
Optimal Query Operator Materialization Strategy for Hybrid Databases

Martin Grund, Jens Krueger, Matthias Kleine, Alexander Zeier, Hasso Plattner
Hasso-Plattner-Institut
August-Bebel-Str. 88

14482 Potsdam, German
{martin.grund, jens.krueger, matthias.kleine, alexander.zeier, hasso.plattner}@hpi.uni-potsdam.de

Abstract—Recent research shows that main memory
database system provide many different advantages over tra-
ditional disk based systems. Furthermore it is shown that the
way how data is persisted in such a system is very important.
Modern systems provide a hybrid row- and column-oriented
storage layer that proves to be optimal for certain workloads.
To further optimize the query execution it becomes to crucial
to select the best possible query operators. However, not
only the implementation of the operator is very important
but as well the way how intermediate results are handled.
In HYRISE, we implemented different possibilities of query
operator materialization and show in this paper when to chose
which kind of output. The results of our experiments can
be directly used during plan creation by a cost-based query
executor.

Keywords-Hybrid Main Memory Database; Query Execution;
Column Store; Materialization.

I. INTRODUCTION

Main memory database systems have proven to be
advantageous for various scenarios ranging from high-
performance analytical data warehouse accelerators to classi-
cal Online Transactional Processing (OLTP) databases. Due
to the available size of main memory on a single rack server
of currently 1TB almost all enterprise like applications with
a mixed transactional / analytical focus can be run on
such systems. Another great advantage of in-memory data
processing is that data access operations are more predictable
compared to disk access based operations.

Since data is no longer stored in secondary structures
like the buffer pool of traditional disk based databases
but operations are directly executed on the primary data
it becomes important to deal with the question on how to
efficiently handle intermediate results and execute any given
query in the best possible way.

For our research the main focus is query execution in a
hybrid main memory database system such as HYRISE [1].
In HYRISE, relational tables are partitioned into disjoint
vertical partitions. Data is stored dictionary compressed
and single columns can be furthermore bit-compressed to
achieve higher compression ratios. In such an environment it
becomes crucial to choose the right materialization strategy
to lower the amount of copied data but on the other hand
improve the cache miss patterns of different queries during
the query plan execution.

The authors of [2] identify different materialization strate-
gies for column-oriented DBMS and explore the trade-offs
that exist between them. This paper builds on these ideas and
enhances their model for hybrid main memory databases and
furthermore empirically evaluates variations of them using
HYRISE, a hybrid main memory based DBMS research
prototype. Section V gives a brief summary of related
work, Section II summarizes the materialization strategies
presented in [2], Section III describes their adaption within
HYRISE, and Section IV evaluates the performance of the
implementation, followed by a conclusion in Section VI.

II. EXISTING MATERIALIZATION STRATEGIES

This section gives a brief summary of the materialization
strategies for column-based DBMS that are identified in [2].
Compared to our extensions, their work primarily covers
column-stores, while it is important for HYRISE to sup-
port different kinds of materialization strategies for hybrid
databases. The authors recognize two different aspects of
materialization strategies, time of materialization, i. e., late
vs. early materialization, and parallel vs. pipelined materi-
alization, whose influence on execution plans in explained
using the following example SQL query:

SELECT co l1 , c o l 2 FROM table
WHERE c o l 1 < CONST1 AND c o l 2 < CONST2

Abadi et al. [2] make use of specialized plan operators
that are explained briefly in the following plan descriptions.
The query plans are illustrated using diagrams, as the one
shown in Figure 1, where type of output is either mat, pos, or
mat+pos, indicating output of materialized data, positions,
or materialized data and positions. Inputs that are filtered by
a predicate are underlined.

(type of output)
Name of operator

input1 input2

Figure 1. Example Query Plan Diagram

Table I gives a detailed list of the basic operators used
during the query plans. In the following paragraphs we
will present the different materialization strategies that are
implemented in HYRISE.

169

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

Table I
DIFFERENT MATERIALIZING QUERY PLAN OPERATORS

DS1 Reads all data for a given column, applying a given
selectivity. The output is a list of positions.

DS2 Reads all data for a given column, applying a given
selectivity. The output is a list of position value pairs.

DS3 The data of a column is read and filtered with a
list of positions. The output is a column of values
corresponding to those positions.

DS4 A column is read and a list of positions is applied
as a filter, tuples satisfying a predicate are selected,
producing a list of positions.

Early Materialization / Pipelined: As illustrated in
Figure 2, DS2 scans col1, filtering by predicate, outputting
positions and data. DS4 index-scans col2 using the positions
of the first scan, filtering by predicate, outputting the merged
data.

Output

(mat)
DS4

col2 (mat+pos)
DS2

col1

Figure 2. Plan for Early Materialization / Pipelined

Early Materialization / Parallel: As illustrated in Fig-
ure 3, SPC scans both columns in parallel, filtering by both
predicates simultaneously.

Output

(mat)
SPC

col1 col2

Figure 3. Plan for Early Materialization / Parallel
Late Materialization / Pipelined: As illustrated in Fig-

ure 4, DS1 scans col1, filtering by predicate, outputting
positions only. DS3 and DS1 index-scan col2 using these
positions, filtering by predicate, outputting positions only.
Both columns are index-scanned using these positions and
the results are merged.

Positions

(pos)
DS1

(data)
DS3

(pos)
DS1

col1

col2

Output

(mat)
MERGE

(mat)
DS3

col1 Positions

(mat)
DS3

col2 Positions

Figure 4. Plan for Late Materialization / Pipelined
Late Materialization / Parallel: As illustrated in Fig-

ure 5, each column is scanned with DS1 outputting positions.
The positions are combined with an AND. These merged
positions are processed as in the previous plan, i. e., both
columns are index-scanned and the results are merged.

Positions

AND

(pos)
DS1

col1

(pos)
DS1

col2

Output

(mat)
MERGE

(mat)
DS3

col1 Positions

(mat)
DS3

col2 Positions

Figure 5. Plan for Late Materialization / Parallel

III. ADOPTION IN HYRISE

This section describes how the example query plans were
adapted in HYRISE.

A. Plan Operators

The implementation makes use of new plan operators that
are extensions of existing HYRISE plan operators. They do
not directly correspond to the plan operators introduced in
Section II but are an adaption of them to HYRISE.

TableScan: The TableScan provided by HYRISE
scans all columns of a table in parallel, applies predicates,
and outputs materialized data. Input can be either a list of
positions or materialized data.

PositionTableScan: The PositionTableScan
scans all columns of a table in parallel, applies predicates,
and outputs positions. It corresponds to the DS1 operator.

MaterializingScan: This new plan operator is based
on the DS2-operator of [2]. It accepts a raw table or a
table with associated positions as input. In addition, it
accepts predicates. As DS2, it produces materialized data
and positions. Being a projection scan, it produces a new
table that contains a configurable subset of the columns of
the original table. It additionally outputs a list of positions
that indexes the original table.

T1
col1 col2
17 “a”
23 “a”
42 “b”
10 “b”

→
P1T1

1
4

T2
col1
17
10

Figure 6. MaterializingScan on an example table T1 with predicate col1 <
20 produces positions P1T1 and materialized result T2

Figure 6 shows an example application of this plan
operator. A MaterializingScan is applied to table T1.
No extra positions are given as input. The predicate supplied
is col1 < 20 and col1 is the only column to be projected.
The result is a new position list as well as a new table with
the filtered column col1.

TableScanUsingExistingData: This new plan operator
is based on the DS4-operator of [2]. It is designed to work
on the output of a MaterializingScan. As input it
takes a table, a list of positions into this table as well
as a materialized version of some columns of the table at

170

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

these positions. It also accepts predicates. It index-scans the
input table and outputs a materialized table. The materialized
columns that are input into this operator are not directly used
as output. Instead only the rows where the predicates match
are copied into the output. Thus, the operator produces a
table with the same layout as the first input table.

T1
col1 col2
17 “a”
23 “a”
42 “b”
10 “b”

P1T1
1
4

T2
col1
17
10

→
T3

col1 col2
10 “b”

Figure 7. TableScanUsingExistingData on the results of the last
example, with the predicate col2 = ”b”

Figure 7 shows the application of an
TableScanUsingExistingData to the results of
the example shown in Figure 6, using the predicate
col2 = ”b”. T1 is scanned using the position of P1T1. For
all rows where col2 matches the predicate, the data from
col2 of T1 and col1 of T2 is added to the result.

B. Query Plans
The query plans introduced in [2] have been adapted for

HYRISE. As they are not exactly the same plans, they are
given different names to avoid confusion.

Plan 1 - One Scan: This plan corresponds to the early
materialization / parallel scan. As illustrated in Figure 8, it
consists of only one plan operator that accesses both input
columns simultaneously, i. e., for each row both columns are
read and written to the output if both predicates match.

Output

(mat)
TableScan

column 1 column 2

Figure 8. Plan 1 - One Scan

Given a column layout, this plan is expected to be efficient
if the number of values that have to be accessed is high for
both columns. It is expected to be relatively inefficient if the
selectivity is low on column 1 as in that case both columns
will still always be read. That is not the case for the other
plans.

Given a row layout, this plan is expected to be efficient
for low to high selectivities as long as the columns are
adjacent or not too wide, as then reading both columns
simultaneously causes less cache misses than reading them
sequentially. For very low selectivities, the position based
scans might still be more efficient, as then the number of
total cache accesses is expected to be much lower for them
than for the One Scan plan, even if the number of cache
misses is expected to be slightly higher.

Plan 2 - No Data: This plan has no direct corre-
spondence to the original execution plans, but it is an
optimized version of the late materialization / parallel plan.
As illustrated in Figure 9, it consists of two plan operators.
A PositionTableScan on column 1, which produces
only positions for the rows where the predicate on column
1 matches. This operator is followed by a TableScan,
which filters column 2 by its predicate at these positions
and materializes both columns.

Output

(mat)
TableScan

(pos)
PositionTableScan

column 1

column 1 column 2

Figure 9. Plan 2 - No Data

Given a column layout, this plan is expected to be efficient
when selectivity is low on column 1. Then, unlike in the One
Scan plan, not many of the second column’s rows have to
be accessed. The plan is expected to be less efficient than
the One Scan plan if the selectivity is high on column 1
and low on column 2, as then both columns have to be read
nearly completely in both plans, but this plan generates a
large amount of unused temporary position data.

Given a row layout, this plan is expected to be worse than
the One Scan plan for most of the selectivities, especially
if the columns are adjacent or are not too wide, so that one
row of both columns fits into one cache line. For very low
column 1 selectivities though, this plan is expected to require
roughly half of One Scan’s cache accesses with only slightly
higher cache misses, and might thus be faster.

Plan 3 - Data: This plan is closest to the Early
materialization / pipelined plan. As illustrated in Figure 10,
the MaterializingScan produces positions as well as
values for column 1 where the predicate matches. Un-
like the DS2 operator it produces these as two sepa-
rate columns, not one column containing (position, data)
pairs, the reason being a HYRISE implementation detail.
The TableScanUsingExistingData scans column 2
at these positions. The rows where the second predicate
matches are output materialized.

Given a column layout, this plan is expected to be more
efficient than the No Data plan for very low selectivities on
column 1. Then, the materialization of the final result, i. e.,
the SimpleTableScan in the No Data or the SimpleTableS-
canUsingExistingData in this plan, has to access very few
rows of column 1. Doing so by accessing the original column
by index is more expensive than sequentially accessing pre-
materialized data. It is expected to be inefficient if selectivity

171

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

Output

(mat)
TableScanUsingExistingData

(mat+pos)
MaterializingScan

column 1

column 2

Figure 10. Plan 3 - Data

is high on column 1 and low on column 2, as a large part of
column 1 will be materialized that will later on not be used.
Given a row layout, the expectations are similar to those
of the No Data plan, with the Data plan again performing
better for lower selectivities than the No Data plan.

IV. EVALUATION

As already pointed out in Section III-B, each of the plans
is expected to work best at a certain configuration of selec-
tivities. In order to empirically evaluate these assumptions,
the algorithms were run on an IBM Series Blade, Xeon 5450,
64 GB RAM using different table layouts. First, a 2-column
table stored in column-layout. Second, a 2-column table
stored in row-layout. Third, a 60-column table stored in row-
layout. Each table contains 1.000.000 rows; each column is
4 byte wide. The data was generated using the HYRISE data
generation tool.

A. Column Layout

In order to measure the general performance, each plan
was run for selectivities varying for both columns, each
selectivity ranging from 0 to 1 in steps of 0.01. For each
pair of selectivities, each plan was run and the total CPU
cycle count was measured and averaged over three runs.

Figure 11a shows the algorithm with the lowest total CPU
cycle count for each combination of selectivities. As can be
clearly seen, the influence of the first column’s selectivity is
considerably larger than that of the second. As expected,
the One Scan plan outperforms the other plans for high
selectivities on both columns whereas the position based
scans are better at lower selectivities on column 1.

Figure 11b shows the ratio of CPU cycles of the algorithm
with the highest count to that with the lowest count at the
given selectivities. This ratio ranges from values between
approximately 1 and 2.4. Two areas can be identified where
high ratios appear. First, for a low selectivity on column
1 independent of the second column’s selectivity. Second,
for a high selectivity on column 1 and a low selectivity on
column 2.

The relative performance at these extremes can be seen
in more detail in Figure 12a, which shows the CPU cycles
of all three plans for two fixed selectivities for column 2 of
1.25e-3 = (25 rows / 2.000.000 rows) and 1.0 in dependence
of the first column’s selectivity. Figure 12b depicts the same

using a logarithmic scale on the x-axis, allowing differences
for low selectivities on column 1 to be discerned more easily.

For low selectivities on column 1 the ratio from One Scan
to Data, i. e., the highest to the lowest CPU count, is close to
2. This is expected behavior, as the position based algorithms
do not have to read much of column 2 whereas the One Scan
algorithm always must read both columns.

As can be seen in Figure 12a, the ratio of One Scan to
Data is largest for a high selectivity on column 1 and a low
selectivity on column 2. As can be seen in Figure 12c, Data
also accesses twice as much memory as One Scan. This is
expected. For this configuration, One Scan reads both input
columns once and writes nothing, whereas Data reads the
first column, writes positions and materialized data and reads
the second column, thus performing roughly twice as many
memory accesses as the One Scan algorithm.

Given a high selectivity on both columns, One Scan
is only 1.25 times faster than Data, as can be seen in
Figure 12b, and requires 1.4 times the number of L1
cache accesses. We measured, that for this configuration of
selectivities about a third of Data’s CPU cycles is used by
the MaterializingScan while the remaining cycles are
used by the TableScanUsingExistingData, making
the TableScanUsingExistingData 1.2 times faster
than the complete One Scan. This is interesting, as the scan
using existing data has to perform more work than the One
Scan plan. While the One Scan plan reads and writes both
columns, the TableScanUsingExistingData does
the same but additionally reads positions.

For this configuration of selectivities, further investigation
is required to identify the reasons for the unexpectedly good
performance of the Data plan. Nevertheless, for the most
configurations of selectivities the plans perform as expected.

B. Row Layout

The queries were executed on a 2-column and a 60-
column table. Figue 13 shows the CPU cycles for fixed
column 2 selectivities for the 2-column layout. As can be
seen, the performance is very close to the column-layout
performance. The One Scan plan is, as expected, faster than
the others for high selectivities, as it only has to read one
continuous block of data once whereas the position based
scans have to process this block twice, thus causing more
cache misses. As can be seen in Figure 13a, One Scan is
still slower than the position based scans for low column 1
selectivities. There, the number of cache accesses that were
measured for the One Scan plan, which evaluates predicates
on both columns in parallel, were, as expected, higher than
for the other plans, with the cache misses measured only
slightly higher.

In order to analyze the algorithms’ performance for larger
containers, they were executed on a 60-column / 1 container
table. All queries still output only the first two columns.
The MaterializingScan of the Data plan still only

172

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

one_scan

pos_data
pos_nodata

(a) Algorithm with lowest CPU cycles

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
1

1.2

1.4

1.6

1.8

2

2.2

2.4

(b) Worst/Best

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

one_scan

pos_data
pos_nodata

(c) Algorithm with lowest CPU cycles

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

(d) Worst/Best

Figure 11. Figure (a) and (b) for 2 columns / 2 containers and (c) and (d) for 60 columns / 1 container. Comparing CPU cycles of all three algorithm
across selectivities; x-axis = Column 1; y-axis = Column 2

2e+07

3e+07

4e+07

5e+07

6e+07

7e+07

8e+07

9e+07

1e+08

0 0.2 0.4 0.6 0.8 1

C.w = one_scan
C.w = pos_data

C.w = pos_nodata

(a) sel(column 2) = 1.25e-3

2e+07

4e+07

6e+07

8e+07

1e+08

1.2e+08

1.4e+08

1.6e+08

0 0.2 0.4 0.6 0.8 1

C.w = one_scan
C.w = pos_data

C.w = pos_nodata

(b) sel(column 2) = 1.0

6e+07

8e+07

1e+08

1.2e+08

1.4e+08

1.6e+08

1.8e+08

2e+08

2.2e+08

2.4e+08

2.6e+08

2.8e+08

0 0.2 0.4 0.6 0.8 1

C.w = one_scan
C.w = pos_data

C.w = pos_nodata

(c) sel(column 2) = 1.25e-3

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

3e+08

3.5e+08

4e+08

4.5e+08

0 0.2 0.4 0.6 0.8 1

C.w = one_scan
C.w = pos_data

C.w = pos_nodata

(d) sel(column 2) = 1.0

Figure 12. 2 columns / 2 containers. 12a and 12b Total CPU cycles. x-axis = selectivity on first column; Figure 12c and 12d are L1 data cache accesses
for the same experiment. Selectivity on second column is fixed for all graphs.

materializes the first column. Figures 11c and Figure 11d
give a general overview of the algorithms’ performance.
Unlike in previous benchmarks, the performance is strongly
influenced by the selectivity of both columns. The One Scan
plan performs best if the combined selectivity is not low
and it is roughly 2.8 times faster than the Data scan for
a selectivity of 1 on both columns. If selectivity is low on
column 1 or very low on column 2, the position based plans
are best, the Data plan performing roughly 1.6 times faster
than the One Scan plan for very low selectivities on both
columns.

Figure 13d provides a snapshot at fixed column 2 selectiv-
ities. Given a high column 1 selectivity, the One Scan plan
surprisingly is slower for low column 2 selectivities than it is
for high column 2 selectivities. This is the case even though
the number of cache misses and cache accesses is lower for
low column 2 selectivities than it is for high ones. Other
counters, such as the number of branch mispredictions have
not yet been measured and so a clear assessment can not be
made, yet.

V. RELATED WORK

The topic of materialization strategies has already been
researched in the context of column-based as well as row-
based DMBS. Abadi et al. [3] provide a general overview
of column- and row stores and identifies the importance

of late materialization in column stores. In [2], [4] Abadi
et al. provide an evaluation and comparison of different
materialization strategies in column-based DBMS. Different
materialization strategies are identified and their perfor-
mance for different kinds of queries is evaluated.

Ivanova et al. [5] analyze how materialized query plan
results can be cached and reused for future queries to reduce
execution times. This aspect of materialization strategies is
complementary to the ones analyzed in this paper.

The materialization strategies that are analyzed in this
paper are implemented in a operator at a time query execu-
tion engine. Zukowski et al. [6] follow a different approach
by materializing vertical data fragments at a time, trying to
restrict the data to the CPU cache.

In addition, the implementation of compression for such
main memory databases becomes more and more important
as shown in [7], [8]. Krueger et al. show in [9] that it is pos-
sible to further optimize read optimized column databases
with compression to possibly satisfy OLTP workloads.

VI. CONCLUSION

As has been seen in IV, the materialization strategies that
were introduced in III mostly exhibit the expected relative
performance for the simple selection query, especially if data
is stored in column-layout. Table II summarizes the best and
worst performance of each algorithm in dependence of the

173

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

2e+07

3e+07

4e+07

5e+07

6e+07

7e+07

8e+07

9e+07

0 0.2 0.4 0.6 0.8 1

C.w = one_scan
C.w = pos_data

C.w = pos_nodata

(a) sel(column 2) = 1.25e-3

2e+07

4e+07

6e+07

8e+07

1e+08

1.2e+08

1.4e+08

0 0.2 0.4 0.6 0.8 1

C.w = one_scan
C.w = pos_data

C.w = pos_nodata

(b) sel(column 2) = 1.0

1e+08

1.5e+08

2e+08

2.5e+08

3e+08

3.5e+08

4e+08

4.5e+08

0 0.2 0.4 0.6 0.8 1

C.w = one_scan
C.w = pos_data

C.w = pos_nodata

(c) sel(column 2) = 1.25e-3

1e+08

2e+08

3e+08

4e+08

5e+08

6e+08

7e+08

8e+08

0 0.2 0.4 0.6 0.8 1

C.w = one_scan
C.w = pos_data

C.w = pos_nodata

(d) sel(column 2) = 1.0

Figure 13. 2 columns / 1 container for Figure 13a and 13b and 60 columns / 1 container for Figure 13c and 13d. Total CPU cycles. x-axis = selectivity
on first column. Selectivity on second column is fixed

columns selectivity. As can be seen, the best plan depends
mainly on the first column’s selectivity.

Table II
SELECTIVITY CONFIGURATIONS THAT DELIVER THE BEST / WORST

RESULTS FOR A COLUMN-LAYOUT

Plan Best Worst
Col 1 Col 2 Col 1 Col 2

One scan high high low -
No Data low - high low

Data very low - high low

The performance for multi-column containers did not
completely match our expectations, with the One Scan plan
performing unexpectedly slow for a high selectivity on
column 1 and a low selectivity on column 1. As expected
though, the One Scan plan performs best for most of the
configurations, with the position based plans providing better
performance when selectivity is low on column 1 or very low
on column 1.

All together, the choice of materialization strategy greatly
influences the query execution time. For the simple selection
query analyzed, choosing the wrong materialization strategy
resulted in up to 2.8-fold increased CPU cycles. For the
simple example, the optimal materialization strategy can
be predetermined if the table layout is known and the
selectivities of the predicates can be estimated in advance.
This can be achieved by applying established techniques that
rely on collecting statistical data, such as histograms [10].

An actual implementation that chooses materialization
strategies automatically for container-based DBMS, such as
HYRISE, requires further research. The analysis performed
on multi-column containers has shown that the layout of ta-
bles has a strong influence on materialization strategies. Yet,
aspects such as the positions of columns within containers
have not been analyzed, so that further research is required
to turn these observations into knowledge that can be applied
at query plan construction time.

Apart from that, many other areas have been left un-
touched, such as analyzing different kinds of queries or tak-

ing different types of data storage, e. g., compressed position
lists, into account. Still, this paper and the accompanying
implementation provide the required knowledge to leverage
different materialization strategies in a hybrid main memory
database system such as HYRISE.

REFERENCES

[1] M. Grund, J. Krüger, H. Plattner, A. Zeier, P. Cudré-Mauroux,
and S. Madden, “Hyrise - a main memory hybrid storage
engine,” PVLDB, vol. 4, no. 2, pp. 105–116, 2010.

[2] D. Abadi, D. Myers, D. DeWitt, and S. Madden, “Materi-
alization Strategies in a Column-Oriented DBMS,” in ICDE
2007, pp. 466–475.

[3] D. J. Abadi, S. Madden, and N. Hachem, “Column-stores
vs. row-stores: how different are they really?” in SIGMOD
Conference, 2008, pp. 967–980.

[4] D. Abadi, “Query execution in column-oriented database
systems,” Ph.D. dissertation, Massachusetts Institute of Tech-
nology, 2008.

[5] M. Ivanova, M. L. Kersten, N. J. Nes, and R. Goncalves, “An
architecture for recycling intermediates in a column-store,” in
SIGMOD Conference, 2009, pp. 309–320.

[6] M. Zukowski, P. Boncz, N. Nes, and S. Heman,
“MonetDB/X100-a DBMS in the CPU cache,” Data Engi-
neering, vol. 1001, p. 17, 2005.

[7] T. Westmann, D. Kossmann, S. Helmer, and G. Mo-
erkotte, “The implementation and performance of compressed
databases,” SIGMOD Record, vol. 29, no. 3, pp. 55–67, 2000.

[8] D. J. Abadi, S. Madden, and M. Ferreira, “Integrating com-
pression and execution in column-oriented database systems,”
in SIGMOD Conference, 2006, pp. 671–682.

[9] J. Krüger, M. Grund, C. Tinnefeld, H. Plattner, A. Zeier, and
F. Faerber, “Optimizing write performance for read optimized
databases,” in DASFAA (2), 2010, pp. 291–305.

[10] V. Poosala, P. Haas, Y. Ioannidis, and E. Shekita, “Improved
histograms for selectivity estimation of range predicates,”
ACM SIGMOD Record, vol. 25, no. 2, p. 305, 1996.

174

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

