
A Concept for a Compression Scheme of Medium-Sparse Bitmaps

Andreas Schmidt∗† and Mirko Beine∗
∗ Department of Informatics and Business Information Systems,

University of Applied Sciences, Karlsruhe
Karlsruhe, Germany

Email: andreas.schmidt@hs-karlsruhe.de, mirko.beine@arsinventionis.de
† Institute for Applied Computer Science

Karlsruhe Institute of Technology
Karlsruhe, Germany

Email: andreas.schmidt@kit.edu

Abstract—In this paper, we present an extension of the WAH
algorithm, which is currently considered one of the fastest and
most CPU-efficient bitmap compression algorithm available.
The algorithm is based on run length encoding (RLE) and its
encoding/decoding units are chuncs of the processor’s word
size. The fact that the algorithm works on a blocking factor,
which is a multiple of the CPU word size, makes the algorithm
extremely fast, but also leads to a bad compression ratio in
the case of medium-sparse bitmaps (1% - 10%), which is
what we are mainly interested in. A recent extension of the
WAH algorithm is the PLWAH algorithm, which has a better
compression ratio by piggybacking trailing words, which look
“similar” to the previous fill-block. The interesting point here
is that the algorithm also is described to be faster than the
original WAH version under most circumstances, even though
the compression algorithm is more complex. Therefore, the
concept of the PLWAH algorithm was extended to allow so-
called “polluted blocks” to appear not only at the end of a fill-
block, but also multiple times inside, leading to much longer fill
lengths and, as a consequence, to a smaller memory footprint,
which again is expected to reduce the overall processing time
of the algorithm when performing operations on compressed
bitmaps.

Keywords-Compressed bitmaps, WAH algorithm, RLE, CPU-
memory-gap

I. INTRODUCTION

Compressed bitmaps play an increasingly important role

in efficiently answering multi-dimensional queries in large

data sets. Another application is the representation of posi-
tionlists inside column-stores [1]. We are presently develop-

ing a framework with basic components to build column-

store applications. Besides ColumnFile and ColumnArray as

basic components, we also identified the positionlist as a key

component of our framework. A positionlist for example is

responsible for buffering the data sets that satisfy a condition

on a column. This is done by storing a list of tuple-ids.

The tuple-ids are sorted and have no duplicates. If the

lists are short, tuple-ids can be stored as INT(4) values,

but in the case of millions of entries in a positionlist, the

(compressed) bitmap is the more appropriate representation

form. After analysing the relevant scientific papers about

bitmaps, we identified the well-known WAH algorithm [2] as

one of the candidates for implementing our positionlist. One

drawback of the algorithm was that an efficient compression

is only possible when the selectivity is about 0.1% and

below. In our operational area, however, also selectivities

between 1% and 10% should be handled efficiently. A

recent extension of the WAH algorithm is the PLWAH

algorithm [3], which has a better compression ratio (up to

a factor of 2) by piggybacking trailing words, which look

“similar” to the previous fill block. The interesting point

here is that the algorithm also is described as faster than

the original WAH version under most circumstances even

though the compression algorithm is more complex. This

leads to the assumption that the CPU memory gap [4] has

shifted the algorithm from CPU bound to IO bound in the

past years and that the bottleneck of the algorithm is no

longer the CPU, but the access to the main memory. In this

case, processing time may be reduced by finding a better

compression for selectivities between 1% and 10%.

The paper is organised as follows. In the next section,

we introduce the main concepts of the WAH algorithm.

Afterwards, we present our extension of the WAH algorithm,

which introduces a new fill type that cannot only handle

identical bits in a fill, but also allows for the existence of a

number of pollutions inside. Subsequently, we explain our

concept using an example and after that, a number of possi-

ble variants will be discussed. Our paper will be completed

with a short summary and a longer list of activities once the

implementation of our algorithm will be available.

II. RELATED WORK

The WAH algorithm is a compression algorithm for

bitmaps. It is based on run length encoding and allows for ef-

ficient operations on the compressed versions of the bitmaps.

It is very CPU-efficient, because it uses the CPU word size

as basic packing unit, which allows very efficient operations

on the data. Two types of blocks are distinguished. Literal
blocks contain uncompressed bits and fill blocks contain a

number of subsequent identical bit values. In the remaining

192

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

of the paper, we will focus, without loss of generality, on

the 32-bit version of the algorithm. In this case, each literal
block contains 31 uncompressed arbitrary bits and each fill
block holds a multiple of 31 bits with the same value. The

first bit of a block is used to distinguish a fill block from a

literal block. To separate a 0-fill from a 1-fill, the second bit

is used. 30 bits are left to indicate the length of a fill. The

length is given in multiple of 31 bits, not in individual bits.

A value of 2 means a fill with 62 identical bits. Figure 1

shows the compression of a bitmap of 194 bits length (first

line). First, the bitmap is divided into equidistant parts of

31 bits (second line) and these parts are further classified as

fill or literal. After that, consecutive fills with the same bit

value are combined.

0..010..010..010..0
50 x 0 40 x 080 x 0

 194 bit

31 x 0 9 x 0

0..0 0..01 1
19 x 0

0..0
11 x 0

0..0
31 x 0

0..0
31 x 0

0..0
 7 x 0

0..0
23 x 0

0..0
31 x 0

0..0
21 x 0

0..0

21 x 0

1

literal literal literal

0-fill(1): 1 0000000 00000000 00000000 00000001

literal : 0 0000000 00000000 00001000 00000000

0-fill(2): 1 0000000 00000000 00000000 00000010

literal : 0 0000000 10000000 00000000 00000000

literal : 0 0000000 00100000 00000000 00000000

0-fill(1): 1 0000000 00000000 00000000 00000001

0-fill 0-fill0-fill 0-fill

Figure 1. Bitmap compression with WAH

The drawback of this algorithm is that in the case of

medium-spare bitmaps, the fills are very short and every

single “pollution”, leads to a full literal block. The switch

between a fill and a literal (and back to a fill) block is an

expensive job in terms of memory.

III. CONCEPT

The main difference between WAH and our concept is

that we support the concept of draggled fills, which allows

a small number of false bits inside each word of a fill.

The intention here is to obtain longer fills, because the

switch from a fill to a literal block and back to a fill is an

expensive act in terms of memory. The PLWAH (position

list word aligned hybrid) method uses a related concept by

piggybacking a trailing literal block after a fill, if it differs

from the words in the preceding fill by one bit only. For this

purpose, the length field in the fill is reduced by some bits,

while five of these bits indicate the position of the wrong

bit in the trailing literal. With this trick, you can achieve

a reduction by a factor of two for certain distributions of

data. Otherwise, the maximum length of a fill is reduced by

a factor of 26, may reach a maximum of 224 instead of 230.

In contrast to this, our concept does not only allow for

one slightly polluted literal at the end of a fill, but it also

allows for slightly polluted literals to appear at each position

in the fill without reducing the overall length of a fill.

A. Draggled Fill

Our concept requires the introduction of a new block type

called draggled fill, which can handle the polluted literals

inside a fill. In contrast to the other two block types literal
and fill, a draggled fill has a variable length depending

on the number of pollutions inside. Hence, three different

types of blocks (literal, fill, and draggled fill) must be

distinguished. We distinguish a fill from a draggled fill with

the third significant bit, so that a 1-fill is identified by the

bit combination of 111, while a draggled-1-fill is identified

by 110 (0-fill: 101, draggled-0-fill: 100). The indicator of a

literal remains identical to the WAH algorithm (a 0-bit at the

most significant bit), which still allows us to store 31 bits

in each literal. For every word in a draggled fill, we first

have to define how polluted it could be to be part of such

a fill. For a 32-bit version of the WAH algorithm, different

degrees of pollution can be defined, which vary from one

wrong bit inside 32, 16, 8, and 4 bit, leading to 1, 2, 4,

or 8 wrong bits (called pollution factor) in a complete 32-

bit word1. Figure 2 presents examples of different pollution

factors, each with the maximum number of skipped bits.

00 00 0 0 00 0 0 0 10 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0

10 00 0 0 00 0 0 0 10 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0

10 00 0 0 00 0 0 0 00 0 1 0 0 0 000 0 0 0 0 1 1 0 0 0 0 0

10 00 1 0 00 0 0 1 10 1 0 0 0 1 100 0 0 0 1 0 0 0 0 0 0 0

pollution factor: 1

pollution factor: 2

pollution factor: 4

pollution factor: 8

Figure 2. Possible pollution factors for a block

Each polluted 32-bit word needs a fixed number of bits

for description. The value of needed bits is dependent on the

pollution factor and the maximum length of a fill. In case of

a pollution factor of 1, we only need to specify the position

of the wrong bit, which could be done with 5 bits (25 = 32).

With a pollution factor of 2, we need 4 bits to specify the

position of the wrong bit in the first 16 bits and another 4

bits to specify the wrong bit in the second half of the word.

As only one of the two 16-bit words may contain a wrong

bit, we need a mask of another 2 bits to specify in which

part the skipped bits occur. Table I gives an overview of the

memory consumption also for the other pollution factors.

Additional memory is needed to specify the position of

the polluted words. The size is dependent on the maximum

1Strictly speaking, we do not have 32 bits, but only 31 bits as packing
unit. But for the sake of straightforwardness in explaining the concept we
talk in this paper about 32 bits. Keep in mind that, without loss of generality,
one bit can be ignored, i.e. the leftmost one.

193

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

Table I
MEMORY CONSUMPTION OF DIFFERENT POLLUTION FACTORS

Pollution factor Memory consumption
(in bit)

1 5
2 10 (2 ∗ 4 + 2)
4 16 (4 ∗ 3 + 4)
8 24 (8 ∗ 2 + 8)

length of a fill. If for example the maximum value is 1024

(210), 10 additional bits are required to specify the position

for each pollutted 32-bit word in the most simple implemen-

tation, where the position is specified by its index inside

the run. Later in section III-C, we will discuss different

possibilities to identify the wrong words.

B. Example

After the introduction of the concept, the effect will now

be demonstrated using the example given in Figure 3.

In the middle part of the Figure, seven 32-bit blocks can

be seen. Except for the fourth and the sixth block, which

contain two and one polluted bit(s) (indicated in grey) all

blocks contain 0-bits only. The two polluted blocks are

shown in detail in the upper and lower part of the Figure.

The pollution factor is set to 2, meaning that we can accept

one wrong bit in every 16-bit of the block at the most. So

both polluted words can be accepted to be inside a draggled
fill and the overall length of the fill is 7 words. Besides the

overall length, we have to provide additional information for

a draggled fill. This information includes:

• The number of polluted blocks

• The positions of the polluted blocks inside the fill

• Position of the wrong bits inside a polluted block

00 00 0 0 01 0 0 0 00 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0

0...0 0...0 0...0 0x.x0 0...0 x...0 0...0

10 00 0 0 00 0 0 0 10 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0

}

32 bit

Figure 3. Draggled fill with two polluted blocks

The maximum number of polluted blocks depends on the

maximum length of a dragged fill and the number of bits

to specify the number. The same holds for the specification

of the position of the polluted blocks. In our example, we

choose a maximum length of a draggled fill of 64 and a

pollution factor of 2. This means that we need 6 bits to

specify the size of the fill and another 6 bits to specify

the number of polluted blocks inside the fill. For each

polluted block, we also have to provide the information on

the position of the block inside the fill and the wrong bits

inside. Figure 4 shows a possible memory layout for the

above example in the upper part. The first three bits are

reserved for the block type, then 6 bits for the fill length

field, and another 6 bits for the field indicating the number

of polluted blocks.

In the lower 16 bits of the first word, the information about

the individual polluted words inside a fill is contained. In the

defined layout (maximum length: 64, pollution factor: 2), we

need exactly 16 bits to specify one pollution word. The first

two bits, labeled as “mask”, identify in which of the two

16-bit words a pollution occurs. Possible values are 01, 10,

and 11. The next 6 bits specify the position of the polluted

word inside the fill. As a maximum of 1 wrong bit can occur

inside one 16-bit word, we need 4 more bits to specify the

position (0..15) of the wrong bit inside a 16-bit word. As

we have two 16-bit words in our polluted block, we need

another 4 bits for the second word. In each following 32-

bit word, we can now store the information of two more

polluted words.

In the lower part of Figure 4, the true values for the

example in Figure 3 are presented. First, the block type for

a draggled-0-fill is specified, followed by the information of

a fill length of seven with two polluted words. Then, the

’11’ mask indicates, that there are two skipped bits in the

polluted block at position 4 in the fill. The two skipped bits

can be found at bit-position 9 (first 16-bit word) and bit-

position 4 (second 16-bit word), respectively. In contrast of

this the second polluted block only contains one wrong bit

in the first 16-bit word (mask ’10’), which can be found at

position 15.

The total memory footprint is 64 bits, compared to 160

bits in the original WAH implementation2 and 128 bits in

the PLWAH implementation. Especially in cases of lower

selectivity, the proposed concept is superior with regard to

memory footprint. The high memory cost of switching from

a fill to a literal block and back can be avoided in many

cases. And even in the case where no fills can be found,

there is no drawback due to the fact that a literal block

can handle 31 bits as in the original WAH-algorithm. One

little drawback exists in the case of a very high selectivity

leading to extremely long fills: Because of the new block

type, the proposed concept needs one bit more to indicate

a fill block, and so a block can contain a maximum of

229 ∗ 31 bits instead of 230 ∗ 31. As our concept has not

been yet implemented, we cannot make any statements about

the runtime behaviour. However, we plan to run a bunch

of experiments with different data distributions concerning

runtime and memory behaviour.

C. Variants

In the above concept we divided each 32-bit block into

equidistant parts, which can contain 1 wrong bit at the most.

2160 bits = 32 bits (0-fill, length: 3) + 32 bits (literal word) + 32 bits
(0-fill. length: 1) + 32 bits (literal) + 32 bits (0-fill, length: 1)

194

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

type fill-length polluted Bitpos1 Bitpos2WordPos 1 Wordpos 2 Bitpos1 Bitpos2WordPos 3Bitpos1 Bitpos2

1 0 0 7 2 9 4 4 6 15

 Mask

1 1

t: 31 16 15 0 31 16 15 0

1 0

Figure 4. Memory layout of a draggled-0-fill

This solution was chosen, because it is easy to implement

and also CPU-efficient.

Another, more general solution may be not to divide the

block into equidistant parts, but to allow a maximum of n-

skipped bits to appear inside a 32-bit block. In this case, the

memory consumption is a little bit higher, but it is a more

general model, which can lead to longer fills.

Instead of specifying the index position of a polluted

block, it is also possible to specify the gaps between polluted

blocks (incremental encoding [5]). This leads to a smaller

memory footprint for each polluted block, because a lower

number of bits can be used to specify the increments. In case

the next polluted block is too far away to code the distance

with the chosen number of bits, the fill has to terminate.

Figure 5 gives an example of this encoding. Each gray square

represents a 32-bit block (with unique values, polluted and

mixed). The full length of the fill is 21 blocks. As you can

see, the values of the increments remain small in contrast

to the index encoding in the last line, thus allowing for a

lower number of bits to encode the fill.

32 x 0-bit polluted block mixed block

fill length = 21

 Position: 2 8 11 14 18

 Increment: +2 +5 +2 +2 +3

 Bitmap blocks:

Legend:

Figure 5. Incremental encoding of “polluted blocks”

All of the above variants require a predefined fixed

number of bits to encode the position of the polluted blocks.

Another possible solution would be to use a Rice (Golomb)

coding [6]. The idea behind this coding scheme is to use

a flexible number of bits to encode arbitrarily long integer

numbers. Small, but frequently appearing numbers only need

a small number of bits, while unfrequent big numbers need

more bits as in a normal coding scheme.

IV. CONCLUSION

We presented an extension of the WAH algorithm, which

is currently considered one of the fastest and most CPU-

efficient compression techniques for bitmaps. However, in

the case of a selectivity of 1% and more, the compression

behaviour is unsatisfying. The reason for this behaviour

is the blocking factor of 32, which requires packing of a

minimum of 31 bits. Even a single skipped bit leads to a

literal block, which holds 31 uncompressed bits.

Our contribution handles this problem by allowing so-

called polluted blocks to be part of a fill. A polluted block

is a block, which has a limited number of wrong bits. The

idea is to describe the position of the polluted block and

the wrong bits inside it, which takes much less memory

than ending a fill, starting a new literal block, and after that

starting a new fill.

V. FUTURE WORK

Currently, we don’t have an implementation of our con-

cept, but we are working on it. At the time we have a our

implementation finished, we plan a number of tests with

different selectivity, both synthetical and real world data,

comparing both the compression ratio and the execution

time of the different operations. Depending on the results

we eventually implement different variants of our algorithm,

discussed in III-C. Another interesting point would be to

look for dependencies between the pollution factor and the

maximum fill-length for different data sets.

REFERENCES

[1] D. J. Abadi, S. R. Madden, and M. Ferreira, “Integrating com-
pression and execution in column-oriented database systems,”
in SIGMOD, Chicago, IL, USA, 2006, pp. 671–682.

[2] K. Wu, E. J. Otoo, and A. Shoshani, “Compressing bitmap
indexes for faster search operations,” in SSDBM ’02: Proceed-
ings of the 14th International Conference on Scientific and
Statistical Database Management. Washington, DC, USA:
IEEE Computer Society, 2002, pp. 99–108.

[3] F. Deliège and T. B. Pedersen, “Position list word aligned
hybrid: optimizing space and performance for compressed
bitmaps,” in EDBT ’10: Proceedings of the 13th International
Conference on Extending Database Technology. New York,
NY, USA: ACM, 2010, pp. 228–239.

[4] S. Manegold, P. A. Boncz, and M. L. Kersten, “Optimizing
database architecture for the new bottleneck: memory access,”
The VLDB Journal, vol. 9, no. 3, pp. 231–246, 2000.

[5] I. H. Witten, A. Moffat, and T. C. Bell, Managing gigabytes
(2nd ed.): compressing and indexing documents and images.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
1999.

[6] S. W. Golomb, “Run-length encodings,” IEEE-IT, vol. IT-12,
pp. 399–401, 1966.

195

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

