards the statistical information available for a
particular dataset. HShreX obtains this information by
analyzing a set of sample XML files representing the dataset.
Detailed information, for the element or the attribute of
interest and its children elements and attributes, is presented

in the schema tree when a particular dataset is loaded to the
database in use. Three different colors are used to facilitate
user‟s perception and to show how many times a particular
child node appears under its parent element i.e., different
children nodes are colored depending on their frequency of
appearance. Thus, the user gets fast and highly useful
overview of children nodes and can prioritize his next studies
based on this information. The schema tree representation of
statistical information aids the user decision on what
annotations are appropriate to be used for a particular dataset
and helps to construct proper queries with higher efficiency.
Further, the statistics can help the user to create indexes and
optimize queries.

The other part of the statistical data described in the
previous section can be found in “Open Main Statistics” and
“Open All Statistics” dialogs under the “File” menu. The
statistical data visualized in the schema tree is small,
however, our experience have shown that it is the most
useful part of the information available for the dataset.

V. A FIRST EVALUATION

In this section, we present the results from the
preliminary study of our approach, a more extensive research
could be a subject of a future work. To explore the benefit of
our tool and the statistical information, we used it to evaluate
the performance on the homo sapiens dataset from the
REACTOME database [18] and on the BIOMODELS
dataset [7], both corresponding to the SBML 2.1 XML
schema [14]. The data in the first dataset is spread in depth
(the data is stored on many levels) and the data in the second
dataset is spread in width (the data is populated almost
equally within the dataset).

The statistical information for the dataset of interest
becomes available in HShreX when it is loaded in the
database in use. The statistics available directly in the
HShreX schema tree gives detailed information for the
occurrence of the nodes and their parents and present a clear
view of data distribution in the particular dataset. This data is
presented in the interface as a number pair in the child node
name where the first number shows the number of times the
child element occurs under its parent and the second shows
the number of times the parent element is presented in the
dataset at this level. The three numbers, in the parenthesis in

Figure 3. Add/remove annotations dialogue

110

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

the child node name, show the minimum, the maximum and
the average number of times this child occurs for this parent.

Examining the mentioned datasets, using the HShreX
interface, we noticed that some of the elements and their
parents occur more often than others, thus our research will
be more productive if we concentrate on them. Therefore in
our examples we have applied the HShreX annotation
maptoxml to the reaction and to the model elements in the
XML schema. This particular annotation/value combination
has been selected in order to force the HShreX application to
store these parts of the data as pure XML in the
corresponding database. If we do not apply any HShreX
annotations the data in the datasets is represented in a
shredded storage model (positions 1 and 2 in Figure 6). The
HShreX has been forced to represent the data in a hybrid and
in a pure native storage models applying the maptoxml
annotation to the reaction (positions 4 to 8) and model
(positions 10 to 14) elements respectively.

We have chosen two of the major database servers
available on the market and set up their options related to the
XML data representation in various configurations. Using
the database servers XML storage capabilities we are able to
store the XML data with or without associating it with
corresponding XML schema. The database servers run on
HP Proliant DL380 G6 Server with two Intel Xeon E5530
Quad Core HT Enabled processors running at 2.4 GHz (in
total 16 logical processors) and 30 GB RAM.

We have created different SQL queries (exemplified in
Figure 4 and Figure 5) and executed them against the three

storage models and different database configurations. In
Query 1, the simpler among both, we retrieve details for a
reaction where one of its participants is specified. In the
second query, we join details for reactions and reactions to
extract participants and products for all reactions. First we
executed the two queries using only the homo sapiens
dataset. After that we loaded both datasets at the same time
and evaluated how the response time changes when the size
of the data stored in the database increases. The measured
performance can be influenced by other processes running
on the server. To reduce this influence, the queries from the
figures were executed ten times per condition set, and the
averages of the results are presented.

First runs were made without any additional
optimization. Based on the statistics, proper XML indices,
for each variation of database storage options, were created
and the same queries were executed again. Thus, we benefit
from the statistical information available for a particular
dataset in three ways: we can use the statistics to choose the
best place for the HShreX annotations regarding our interests
and in this way to switch flexibly and rapidly between
different storage models. We are as well able to create
proper, for each storage model, indices based on the view of
the data distribution in the particular dataset. A final
advantage is that we can optimize our SQL queries not only
creating indices but rewriting them based on the data

Shredded:
SELECT a."id", a."name"
FROM sbml_model_listOfReactions_reaction a,

 sbml_model_listOfReactions_reaction_listOfReactants b,
 sbml_model_listOfReactions_reaction_listOfReactants_speciesReference c

WHERE a."shrex_id" = b."shrex_pid"
 AND b."shrex_id" = c."shrex_pid"

 AND c."species" = 'REACT_5251_1_Oxygen';

Native:
SELECT reaction.query('for $i in /reaction/listOfReactants/speciesReference

 where $i/@species = "REACT_5251_1_Oxygen"
 return <Details> {$i/../../@id} {$i/../../@name} </Details>') "data"

FROM sbml_model_listOfReactions_reaction
WHERE reaction.exist('/reaction/listOfReactants/speciesReference
 [@species="REACT_5251_1_Oxygen"]') = 1;

Figure 4. Sample query for SBML – Query 1

Shredded:
SELECT d."species", b."shrex_pid", e."species
FROM sbml_model_listOfReactions_reaction_listOfReactants b,

 sbml_model_listOfReactions_reaction_listOfProducts c,
 sbml_model_listOfReactions_reaction_listOfReactants_speciesReference d,
 sbml_model_listOfReactions_reaction_listOfProducts_speciesReference e

WHERE c."shrex_pid" = b."shrex_pid"
 AND b."shrex_id" = d."shrex_pid"
 AND c."shrex_id" = e."shrex_pid"

 AND d."species" = 'REACT_5251_1_Oxygen';

Native:
SELECT reaction.query('for $react in //reaction,

 $rtant in $react/listOfReactants/speciesReference,
 $prod in $react/listOfProducts/speciesReference
 return <path> {data($rtant/@species)} {data($react/@id)}
 {data($prod/@species)} </path>') "test"

FROM sbml_model_listOfReactions_reaction
WHERE reaction.exist('//reaction/listOfReactants/speciesReference
 [@species="REACT_5251_1_Oxygen"]') = 1;

Figure 5. Sample query for SBML – Query 2

Figure 6. Performance [ms] for Query 1 (left) and Query 2 (right) where: ■ homo sapiens dataset with index, ■ homo sapiens dataset without index,

■ homo sapiens and biomodels datasets with index and ■ homo sapiens and biomodels datasets without index

(* some values exceed the „Y‟ coordinate range)

111

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

distribution and complexity.
The results from the two different query executions are

shown on Figure 6. The equivalent positions on the „X‟
coordinate in both of the charts correspond to equivalent
condition sets of database storage options. The results from
positions 1 and 2 correspond to a fully shredded storage,
positions 4 – 8 correspond to a hybrid storage and positions
10 – 14 correspond to a pure native XML storage. Positions
4 – 8 use the same conditions sets of database storage
options as positions 10 – 14, however the HShreX annotation
is applied to different elements. As we expected, there is a
clear relation between the storage model and the query
performance i.e., the execution times are fastest in the
shredded storage and slowest in the pure native storage.

Examining the positions 4 – 14 in both result sets we can
clearly see that the query performance varies with a different
amount for the different database storage options when the
size of the data in the database increases. The performance is
usually improved when the XML indices are created. It is
worth noting that this is not true for position 11 in Query 2
where the performance drops considerably when the index is
used. While positions 4 – 8 in the two results sets are
comparable, positions 10 – 14 have a lot of differences.
Positions 13 and 14 in the first results set have the worst
performance among the results for pure native storage while
in the second results set they have the best performance.
Analyzing positions 13 and 14 in the first result set shows
that indices have excellent performance when the size of the
data is relatively small and their performance decrease when
the data size increases. It is worth noting as well the
differences between positions 7, 8 and respectively 13, 14 in
the results for Query 1. Positions 7, 13 and 8, 14 respectively
have the same database storage options – positions 7 and 8
give the best results while positions 13 and 14 give the worst.

Analyzing the two result sets we can conclude that
indices provide better results when used with the hybrid
storage than with the pure XML storage. The indices
efficiency increases when the size of the data in the hybrid
storage increases. During results analysis we need to
consider that the results are also affected from the database
servers XML storage capabilities and created indices. The
benchmark results are influenced from the data distribution
in the datasets as well as the SQL queries construction. The
statistical data available in HShreX facilitates and aids our
decision where to put HShreX annotations and SQL indices
and thus HShreX assists us in fast storage construction.

VI. RELATED WORK

The work presented in this article combines ideas from
several different areas for XML storage. The first is the work
on automatic shredding of XML documents into relational
databases by capturing the XML structure or based on the
DTD or XML schema for the XML data [1][5][6][8]. The
intention with these approaches is to create efficient storage
for the XML data. The resulting data model is often hard to
understand and is usually hidden from the user via an
interface providing automatic query translation of XQuery
into the model.

The other related area is hybrid XML storage for
relational databases. The vendors offer different underlying
representation for the XML type, in some cases it is a byte
representation of the XML, in other cases it is some kind of
shredding of the XML data [4][10][20][23]. In addition,
database vendors provide a number of tools to import XML
natively or shred the data into the system. These tools are
intended for design of one database solution, thus generation
and evaluation of alternative solutions become time
consuming.

Interesting work [21] has addressed the question of
properties of XML data and generating statistical and
comparative measurements of XML datasets. However, this
work concentrates on overall measures of properties of the
dataset and does not consider the more detailed statistical
measurements that we have found most useful in our work.

Other related works are found within database
optimization [11][15]. Query optimization can rely on
statistics of data and query use for fine tuning their
performance [9][12]. However, these statistics are often
dependent on the internal database representation instead of
based on the original dataset as is necessary for our work. It
would be interesting to include these measurements in our
work to see whether they could give added value to our
indicators.

VII. CONCLUSION AND FUTURE DEVELOPMENT

The first tests of the tool are promising and show that our
tool is very useful for aiding in storage design. Using the
tools and statistics improves the evaluation process and
makes it possible to compare a high number of alternative
hybrid database designs. We will continue to use the tool for
more extensive evaluations and to refine the method. In
particular, we want to compare our set of measurements with
the more advanced statistical methods used in [9]. The final
goals would be to use the measure to provide suggestions of
beneficial hybrid data models for the end user, to further
automate the process of storage design. To reach this goal it
is crucial to have access to series of data with specific
properties to fine tune the indicators and tests. Also for this
issue we have made a first solution for generating data with
desired properties [13], which can be integrated into our tool.

One bottleneck with our method is that hybrid data
models are very complex to query due to the mix of query
languages. We are currently using SQL/XML, however, if
we consider a user that want to work on the data as if it was
XML, this is not feasible. Options are automatic query
translations from XQuery to the defined model or to provide
a higher level query language for the user.

Another very interesting question is hybrid storage
solutions with several DB architectures as a backend, for
instance pure native XML databases or specialized databases
for graphs or RDF storage. This becomes particularly
important for applications where parts of the data contain
RDF code or represent graphs as is the case for many system
biology standards. We have previously evaluated different
combinations [27][28] and would like to include also these
options in the HShreX Framework.

112

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

ACKNOWLEDGMENT

We acknowledge the financial support from the Center
for Industrial Information Technology and the Swedish
Research Council. We are also grateful to Juliana Freire for
support and fruitful discussions regarding this work and for
Mikael Åsberg for implementation work on the HShreX tool.

REFERENCES

[1] S. Amer-Yahia, F. Du, and J. Freire, A Comprehensive Solution to
the XML-to-Relational Mapping Problem, Proceedings of the ACM
International Workshop on Web Information and Data Management,
Nov. 2004, pp. 31-38, doi:10.1145/1031453.1031461.

[2] B. Aranda et al., The IntAct molecular interaction database in 2010,
Nucleic Acids Research, Oct. 2009, pp. 1-7, doi:10.1093/nar/gkp878.

[3] D. Barbosa, J. Freire, and AO. Mendelzon, Designing Information-
Preserving Mapping Schemes for XML, Proceedings of the
International Conference on Very Large Databases, Aug.-Sep. 2005,
pp. 109-120.

[4] K. Beyer, F. Özcan, S. Saiprasad, and B. Van der Linden,
DB2/XML:Designing for Evolution, Proceedings of the ACM
SIGMOD International conference on Management of data, Jun.
2005, pp. 948-952, doi:10.1145/1066157.1066299.

[5] B. Bohannon, J. Freire, P. Roy, and J. Siméon, From XML Schema to
Relations: A Cost-Based Approach to XML Storage, Proceedings of
the IEEE International Conference on Data Engineering, Feb.-Mar.
2002, pp. 64-75, doi:10.1109/ICDE.2002.994698.

[6] F. Du, S. Amer-Yahia, and J. Freire, ShreX: Managing XML
Documents in Relational Databases, Proceedings of the International
Conference on Very Large Databases, Aug.-Sep. 2004, pp. 1297-
1300.

[7] European Bioinformatics institute http://www.ebi.ac.uk/biomodels-
main/ 25.09.2010.

[8] D. Floresco and D. Kossmann, Storing and Querying XML Data
using an RDMBS, IEEE Data Engineering Bulletin, vol. 22(3), 1999,
pp. 27-34.

[9] J. Freire, JR. Haritsa, M. Ramanath, P.Roy, and J. Siméon, StatiX:
making XML count, Proceedings of the ACM SIGMOD International
conference on Management of data, Jun. 2002, pp. 181-191,
doi:10.1145/564691.564713.

[10] H. Georgiadis and V. Vassalos, XPath on steroids: Exploiting
relational engines for XPath performance, Proceedings of the ACM
SIGMOD International conference on Management of data, Jun.
2007, pp. 317-328, doi:10.1145/1247480.1247517.

[11] G. Gottlob, C. Koch, and R. Pichler, Efficient Algorithms for
processing Xpath Queries, ACM Transactions on Database Systems,
vol. 30, No 2, Jun. 2005, pp. 444-491, doi:10.1145/1071610.1071614.

[12] T. Grust, J. Rittinger, and J. Teubner, Why Off-the-Shelf RDMBMSs
are Better at Xpath Than You Might Expect, Proceedings of the ACM
SIGMOD International conference on Management of data, Jun.
2007, pp. 949-958, doi:10.1145/1247480/1247591.

[13] D. Hall and L. Strömbäck, Generation of Synthetic XML for
Evaluation of Hybrid XML Systems, In: M. Yoshikawa et al. (Eds)
Database Systems for Advanced Applications 15th International
Conference, International Workshops: GDM, BenchmarX, MCIS,
SNSMW, DIEW, UDM, Apr. 2010, Revised Selected Papers. Lecture
Notes in Computer Science, vol. 6193, 2010, pp. 191-202,
doi:10.1007/978-3-642-14589-6_20.

[14] M. Hucka et al., The systems biology markup language (SBML): a
medium for representation and exchange of biochemical network
models, Bioinformatics, vol. 19(4), 2003, pp. 524-531,
doi:10.1093/bioinformatics/btg015.

[15] J. McHugh and J. Widom, Query optimization for XML, Proceedings
of the International Conference on Very Large Databases, Sep. 1999,
pp. 315-326.

[16] I. Mlynkova, Standing on the Shoulders of Ants: Towards More
Efficient XML-to-Relational Mapping Strategies, Proceedings of the
International Workshop on Database and Expert Systems
Applications, Sep. 2008, pp. 279-283, doi:10.1109/DEXA.2008.16.

[17] MM. Moro, L. Lim, and Y-C. Chang, Schema Advisor for Hybrid
Relational-XML DBMS, Proceedings of the ACM SIGMOD
International conference on Management of data, Jun. 2007, pp. 959-
970, doi:10.1145/1247480-1247592.

[18] Reactome – a curated knowledgebase of biological pathways
http://reactome.org 25.09.2010.

[19] L. Runapongsa, JM. Patel, HV. Jagadish, Y. Chen, and S. Al-Khalifa,
The Michigan Benchmark: Towards XML Query Performance
Diagnostics, Information Systems, vol. 31(2), Apr. 2006, pp. 73-97,
doi:10.1016/j.is.2004.09.004.

[20] M. Rys, XML and relational Management Systems: Inside Microsoft
SQL Server 2005, Proceedings of the ACM SIGMOD International
conference on Management of data, Jun. 2005, pp. 958-962,
doi:10.1145/1066157.1066301.

[21] I. Sanz, M. Mesiti, G. Gurrini, and RB. Llavori, An entropy based
characterization of the heterogeneity of XML collections,
Proceedings of the International Workshop on Database and Expert
Systems Applications, Sep. 2008, pp. 238-242,
doi:10.1109/DEXA.2008.55.

[22] AR. Schmidt, F. Waas, M. Kersten, MJ. Carey, I. Manolescu, and R.
Busse, XMark: A Benchmark for XML Data Management,
Proceedings of the International Conference on Very Large
Databases, Aug. 2002, pp. 974–985.

[23] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. DeWitt, and J.
Naughton, Relational databases for querying XML documents:
Limitations and opportunities, Proceedings of the International
Conference on Very Large Databases, Sep. 1999, pp. 302-314.

[24] L. Strömbäck, Possibilities and Challenges Using XML Technology
for Storage and Integration of Molecular Interactions, Proceedings of
the International Workshop on Database and Expert Systems
Applications, Aug. 2005, pp. 575-579, doi:10.1109/DEXA.2005.154.

[25] L. Strömbäck and J. Freire, XML Management for Bioinformatics
Applications, Computing in Science and Enineering, in press.

[26] L. Strömbäck and D. Hall, An evaluation of the Use of XML for
Representation, Querying, and Analysis of Molecular Interactions, In:
T. Grust et. al. (Eds) Current Trends in Database Technology –
International Conference on Extending Database Technology 2006
Workshops PhD, DataX, IIDB, IIHA, ICSNW, QLQP, PIM, PaRMA,
and Reactivity on the Web, Mar. 2006, Revised Selected Papers.
Lecture Notes in Computer Science, vol. 4254, 2006, pp. 220-233,
doi:10.1007/11896548_20.

[27] L. Strömbäck, D. Hall, M. Åsberg, and S. Schmidt, Efficient XML
data management for systems biology: Problems, tools and future
vision, International Journal on Advances in Software, vol. 2(2-3),
2009, pp. 217-233, Invited contribution.

[28] L. Strömbäck and S. Schmidt, An Extension of XQuery for Graph
Analysis of Biological Pathways, Proceedings of the International
Conference on Advances in Databases, Knowledge, and Data
Applications, Mar. 2009, pp. 22-27, doi:10.1109/DBKDA.2009.16.

[29] L. Strömbäck, M. Åsberg, and D. Hall, HShreX – A Tool for Design
and Evaluation of Hybrid XML storage, Proceedings of the
International Workshop on Database and Expert Systems
Applications, Aug.-Sep. 2009, pp. 417-421,
doi:10.1109/DEXA.2009.33.

[30] The UniProt Consortium The Universal Protein Resource (UniProt),
Nucleic Acids Research, vol. 36(1), 2008, pp. D190-D195,
doi:10.1093/nar/gkm895.

[31] BB. Yao, MT. Özsu, and N. Khandelwal, XBench Benchmark and
Performance Testing of XML DBMSs, Proceedings of the IEEE
International Conference on Data Engineering, Mar. 2004, pp. 621-
633.

113

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

