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Abstract—Smart grids, or intelligent electricity grids that 

utilize modern IT/communication/control technologies, become 

a global trend nowadays. Forecasting of future grid load 

(electricity usage) is an important task to provide intelligence 

to the smart gird. Accurate forecasting will enable a utility 

provider to plan the resources and also to take control actions 

to balance the supply and the demand of electricity. In this 

paper, our contribution is the proposal of a new data mining 

scheme to forecast the peak load of a particular consumer 

entity in the smart grid for a future time unit. We utilize least-

squares version of support vector regression with online 

learning strategy in our approach. Experimental results show 

that our method is able to provide more accurate results than 

an existing forecasting method which is reported to be one of 

the best. Our method can provide 98.4–98.7% of average 

accuracy whilst the state-of-the-art method by Lv et al. is able 

to provide only 96.7% of average accuracy. Our method is also 

computationally efficient and can potentially be used for large 

scale load forecasting applications.  

Keywords—smart grids; data mining; load forecasting; 

regression analysis; support vector machines. 

 

I.  INTRODUCTION 

In this section, we will briefly introduce the concept of a 
smart grid, discuss the problem of electricity load 
forecasting in the smart grid and the prior arts to solve it, 
and outline our proposed solution to the problem. 

 

A. Smart Grid 

A smart grid is an advanced electricity transmission and 
distribution network (grid) that utilizes information, 
communication, and control technologies to improve 
economy, efficiency, reliability, and security of the grid 
[23]. Nowadays, it is a priority of many governments 
worldwide to replace/upgrade their several decades old 
electricity grids with smart grids. For example, in 2010, the 
US government spent $7.02B on its smart grid initiative, 
while the Chinese government used $7.32B for its smart 
grid program [20]. 

The smart grid is characterized by several new trends 
and features: smart meters, demand response mechanisms, 
online customer interactions though PCs/mobile devices, 
dynamic electricity tariffs, online billing, incorporation of 
renewable energy generation (such as solar and wind 

energy) and electric vehicles, more reliable power 
transmission and distribution, dynamic load balancing, 
better power quality, better power security, etc. The 
architecture and components of the smart grid are illustrated 
in Figure 1.  

 

 
Figure 1. Architecture and components of the smart grid (reproduced with 
permission from [9]). 

 
Information technology (IT) is one of the major driving 

forces behind a smart grid, and various IT systems and 
techniques such as artificial intelligence, high performance 
computing, simulation and modeling, data network 
management, database management, data warehousing, and 
data mining are to be used to facilitate smooth running of 
the smart grid [2]. 
 

B. Load Forecasting Problem 

Grid load forecasting is an important task to provide 
intelligence to the smart grid. Accurate forecasting will 
enable a utility provider to plan the resources like fuel in 
advance and also to take control actions like switching 
on/off demand response appliances and revising electricity 
tariffs, etc. 

In our research, we will focus on a specific problem of 
forecasting the “peak load” (i.e., the maximum electricity 
usage) of a particular consumer entity for a future time unit. 
The consumer entity in question can be of various 
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granularity levels. For example, it can be a smart meter (for 
a household), a cluster of smart meters (for a neighborhood), 
a power substation (for a town or city), or a power station 
(for an entire grid covering a large geographical area). 
Similarly, the time unit in question can be of different 
lengths. It can be 5 minutes, 15 minutes, 1 hour, 1 days, 1 
week, etc. 

In this paper, we will study a system to forecast the daily 
peak loads of individual smart meters. However, it should 
be noted that the same principles and techniques used in our 
studies are generally applicable to any load forecasting 
problems with any combinations of consumer entities and 
time granularities. 

Researchers have been trying to solve the problem of 
electricity load forecasting since 1990’s [1]. A number of 
methods based on different techniques such as time series 
analyses (like autoregressive integrated moving average 
(ARIMA) method [5]), fuzzy logic [14], neuro-fuzzy 
method [8], artificial neural network (ANN) [3], and support 
vector regression (SVR) [11] have been proposed. 

Among these various techniques, support vector 
regression (SVR) is one of the latest developments. In [11], 
it was demonstrated that SVR could provide better results 
than the older methods like artificial neural network (ANN) 
[3] could. 

 

C. Outline of Proposed Solution  

As in the previous work [3] and [11], we try to approach 
the problem of smart grid’s load forecasting from the data 
mining perspective. In particular, we propose a peak load 
forecasting model based on the data mining technique of 
support vector regression (SVR) using least squares [15]. 
More specifically, we use the online greedy least-squares 
SVR proposed by Engel et al. [7]. 

In order to predict the peak load Pd of a particular day d, 
we can roughly consider Pd as a non-linear combination of a 
number of attributes from different sources: peak loads of 
previous N days, average temperatures of previous N days, 
holiday records of previous N days, forecasted temperature 
of day d, and whether day d is a holiday (weekend or public 
holiday).  

So, for each “target” peak load value in the historical 
record, we construct a “feature vector” covering the 
abovementioned attributes associated with the target. Then, 
we train our least-square SVR system using a set of 
<feature vector, target> pairs for a large enough number of 
days. The result of this training process is a least-squares 
regressor model. 

We can use the resultant regressor model to forecast the 
peak load value Pd of a given day d. For that, we have to 
construct a feature vector for the day d in the same manner 
as in the training step. In constructing the feature vector, we 
need to know the forecasted temperature of the day d (if it is 
in the future) and whether it is a holiday (which can be 
easily known in advance). Then, the feature vector of day d 

is supplied to the regressor model to generate the forecasted 
peak load value of that day. 

After the day d is already passed and its actual peak load 
value (the target) already known, the regressor model is 
updated with the <feature vector, actual target> pair for the 
day d, thus resulting in a fresh model which best reflects the 
latest trend of events. 

A schematic representation of our proposed load 
forecasting scheme is given in Figure 2. 

 

 
Figure 2. Overview of the proposed load forecasting scheme. 

We tested our proposed method using the smart metering 
data from the two regions in Germany for the year 2009. 
Experimental results demonstrate that our approach is both 
accurate and computationally efficient. 

The remaining of the sections is organized as follows. 
Section II describes our proposed load forecasting method 
using online least-squares support vector regressions in 
details. Section III presents the experimental results of the 
proposed method in comparison with a state-of-the-art 
method. Section IV discusses the future work and concludes 
the paper. 

 

II. METHOD DETAILS 

Support vector machine (SVM) [16] is a kind of 
maximum margin classifier which was originally proposed 
to solve the problem of binary classification. Among a large 
number of training data vectors, only a few are selected as 
“support vectors” that define the maximum margin. Only 
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the support vectors are utilized in predicting the classes of 
the testing data vectors, thus leading to a good 
generalization.  

Later, it was realized that SVM can be adapted to solve 
the problem of regression [13]. Suykens and Vandewalle 
proposed a least-squares version of support vector 
regression (SVR) [15] which is particularly suitable to solve 
regression problems in time series data. The least-squares 
SVR tries to find the solution by solving a set of linear 
equations instead of a convex quadratic programming for 
classical SVMs.  

A brief description of the least-squares SVR is given 
below in Subsections A, B, and C. This description is 
adapted and modified from the original ones given in [10], 
[15], and [19]. 

 

A. General SVM Formulation 

Suppose we have a training set of � samples ��� , ���	(
 =1,⋯ , �) with input data vector  �� ∈ 	ℝ�  (where � is the 
dimensionality of ��) and corresponding binary class labels �� 	 ∈ �−1,+1�. In Vapnik’s original formulation [16], the 
SVM classifier is defined by the conditions: 
 
 �.�(��) + 	�	 ≥ 1,							if		�� =	+1 

 �.�(��) + 	�	 ≤ −1,				if		�� =	−1 
(1) 

 
which can be rewritten as a single condition: 
 
 ��(�. �(��) + 	�) ≥ 	1, 
 = 1,⋯ , � (2) 
 
where �(�)  is a nonlinear mapping function of a vector 
from original space to the high (possibly infinite) 
dimensional space, � is a weight vector which defines the 
separation hyperplane, and � is an offset of the separation 
hyperplane from the origin (0, 0). 

If the given data set is inseparable (i.e., separating 
hyperplane does not exist), a slack variable �� is introduced 
in such a way that: 

 
 ��(�. �(��) + 	�) ≥ 	1 −	�� 			
 = 1,⋯ , � 

 �� 	≥ 0,																																									
 = 1,⋯ , � 
(3) 

 
By applying the structural risk minimization principle, 

the risk bound (i.e., learning error) of the classifier can be 
minimized by solving the following minimizing problem: 

 
 min	  ! (�, �) = 	12 ∥ � ∥$	+ % &��

'

�(!
 (4) 

subject to the constraints: 
 ��)�. �(��) + 	�* ≥ 	1 −	�� , 
 = 1,⋯ , � �� 	≥ 0,																																															
 = 1,⋯ , � 

where %  is the slack penalty parameter to control the net 
effect of the slack variables. 

In order to remove the complex constraints of the above 
minimization problem in Equation (4), we introduce 
Lagrangian multipliers +� ≥ 0	(
 = 1,⋯ , �)  [4]. Thus, the 
minimization problem becomes: 

 
 min	 ,! (�, �, +) 

=	12 ∥ � ∥$+ % &+�
-

�(!
(��(�. �(�) + �) − 1 + ��) 

(5) 

subject to the constraints: 
 �� 	≥ 0,					
 = 1,⋯ , � 

 
The optimal point will in the saddle point of the 

Lagrangian function. Thus, we have: 
  .,!.� = 0	 ⟹ 	� = 	&+�

'

�(!
�(��) 

.,!.� = 0	 ⟹		&+�
'

�(!
�� = 0 

.,!.�� = 0	 ⟹ 	0 ≤ +� ≤ %, 
 = 1,⋯ , � 

  
(6) 

 
By substituting � by its expression, we get the following 

quadratic programming problem: 
 

 max	2!(+) =&+�
'

�(!
	− 	&&+�

'

3(!
+3 	���3 	45�� , �36

'

�(!
 (7) 

 
subject to the constraints: 

 0 ≤ +� ≤ %, 
 = 1,⋯ , � 
 

Here, 45�� , �36 = 	�(��) ∙ �(�3)  is called the kernel 

function (which will be elaborated below in Section II.C). 
By solving this quadratic programming problem subject to 
the constraints, we will get the separating hyperplane in the 
high dimensional space, that is, the classifier in the original 
space. 

 

B. Least Squares SVM Formulation 

Suykens and Vandewalle derived the least squares 
version of the SVM classifier by reformulating the 
minimization problem as below [15]: 

 
 min	  $(�, �, 8) = 9	 :	12 ∥ � ∥$	; + 	<	 =	12&8�$	

'

�(!
> (8) 

subject to the equality constraints: 
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 ��(�.�(��) + 	�) 	= 	1 − 8� 	, 
 = 1,⋯ , � 
 

The least-squares SVM classifier formulation above 
implicitly corresponds to a regression interpretation with 
binary targets �� = ±1. 

Both 9  and <  are parameters to tune the amount of 
regularization versus the sum squared error. The solution 
does only depend on the ratio @ = 9	/	< , therefore the 
original formulation uses only @  as tuning parameter. 
Therefore, we have: 

 
 min	  $(�, �, 8) = 12 ∥ � ∥$	+ 	@	 12&8�$	

'

�(!
 (9) 

 
The solution of the least-squares regressor is obtained 

after the Lagrangian function is constructed as follows: 
 ,$(�, �, 8, +)	 

=	  $(�, �, 8) −	&+� 	(��(�. �(��) + �) − 1 + 8�)
'

�(!
 

= 12 ∥ � ∥$	 
+	@ 12	&8�$ − &+�

'

�(!

'

�(!
(��(�. �(��) + �) − 1 + 8�) 

(10) 

 
where +� ∈ 	ℝ  (
 = 1,⋯ , �) are the Lagrange multipliers. 
Again, the conditions for optimality are: 
  .,$.� = 0	 ⟹ 	� =	&+�

'

�(!
���(��) 

.,$.� = 0	 ⟹		&+���
'

�(!
= 0 

.,$.8� = 0	 ⟹		+� = 	@8� 	,																	
 = 1,⋯ , � 

.,$.+� = 0	 ⟹		��(�. �(��) + �) − 1 + 8� = 0, 
																																																														
 = 1,⋯ , � 

 
(11) 

 
By the elimination of �  and 8 , we will have a linear 

programming problem instead of a quadratic programming 
one: 
 B0 �C

� Ω + @E!F'G H�+I = B 01'G (12) 

 
where � = )�!, ⋯ , �'*	 , 1' = )1,⋯ ,1* , + = 	 )+!, ⋯ , +'* , 
and F' is an �	 × � identity matrix.  

Here Ω ∈ 	ℝ'	×'  is the kernel matrix whose individual 
element Ω�,3		(
, K = 1,⋯ , �) is defined as follows [6], [10]. 

 
 Ω�,3 = 	�5�� . �36 = 	4(�� , �3) (13) 

 

C. Kernel Function 

For the kernel function 4(•,•)	 one typically has the 
following choices [10], [19]: 

 
Linear kernel:  
 
 45�� , �36 = �� . �3 (14) 

 
Polynomial kernel of degree M: 
 
 45�� , �36 = N�� . �3O PQ

 (15) 

 
Radial basis function (RBF) kernel: 
 
 45�� , �36 = exp	T− ∥ �� − �3 ∥$

U$ V (16) 

 
Multi-layer Perceptron (MLP) kernel: 
 
 45�� , �36 = tanh	(Y	�� . �3 + 	Z) (17) 

 
where M, O, U, Y  and Z  are constants. Here, Mercer’s 
condition holds for all O, U ∈ ℝ[  and M ∈ ℕ  values in the 
polynomial and RBF case, but not for all possible choices of Y and Z in the MLP case. The scale parameters O, U and Y 
determine the scaling of the inputs in the polynomial, RBF 
and MLP kernel functions. This scaling affects the kernel’s 
bandwidth, which is an important factor in generalization of 
a kernel method [10], [19]. 

 

D. Online Learning 

In our proposed method, we employ a version of least-
squares SVR, namely the online greedy SVR proposed by 
Engel et al. [7]. In this online learning setup, we first train 
our least-squares SVR system with a large enough set of 
data in a batch mode. Then, we deploy the system for 
regressing (forecasting) an unknown future data.  

When the actual value of the forecasted data is came to 
know, the SVR system is updated using this actual data. In 
this way, the SVR system is always up-to-date and can 
truthfully represent the latest trend of the data. Therefore, 
online learning enables us to reduce the effect of the 
“concept drift” phenomenon [18] which usually occurs in 
time-series data, and thus improving the accuracy of 
forecasting. 
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E. Feature Vector Construction 

In order to forecast the peak load ]̂  of a given day _, 
we construct (encode) a feature vector with 32 attributes as 
listed in Table I. These 32 attributes are empirically chosen. 

 
TABLE I. FEATURE VECTOR USED IN FORECASTING THE PEAK LOAD ]̂ 	OF A GIVEN DAY _. 

 

Attrib 

-ute ID 

Feature Description Formula 

1 to 28 Peak load of previous 28 
days 

]̂ E!  to ]̂ E$` 

29 Average peak load of 
previous 7 days 

1/	7	(]̂ E! 	+ 	 ]̂ E$ 	+ 	…	+	 ]̂ Ec) 

30 Average temperature of 
previous 7 days 

1/	7	(d̂ E! 	+ 	 d̂ E$ 	+ 	…	+	 d̂ Ec) 
31 Forecasted average 

temperature of the day d 
d̂  

32 Whether the day d is a 
holiday (weekend or 
public holiday) 

e^ 

The individual and the average peak load information 
can be obtained from the given peak load data set itself. The 
historical temperature information for different regions of 
the world can be extracted from the Weather Underground 
website [24]. Holiday information of countries all over the 
world is available from the Holidays-Info.com website [22]. 

We use the scaling facility of the LibSVM software [21] 
to map the values of each attribute into the range of –1 to 
+1. This scaling exercise helps us improve the forecasting 
accuracy by a considerable extent. The experimental results 
of scaling vs. without scaling are discussed in Section III.D. 

 

III. EXPERIMENTAL RESULTS 

In this section, we will discuss about the datasets that we 
use in our experiment, how the datasets are of training and 
testing subsets, the results that our proposed method 
achieved in comparison with an existing state-of-the-art 
method, the effects of scaling vs. non-scaling, and finally 
the computational efficiency of the method. 

 

A. Datasets 

We use two datasets in our experiment. The first one is 
the electricity usage data for the year 2009 logged by a 
smart meter deployed in a household in Lower Saxony (LS) 
region of Germany. We will call this dataset as LS Dataset. 
The second one is the data for 2009 logged by a smart meter 
installed in a household in North Rhine-Westphalia (NRW) 
region of Germany. We will name this dataset as NRW 

Dataset. 

Each original datasets contains the electricity usage 
readings of the smart meter at every 15 minutes. From these 
readings, we extract the peak load (i.e., the maximum 
reading) for each day. The daily peak load profile of LS 
Dataset for the whole year of 2009 is illustrated in Figure 3. 

 

 

Figure 3. Daily peak load profile of an individual household in Lower 
Saxony (LS), Germany in 2009. The spikes indicate the increases of peak 
loads on holidays. Electricity usage is higher in winter and lower in 
summer. 

 

B. Training and Testing  

For each dataset, we use each daily peak load value and 
its associated feature vector (as discussed in Section III) 
from February 01, 2009 to June 30, 2009 (150 days) as the 
training data for our forecasting system. (Note: we simply 
cannot start from January 01, 2009 because we need the data 
for the previous 4 weeks, i.e., 28 days, to construct a feature 
vector.) 

The remaining days of the year from July 01, 2009 to 
December 31, 2009 (184 days) are used for testing (as well 
as for model updating in our online learning setup). 

We use dlib C++ library [17] for the implementation of 
online greedy least-squares SVR algorithm by Engel et al. 
[7]. We use a radial basis function (RBF) kernel, which is 
described in Equation (16), with the kernel scaling 
parameter σ = 15, which is empirically determined. 

 

C. Results 

We compare the accuracy performance of our proposed 
method with another least-square SVR-based method by Lv 
et al. [11], which uses a different feature vector encoding. A 
RBF kernel is also used for it with the parameter σ = 18, 
which is the optimum for that method. To enable a fair 
comparison, their regression model is also re-trained after 
every test instance in order to ensure an up-to-date model. 

The forecasted peak load values for 184 test days from 
July 01, 2009 to December 31, 2009 are computed using 
both methods and are compared against the actual peak load 
values.  

An example of the forecasted values by the two methods 
and the actual values for the month of December 2009 for 
LS Dataset are demonstrated in Figure 4. It can be observed 

55Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications
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more accurately than the method by Lv 
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forecasted values by Lv et al. 
December 1 to 31, 2009 on LS Dataset.

In order to systematically analyze the performance of the 
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accuracy
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Figure 4. Example of forecasted results. The actual peak loads and the 
forecasted values by Lv et al. 
December 1 to 31, 2009 on LS Dataset.

 

In order to systematically analyze the performance of the 
two methods, we use two criteria: 
accuracy in our experiment. For each testing day, the 
relative error and the accuracy of the forecasted peak load 
are calculated as follows.

 

= |gOhigj	M8gY

gOOikgO�
 

For the testing period of 184 days, the comparisons of 
relative error values of the two methods are given in 
5 for LS Dataset and 
respectively. We can visually observe from the figures that 
our proposed method provides lower relative errors than the 
method by Lv et al. 

For LS Dataset, the average relative error of our method 
is 1.3% (i.e., 98.7% average accuracy) whilst that of Lv 
al. is 3.3% (i.e.

For NRW Dataset, the average relative error of our 
method is 1.6% (i.e.
Lv et al. is still 3.3% (i.e.

Load forecasting is quite a mature technology in which 
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~95% in general 
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Example of forecasted results. The actual peak loads and the 
forecasted values by Lv et al. [11]
December 1 to 31, 2009 on LS Dataset.
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significantly reduce the relative error (i.e., improve the 
accuracy) of our proposed method over directly using the 
data without any scaling. We can clearly observe this trend 
in Figure 7. The overall average of the relative errors for 
both LS and NRW Datasets with scaling is 1.4% while that 
without scaling is 6.2%. The superiority of scaling is 
because it prevents the dominance of attributes with larger 
value ranges over those with smaller ranges in calculating 
the Lagrange multipliers + in Equation 12. 

 

E. Computational Efficiency 

The proposed method is developed in C++ and tested on 
a modest laptop PC with Intel Core Duo 1.83 GHz 
processor and 2GB of main memory running Windows 
Vista 32-bit Edition. The program is compiled with 
Microsoft Visual C++ 2008 using O2 optimization.  

The method is found to be quite efficient and scalable. 
The overall running time of the training for 150 days and the 
testing (and re-training) for 184 days is only 210 
milliseconds for LS Dataset and 220 milliseconds for NRW 
Dataset respectively. Thus, our proposed method can be 
potentially deployed in a larger scale to forecast the loads of 
tens of thousands of consumer entities like smart meters on 
a distributed computing platform. 
 

IV. CONCLUSION AND FUTURE WORK 

In this paper, we have presented an accurate load 
forecasting method which can potentially provide greater 
intelligence (smartness) to the upcoming smart grids. In our 
approach, we adopt the least-squares support vector 
regression technique incorporated with online learning. 
Experimental results show that our method is able to 
provide more accurate results than an existing forecasting 
method by Lv et al. [11], which is reported to be one of the 
best methods, and is also computationally efficient. As the 
future work, we intend to explore the idea of automatic 
feature selection for our regression model in order to further 
improve its accuracy. In addition, we plan to rigorously test 
our method with multiple smart grid load datasets from 
different countries/industries and fine tune the method so as 
to ensure its general usability. Finally, we hope our 
proposed method with these future improvements can be 
potentially useful to utility companies in their large-scale 
load forecasting applications for consumer entities at any 
granularity levels (such as individual households, 
neighborhoods, towns, cities, and large geographical 
regions) by providing results with better precisions. 
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