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Abstract—Association Rule Mining is one of the most im-
portant tasks in data mining and it has been deeply studied
during last years. Recently several rule mining algorithms have
been developed due to many real-world applications. Most of
these studies have generally considered only precise data, which
means that items within each datum or transaction are defi-
nitely known and precise. However, there are also many real life
situations where the data is uncertain, which means that items
are expressed in terms of existential probabilities. In this paper,
a method for association rule mining from large, heterogeneous
and uncertain databases is proposed using an evolutionary
method named Genetic Network Programming (GNP). Some
other association rule mining methods can not handle uncertain
data directly, they are inapplicable or computational inefficient
under such a model. GNP uses direct graph structure and is
able to extract rules without generating frequent itemsets to
improve mining efficiency. The performance of the method is
evaluated through extensive experiments using real scientific
large-scale heterogeneous databases that show its effectiveness
and efficiency.

Keywords-Association rule mining; heterogeneous databases;
uncertain data; evolutionary computation.

I. INTRODUCTION

The continuously growing in the size and number of

databases in a variety of domains has boosted the develop of

several data mining methods during the last decade. There

is an increasing need to discover associations and relations

among large and heterogeneous databases, which may be

tackled by association rule mining. Actually, several associ-

ation rule mining algorithms have been proposed. Most of

them assume a data model, which transactions capture the

doubtless facts about items contained in each transaction,

that is, they handle precise data, such as databases of market

basket transactions, web logs and click streams where the

user definitely knows whether an item is present in, or

is absent from, a transaction in the databases. However,

in many other applications, the existence of an item in

a transaction is best captured by a likelihood measure or

probability, for example, a medical dataset may contain a

list of patients as records (tuples) and for each record a set

of symptoms or illnesses that a patient suffers as the items.

Applying association analysis on such dataset allows to

discover any potential correlation among the symptoms and

illnesses, a physician may highly suspect (but cannot guar-

antee) that a patient suffers some disease. The uncertainty

of such suspicion can be expressed in terms of existential

probability. Other examples of uncertain datasets are pattern

recognition databases where image processing techniques

are applied on a picture to extract features that indicate the

presence or absence of certain objects in an area, but due to

noises and limited resolution, the presence of an object is

ofter uncertain and expressed as probability.

Many of the developed algorithms for uncertain mining

have been focused on data mining tasks like clustering and

classification of uncertain data [1]. With respect to associa-

tion rule mining of uncertain data, Chui et al.[2] proposed

an Apriori-based algorithm called U-Apriori and introduced

a trimming strategy to reduce the number of candidates

that need to be counted by the algorithm. To speed up the

mining process, they also proposed a decremental pruning

technique, however as an Apriori-based algorithm, U-Apriori

relies on the candidate generate-and-test paradigm. Kai-San

Leung et al. [3] have tried to reduce the searching space by

adding constraints given by users, but the scalability issues

have not been described.

In this paper, a method for mining association rules

from uncertain data is proposed using an evolutionary opti-

mization algorithm named Genetic Network Programming

(GNP). There have been some proposals of association

rule mining using GNP [4][5], however all of them use

certain data. The advantages of the proposed method are

as follows: (1). It is widely known that the search space

of frequent patterns from precise data is very huge, and

from uncertain data is even much bigger. Thus, the proposed

method extracts rules directly without generating the fre-

quent patterns. (2). The support and confidence are the most

used framework to evaluate the association rules. However,

this measurements are not longer valid for probabilistic

datasets. GNP provides the flexibility to use any correlation

measure either independently or combined. Thus, in this
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paper hyper-lift and hyper-confidence proposed in [6] are

used. (3). The scalability issue is not an important concern

in other algorithms since most of them deal with mining

frequent patterns, which is computationally expensive and

therefore use relatively small datasets. In this paper, large-

scale and heterogeneous databases are mainly focused.

The following sections of this paper are organized as

follows: In Section II, the uncertain data model is presented,

the concepts and explanations of general association rules

are introduced in Section III, the outline of GNP is briefly

reviewed in Section IV where also the method for rule ex-

traction from uncertain data is presented. Simulation results

are described in Section V, and finally, conclusion and future

work are given in Section VI.

II. UNCERTAIN DATA MODEL

Because of the uncertainty in various real-life situations,

users may not be certain about the presence or absence of an

item x in a transaction ti. They may suspect the presence
of x in ti, but cannot guarantee. The uncertainty of such
suspicion can be expressed in terms of existential probability

P (x, ti), which indicates the likelihood of x being present
in ti in a probabilistic database D of uncertain data. The

existential probability P (x, ti) ranges from a positive value
close to 0, which indicates that x has an insignificantly

low chance to be present in D, to a value of 1, which
indicates that x is definitely present. Applying this notion
to the traditional databases of precise data, each item of any

transaction can be viewed as an item with a 100% likelihood

of being present in such a transaction.

III. ASSOCIATION RULES

A transaction database consist of a series of transactions,

each of them containing a subset of available items[7]. Let

I = {A1, A2, . . . Al} be a set of attributes. Let G be a set of
transactions,where each transaction T is a set of attributes

such that T ⊆ I . Associated with each transaction is a
unique identifier whose set is called TID. A transaction

T contains X , a set of some attributes in I , if X ⊆ I . An
association rule is an implication of the form of X ⇒ Y ,
whereX ⊂ I , Y ⊂ I , andX∩Y = ∅.X is called antecedent

and Y is called consequent of the rule. Both are called

itemsets. In general, an itemset is a non-empty subset of I .
There are some assumptions in our model, 1) transactions

occur randomly following a homogeneous Poisson process.

2) all items occur independently of each other and for each

item exist a probability of being contained in a transaction.

Looking at the observed co-occurrences counts for all

pairs of two items Ai and Aj , in a dataset with N transac-

tions, it is possible to form an n × n contingency table. Each
cell can be modeled by a random variable Cij , which given

fixed marginal counts ci and cj , follows a hyper-geometric

distribution. In the case of two itemsets X and Y , the
random variable CXY follows a hyper-geometric distribution

with the counts of the itemsets as its parameter [6], that

is, the probability of counting exactly k transactions, which
contain the two independent itemsets X and Y is given by:

P (CXY = k) =

(

CX

k

)(

N−CX

CY −k

)

(

N
CY

) (1)

The probability of counting more than k transactions is:

P (CXY > k) = 1−
k

∑

i=0

P (CXY = i) (2)

The contingency table is shown in Table I.

Table I
THE CONTINGENCY TABLE OF X AND Y .

Y ¬Y
∑

row

X CXY CX − CXY CX

¬X CY − CXY (N − CY )− (CX − CXY ) N − CX∑
col CY N − CY N

( N : the number of transactions (= |TID|) )

A. Hyper-Lift

The expected value of a random variable CXY for the

co-occurrence counts for two itemsets X and Y is:

E(CXY ) =
CXCY

N
(3)

Therefore, lift can be written as:

lift(X ⇒ Y ) =
CXY

E(CXY )
(4)

However, it works well for items with a relatively high oc-

currence frequency. Thus, for relatively infrequent itemsets

the hyper-lift is defined as:

hyper-liftδ(X ⇒ Y ) =
CXY

Qδ(CXY )
(5)

where, Qδ(CXY ) is the quantile distribution. The minimal
value of the δ quantile of the distribution of CXY is defined

by the following inequalities:

P (CXY < Qδ(CXY )) ≤ δ , and

P (CXY > Qδ(CXY )) ≤ 1− δ
(6)

B. Hyper-confidence

The hyper-confidence is defined directly by the probability

of realizing a count smaller that the observed co-occurrence

count cXY given the marginal counts cX and cY as follows:

hyper-confidence(X ⇒ Y ) = P (CXY < cXY )

=

cXY −1
∑

i=0

P (CXY = i)
(7)

where P (CXY = i) is calculated using Equation 1.
Note that hyper-confidence is equivalent to a special

case of Fisher’s exact test, the one-sided test on 2 × 2

contingency tables. In this case, the p-value is directly

obtained from the hyper-geometric distribution, which is
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computationally negligible compared to the effort of count-

ing support and finding frequent itemsets. Furthermore, for

the application of mining association rules where only rules

with positively correlated elements are of interest, a one-side

test as used here is much more appropriate.

Therefore, the problem of mining probabilistic association

rules from uncertain data is to find all rules that are highly

likely to be interesting, that is, satisfying the minimum

hyper-confidence threshold.

hyper-confidence(X ⇒ Y ) ≥ minhyper−conf , and

hyper-lift(X ⇒ Y ) ≥ 1
(8)

IV. GENETIC NETWORK PROGRAMMING

Genetic Network Programming (GNP) is one of the evo-

lutionary optimization algorithms, which evolves directed

graph structures as solutions instead of strings (Genetic

Algorithms) or trees (Genetic Programming) [8], [9], [10].

The main aim of developing GNP was to deal with dynamic

environments efficiently by using the higher expression

ability of graph structures.

The basic structure of GNP is shown in Fig. 1. The

graph structure is composed of three types of nodes that are

connected on a network structure: a start node, judgment

nodes (diamonds), and processing nodes (circles). Judgment

nodes are the set of J1, J2, . . . , Jp, which work as if-

then conditional decision functions and they return judgment

results for assigned inputs and determine the next node to

be executed. Processing nodes are the set of P1, P2, . . . ,

Pq , which work as action/processing functions. The start

node determines the first node to be executed. The nodes

transition begins from the start node, however there are no

terminal nodes. After the start node is executed, the next

node is determined according to the node’s connections and

judgment results.

Figure 1. Basic structure of GNP

The gene structure of GNP (node i) is shown in Fig. 2.
The set of these genes represents the genotype of GNP-

individuals. NTi describes the node type, NTi = 0 when
node i is the start node, NTi = 1 when node i is a judgment
node and NTi = 2 when node i is a processing node.
IDi is an identification number, for example, NTi = 1 and
IDi = 1 mean node i is J1. Ci1, Ci2, . . . , denote the nodes,

Figure 2. Gene structure of GNP (node i)

which are connected from node i firstly, secondly, . . . , and
so on depending on the arguments of node i. di and dij

are the delay time, which are the time required to execute

the judgment or processing of node i and the delay time of
transition from node i to node j, respectively.

In this paper, the execution time delay di and the transition

time delay dij are not considered. All GNP-individuals in a

population have the same number of nodes.

The characteristics of GNP are described as follows. (1)

The judgment and processing nodes are repeatedly used

in GNP, therefore the structure becomes compact and an

efficient evolution of GNP is obtained. (2) Since the number

of nodes is defined in advance, GNP can find the solutions

of the problems without bloating, which can be sometimes

found in Genetic Programming (GP). (3) Nodes that are not

used at the current program execution will be used for future

evolution. (4) GNP is able to cope with partially observable

Markov processes. (5) The node transition in GNP individual

is executed according to its node connections without any

terminal nodes.

In the conventional GNP-based mining method, the at-

tributes of the database correspond to the judgment nodes

in GNP. Association rules are represented by the connections

of nodes. Candidate rules are obtained by genetic operations.

Rule extraction using GNP is done without identifying

frequent itemsets used in Apriori-like methods [11]. There-

fore, this method extracts important rules sufficient enough

for user’s purpose in a short time. The association rules

extracted are stored in a pool through generations. The

fundamental difference with other evolutionary methods is

that GNP evolves in order to store new interesting rules

in the pool, not to obtain the individual with the highest

fitness value. GNP method has also advantages over other

evolutionary methods such as Genetic Algorithms (GA) and

Genetic Programming (GP). For GA-based methods [12],
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there are limitations in the number of association rules

extracted because they are represented in individuals. In GP-

base methods [13], an individual is usually represented by

a tree with attribute values in the functions (e.g., logical,

relational or mathematical operators) of the internal nodes.

An individual’s tree can grow in size and shape in a very

dynamical way making it very difficult to understand for real

applications.

A. GNP for rule extraction in a uncertain database

In this section, a general association rule mining method

for uncertain databases is proposed using GNP. Let Ai be an

attribute in an uncertain database and its value an existential

probability. Each attribute Ai is associated with ai, which

is a threshold value. One of the features of the proposed

method is to evolve the threshold ai along with the evolution

of GNP in order to obtain as many rules as possible [14].

The initial threshold ai is determined as follows: (1). The

mean µi and standard deviation σi of every attribute Ai is

calculated. (2). The initial threshold is selected randomly

from the interval [µi − αiσi, µi + αiσi], where αi is a

parameter that determines the size of the interval. Then, the

initial threshold is evolved by mutation in every generation

of GNP. Once the threshold ai is selected for all attributes,

each value of the attribute Ai is checked to verify whether it

is greater than the threshold ai in the judgment nodes of the

GNP individuals. The evolution of the thresholds is carried

out by introducing an additional parameter that determines

the mutation rate tr. In this paper, the mutation rate tr is
gradually adjusted as it is described in [14].

1) Rule Representation: Attributes and its values corre-

spond to the functions of judgment nodes in GNP. Associ-

ation rules are represented as the connections of nodes .

Fig. 3 shows a sample of the connection of nodes in GNP

for probabilistic association rule mining. P1 is a processing

node and is a starting point of association rules. ”A1 ≥ a1”,

”A2 ≥ a2”, ”A3 ≥ a3” and ”A4 ≥ a4” in Fig. 3 denote

the functions of judgment nodes. Association rules are

represented by the connections of these nodes, for example,

(A1 ≥ a1)⇒ (A2 ≥ a2), (A1 ≥ a1)∧ (A2 ≥ a2)⇒ (A3 ≥
a3), (A1 ≥ a1)∧ (A2 ≥ a2)∧ (A3 ≥ a3)⇒ (A4 ≥ a4) and
(A1 ≥ a1) ∧ (A2 ≥ a2)⇒ (A3 ≥ a3) ∧ (A4 ≥ a4).

Judgment nodes in GNP are used to examine the attribute

values of database tuples and processing nodes calculate the

measurements of association rules. Judgment nodes deter-

mine the next node by a judgment result. Each judgment

node has two connections Continue-side and Skip-side. The

Continue-side of the judgment node is connected to another

judgment node. Skip-side of the judgment node is connected

to the next numbered processing node. If the attribute value

is greater or equal to ai, then move to the Continue-side. If

the attribute value is less than ai, then the transition goes

for the Skip-side.

Figure 3. A connection of nodes in GNP for probabilistic association rule
mining

Figure 4. Basic structure of GNP for uncertain association rule mining

A basic structure of GNP-individual for association rule

mining is shown in Fig. 4. In Fig. 4, the Skip-side of

judgment nodes is abbreviated. Each processing node has an

inherent numeric order (P1, P2, . . . , Ps) and is connected

to a judgment node. Start node connects to P1. For each

judgment node, the examinations of attribute values start

and in case to move to the Continue-side continuously, the

connection is obligatorily transfered to the next processing

node using the Skip-node when the maximum number of

attributes (MaxLength) in the rule is reached. When the
examination of the attribute values of tuple TID = 1 from
the starting point Ps ends, then GNP examines the next tuple

TID = 2 from P1 likewise. Therefore, all tuples in the

database are examined.

2) Rule Measurements: In GNP the number of tuples

moving to the Continue-side are counted up and they are
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used for calculation of the measurements In upper side of

Fig. 3, a, b, c and d are the number of tuples moving to
the Continue-side at each judgment node when the attribute

values are greater or equal to a1, a2, a3 and a4, respectively.

In the proposed method the significance of the associa-

tions are measured via the hyper-geometric distribution used

in classical statistics. For example in lower side of Fig. 3

it is possible to calculate the number of tuples going to

the Continue-Side of A3 and A3 ∧ A4 if the connection of

node P1 is changed from node A1 ≥ a1 to node A3 ≥ a3.

This procedure is repeated like a chain operation in each

generation. The extracted important association rules are

stored in a local pool all together through generations. When

an important rule is extracted by GNP, the redundancy of

the attributes is checked and it is also checked whether the

important rule is new or not, that is, whether the rule is

already in the local pool or not.

3) Genetic Operations: Changing an attribute to another

one or adding some attributes in the rules would be con-

sidered as candidates of important rules. These rules can

be obtained effectively by GNP genetic operations, because

mutation and crossover will change the connections or

contents of the nodes.

Three kinds of genetic operators are used for judgment

nodes: GNP-crossover, GNP-mutation-1 (change the connec-

tions) and GNP-mutation-2 (change the function of nodes).

• GNP-Crossover: uniform crossover is used. Judgment

nodes are selected as the crossover nodes with the

probability of Pc. Two parents exchange the gene of

the corresponding crossover nodes.

• GNP-Mutation-1: Mutation-1 operator affects one in-

dividual. The connection of the judgment nodes is

changed randomly by mutation rate of Pm1.

• GNP-Mutation-2: Mutation-2 operator also affects one

individual. This operator changes the functions of the

judgment nodes by a given mutation rate Pm2.

On the other hand, all the connections of the processing

nodes are changed randomly. At each generation, all GNP-

individuals are replaced with the new ones by the following

criteria: The GNP-individuals are ranked by their fitness

values and the best one-third GNP-individuals are selected.

After that, these GNP-individuals are reproduced three times

for the next generation using the genetic operators described

before.

If the probabilities of crossover (Pc) and mutation

(Pm1, Pm2) are set at small values, then the same rules in the

pool may be extracted repeatedly and GNP tends to converge

prematurely at an early stage. If the probability of mutation

is set at high values, then some genetic characteristics of the

individuals might be lost. These parameter values are chosen

experimentally avoiding these issues.

4) Heterogeneity Level: The heterogeneity level of rule

r, hl(r), is defined as follows:

hl(r) =

T
∏

k

[nak(r)/NAk]

T
; k = 1, 2, . . . , T (9)

where,

nak(r) is the number of attributes in rule r (antecedent
and consequent), which belong to database k.

NAk is the number of attributes of database k.
T is the number of heterogeneous databases.

The heterogeneity level of rule r measures the ratio of
attributes that exist in the rules, which belong to one or

another database. hl(r) ≥ γ, where γ is a threshold value
for the heterogeneity level. It ensures that every rule contains

at least one attribute per every heterogeneous database. γ
is defined experimentally and its value decreases when the

number of databases increases.

5) Fitness of GNP: The number of processing nodes and

judgment nodes in each GNP-individual is determined based

on experimentation depending on the number of attributes

processed. All GNP-individuals in a population have the

same number of nodes. The connections of the nodes and

the functions of the judgment nodes at an initial generation

are determined randomly for each GNP-individual.

Fitness of GNP is defined by:

F =
∑

r∈Q

{hc(r)+ αnew(r) + hl(r)(NAA(r)− 1) +

hl(r)(NAC(r)− 1)}

(10)

The terms in Eq. (10) are as follows:

Q: set of suffixes of extracted important association
rules satisfying (8)

hc(r): value of hyper-confidence(r) of rule r
αnew(r): additional constant defined by

αnew(r) =

{

αnew (rule r is new)

0 (rule r has been already extracted)
(11)

hl(r): heterogeneity level of rule r.
NAA(r): the number of attributes in the antecedent of

rule r.
NAC(r): the number of attributes in the consequent of

rule r.
Constant αnew(r) in Eq. 10 is defined empirically based

on the values of hyper-confidence(r). Thus, αnew(r) = 0.3.
NAA(r) ≤ MaxLength and NAC(r) ≤ MaxLength.

MaxLength = 2T + 1, where T is the number of hetero-

geneous databases.

hc(r), NAA(r) and NAC(r), and αnew(r) are concerned
with the importance, complexity and novelty of rule r,
respectively. The fitness represents the potential to extract

new rules.
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V. SIMULATION RESULTS

In order to test and validate the effectiveness of the pro-

posed method, two real-time scientific databases from UCI

ML Repository [15] and World Data System (WDS) [16]

were taken to conduct the experiments, which are frequently

used in data mining community. Both of them contains

heterogeneous spatial-temporal data and they are suitable

for mining general association rules. The first one (“A”

dataset) is El Nino dataset and contains oceanographic and

surface meteorological readings taken from a series of buoys

positioned throughout the equatorial Pacific. The second one

(“B” dataset) correspond to the weather information of the

Pacific Ocean taken by sensors of World Ocean Circulation

Experiment (WOCE).

A. Experiment Setting

Both datasets are combined taken into account the

date and each attribute is separated into two correspond-

ing attributes according to their values. For instance, if

Latitude ≤ 0 correspond to the Latitude = South. In this
experiment, data only from one year (1993) is considered.

Thus, one large database is generated (36 attributes × 20609
records), then the data is normalized between the interval [0,

1] and these values are used as existential probabilities.

1) Parameters of GNP: The population size of GNP is

120. The number of processing nodes and judgment nodes in

each GNP individual are 10 and 75, respectively. The maxi-

mum number of changing the connections of the processing

nodes (MaxLenght) in each generation is 2(2) + 1 = 5.
The conditions of crossover and mutation are Pc = 1/5,
Pm1 = 1/3 and Pm2 = 1/5. The termination condition
is 100 generations. 10 runs were executed and the results

are given as an average. These parameters were selected

through experimentation. All algorithms were coded in Java

language. Experiments were performed on a 3.2GHz Intel

Xeon PC with 12G of main memory, running Windows 7

Ultimate 64bits.

Table II shows some examples of the rules extracted

by GNP. The termination “A” or “B” of each attribute

means the correspondence to its dataset. From Table II,

the rules extracted by GNP are simple due to the small

number of itemsets, which contribute to their understandabil-

ity. Although the GNP-based data mining method extracts

significant number of rules in a short period of time, it does

not extract all the possible rules. Instead, it extracts rules

with higher quality as it is shown in Table II.

Fig. 5 shows the number of extracted rules according

to the number of generations using the complete database

and minhyper−conf ≥ 0.9 . It can be seen that most of
the association rules are extracted at earlier generations

becoming stable at later generations, which improves the

performance of the method.

Fig. 6 shows the number of extracted rules for different

values of minimum hyper-confidence. Fig. 6 shows that

Figure 5. Number of extracted rules vs. number of generations

Figure 6. Number of extracted rules vs. min hyper-confidence

Figure 7. Processing Time vs. database size

when the minimum hyper-confidence increases, the number

of association rules decreases because the conditions become

more strict and fewer rules are able to satisfy them.

Fig. 7 shows the processing time for extraction of associ-

ation rules when the database size varies. Fig. 7 shows that

the processing time increases linearly when the database size

increases.

Fig. 8 shows the processing time for extraction of associ-

ation for different values of hyper-confidence. Fig. 8 shows

that the processing time does not vary significantly when

hyper-confidence changes.
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Table II
EXAMPLES OF RULES EXTRACTED BY GNP. GENERATIONS=100,minhyper−conf ≥ 0.9

Association Rules Hyper-Conf.

IF Sea Surf Temp = High A ∧ Latitude = South B, THEN Longitude = West B ∧ Rel Hum = High B ∧ Precip = High B 1.0

IF Longitude=West A ∧ Zon Winds=West A ∧ Humidity=Low A, THEN Precip = High B ∧ Temp Water = Low B 0.9871

IF Temp Air=High A ∧ Speed=High B, THEN Meridional Winds= South A ∧ Rel Hum = High B 0.9962

IF Pressure Atm=High B ∧ Temp Air=Low A ∧ Sea Surf Temp = High A, THEN Longitude = West B ∧ Temp Water = High B 1.0

IF Temp Air=Low B ∧ Zon Winds=West A ∧ Latitude=South B, THEN Rel Hum = High B ∧ Precip = High B 1.0

Figure 8. Processing Time vs. min hyper-confidence

VI. CONCLUSION AND FUTURE WORK

A method for association rule mining from uncertain

databases has been proposed using GNP. An uncertain

database includes the existential probability of every item

in a transaction. Traditional approaches count the frequency

of the itemsets. The proposed method can extract directly

important rules without calculating the frequency and the

conditions of important association rules can be flexibly

defined by users. The performance of the rule extraction has

been evaluated using real data sets. The results shows that

the proposed method has the potential to realize associations

considering heterogeneous databases and may be applied for

rule discovery from probabilistic databases in several other

fields. For future work, the method will be extended to deal

with large and heterogeneous scientific databases combined

with web data.
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