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Abstract—The Semantic Web databases are growing bigger
and much effort is given to introduce new approaches to
querying them effectively. Most of the current approaches are
based on query optimization or their parallel or distributed
run. However, they do not fully benefit from potential of the
modern, multicore computers in parallel processing. Although
the parallel relational database systems have been well exam-
ined, parallel query computing in Semantic Web databases
has not been extensively studied. This paper follows our
previous research in parallelization of evaluation of SPARQL
queries by outlining the possibility of further parallelization
of query operators themselves. As a result, we developed a
parallel SPARQL query execution engine built over Bobox
framework. We show that intraoperation parallelism yields to
better performance.
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I. INTRODUCTION

As prevalence of semantic data on the web is getting
bigger, the Semantic Web databases are growing in size.
There are two main approaches to storing and accessing
these data efficiently: using traditional relational means or
using sematic tools, such as different RDF triplestores [1]
and SPARQL [2] language. Since semantic tools are still in
development, a lot of effort is given to research of effective
storing of RDF data and their querying [3]. One way of im-
proving performance is the use of modern, multicore CPUs
in parallel processing. Nowadays, there are several database
engines which are capable of evaluating SPARQL queries,
such as SESAME [4], OWLIM [5] or RDF-3X [6], which
is currently considered to be one of the fastest single node
RDF-store [7]. These stores support parallel computation
of multiple queries; however, they do not use the potential
of parallel computation of query itself, in contrary to the
work [8]. It introduces implementation of RDF-store based
on RDF-3X with parallelized join operators, but not full set
of operators.

In our previous work, we chose the semantic approach
and presented parallel SPARQL engine [9], that provides
streamed parallel query execution on basic operation level.
While the implementation of operations is based on sequen-
tial algorithms, there is considerable research on parallel
versions, such as parallel joins [10], [11], [12]. Moreover,
new architectures have been explored to improve perfor-
mance. Gedik et al. [13] adapts join operation for the Cell
processors. He et al. [14] uses GPUs for the processing of
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joins. Both papers try to exploit parallel nature of these
architectures and show performance benefits over optimized
CPU-based counterparts.

The SPARQL algebra is similar to the relational algebra;
however, there are several important differences, such as
absence of NULL values. As a result of these differences,
the application of relational knowledge into semantic is not
straightforward and the algorithms have to be adapted so it
is possible to use them.

In this paper, we explore the effects of further decom-
position of basic operations in our SPARQL engine in
order to increase parallelism during the query evaluation.
In pilot implementation, we focused on following basic
operations: nested loops join, index scan and filter. This
enables evaluation of some queries completely in parallel
and reaching better scalability.

The rest of the text is organized as follows: In Section II,
we present background information about Bobox framework
we used. It also contains more detailed description of some
of its parts, since it is important for understanding of the
rest of the paper. Section III introduces two main concepts
of parallelization of operation in Bobox. In Section IV, we
describe parallelization of selected operations. The results
of our experiments are introduced in Section V. Section VI
concludes the paper and presents our future work.

II. BACKGROUND

The platform we used to build our execution engine is
Bobox [15]. Bobox is a parallel framework, which was
designed to support development of data-intensive parallel
computations. The main idea behind Bobox is connecting a
large number of relatively simple computational components
into a nonlinear pipeline. This pipeline is then executed
in parallel, but the interface used by the computational
components is designed in such way that they do not need
to be concerned with the parallel execution issues such as
scheduling, synchronization and race conditions.

This system may be easily used for database query
evaluation. Since Bobox supports only a custom low-level
interface for the definition of the structure of the pipeline,
a separate query compiler and optimizer has to be created
for required query language. Firstly, we developed SPARQL
compiler for Bobox [16]. Its main task is to perform lexical,
syntactic and semantic validation of the given query, to
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perform static optimizations and to build optimal query
execution plan using heuristics to reduce search space and
statistics collected over stored data.

Traditionally (e.g. in relational databases), query execu-
tion plans have the form of directed rooted trees in which
the edges indicate the flow of the data and all of them
are directed to the root. The nodes of the tree are the
basic operations used by the evaluation engine, such as full
table scan, indexed access, merge join, filter etc. This plan
corresponds to Bobox architecture, since the tree is a special
case of the nonlinear pipeline supported by the system.

A. Evaluation of the plan in the Bobox

After the Bobox receives a plan for evaluation, it replaces
the operations in the plan by the boxes, which are elementary
execution units in Bobox, and connects them according to
edges in the execution plan.

Each box is able to receive data, process them and send
resulting data out to the boxes which are connected to its
output. Data are processed by small parts, which, in Bobox,
are called envelopes. The envelope contains a list of columns
which contain the data. The columns may have arbitrary data
types, but all columns have always the same number of data
elements. Therefore, from other point of view, the envelopes
are also lists of rows where each element of the row may
have arbitrary data type. Additionally, each envelope may
contain also some scalar data (for example integer or boolean
value) which may be used for additional communication
between the boxes.

The processing of envelopes inside the box is always
single-threaded, because boxes are not allowed to create
another threads. There are two reasons for this limitation:

o The development of the boxes is easier, since a de-
veloper does not have to take any parallelization into
account.

« If the boxes were allowed to create its own threads, the
total number of threads in the system would be out of
control and may easily exceed the number of physical
threads in the computer by several order of magnitude.
This may cause significant slowdown of the execution.

The evaluation of the execution plan works as follows:
when the box receives an envelope, the envelope is stored
into its (limited) input buffer and the box is scheduled. When
the scheduler, which is an important part of Bobox, decides
to run the box, the box is executed and one envelope of its
input buffer is processed. If the buffer is not empty yet, it
is scheduled again. When the input buffer of the box is full,
the preceding box which causes this state is paused as long
as the buffer is full.

Since boxes are independent on each other and their state
is determined only by the data they received, it is possible to
run all boxes which have at least one envelope in the input
buffer in parallel. This enables automatic parallelization of
the plan evaluation.
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Bobox also determines the size of envelopes according
to hardware parameters of the computer. The optimal size
of one envelope is chosen to be %LQ/N bytes, where L2
denotes the total size of L2 cache in the system and N the
number of physical threads [17]. According to our experi-
ments, this value gets the best results, since all envelopes
which are being processed at a moment may be completely
stored in L2 cache and there is still space for auxiliary data
needed for the execution.

II1. BASIC CONCEPTS OF PARALLELIZATION OF
OPERATIONS

The straightforward approach to the implementation of
boxes is that each operation in the execution plan is repre-
sented by one box. Despite the fact that execution of one box
is strictly single-threaded, there is space for parallelization.
The main reasons are:

« The execution plan has typically a form of rooted tree,

therefore, its branches may be executed in parallel.

o Parallel evaluation may be reached through pipeline
processing, i.e. while one box is processing envelope
number ¢, the consecutive box may be processing
envelope number ¢ + 1.

Because of these facts, even straightforward implemen-
tation of boxes yields to parallel evaluation and causes
indispensable speedup of the plan evaluation. Unfortunately,
it is still usually insufficient to utilize all physical threads in
the computer.

In order to enhance parallelization, the operations should
be implemented by more boxes than one. In this case, the
number of threads which perform the operation is limited
only by the number of boxes corresponding to the operation
and by the number of physical threads in the system.
Unfortunately, the decomposition of operation to multiple
boxes may be difficult.

Generally, there are two types of operations:

o Stateless operations — their state does not depend
on envelopes received so far, i.e. processing of one
envelope is totally independent on processing of any
other envelope. For example filter operation meets this
condition.

« Stateful operations — processing of one envelope is
influenced by the content of envelopes received before,
therefore, their state depends on all data received so far.

A. Decomposition of stateless operations

Decomposition of stateless operations is quite simple. The
box which performs the operation may be duplicated and
each instance of the box may process only the proportional
part of the data. Predecessors of these boxes should be some
kind of dispatch box, which resends incoming envelopes to
them. Their successor must be a box, which aggregates the
resulting data together and passes them to another operation.
This scheme is shown in Figure 1.
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dispatch aggregate

Figure 1.

Decomposition of stateless operation

The dispatch box just forwards envelopes to the
worker boxes in round-robin manner. This is very efficient,
since we keep the size of envelope to be a constant.
Therefore, the work boxes receive approximately the same
amount of data for processing. In this case, the aggregate
box is also simple, since it receives envelopes from work
boxes in round-robin manner as well and resends them to
the output.

It may seem, that dispatch and aggregate are bot-
tlenecks of the algorithm, but they only resends the incoming
envelopes, which is by several order of magnitude faster than
accessing or processing their data.

B. Decomposition of stateful operations

Stateful operations are much harder to decompose, since
in order to generate envelope number i, the box needs to
know the state after generation the envelope number ¢ — 1.
One possible way of dealing with this is to have two algo-
rithms: the first algorithm P (Processing algorithm) performs
the real operation and the second algorithm S (Skipping
algorithm) computes only the state of the box after the
performance of the operation. If the second algorithm exists
and is much faster than the first, then the decomposition may
follow the scheme depicted in Figure 2.

broadcast

aggregate >

Figure 2. Decomposition of stateful operation

The broadcast box forwards all incoming envelopes
to all work boxes. The work boxes keep a phase counter
except their state. This counter is continually increasing
during the evaluation and all work boxes must have these
number synchronized. This may be easily done, since all
work boxes receive the same input data. Boxes increase the
phase counter after some event which might be reception
of envelope, sending of output envelope etc. The work box
number ¢ performs algorithm P if phase counter mod N,
where N is number of work boxes, is equal to 7. Otherwise,
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it performs algorithm S which updates the internal state and
also phase counter if needed.

The aggregate box might be more complicated, since
it must know which work box is sending the next envelope.
However, if the phase counter is increased on the sending of
an envelope, the aggregate box works in the same way
as for a stateless operation, i.e. it receives the data in round-
robin manner. One example of this kind of decomposition
is in Subsection IV-A.

IV. IMPLEMENTATION OF SPARQL OPERATIONS

Operations needed for SPARQL queries evaluation have
typically one or two inputs and one output. The format of
envelopes used for communication between two consecutive
operations is as follows: columns correspond to variables
and rows contain all allowed mappings of these variables
before or after the operation depending on whether the
envelope is incoming or outcoming.

In the rest of this section, we describe the decomposition
of the operations, which are minium for performance of
several basic experiments.

A. Decomposition of scan operation

The main objective of scan operation is to fetch from
RDF database all triples that matches the input pattern. We
keep six indexes to the database, which are simply the list
of indexes of all triples sorted in all possible order (SPO,
SOP, OPS, OSP, POS and PSO). Therefore, it is easy for
any input pattern to find this range in corresponding index
where all triples which match the pattern are. To find this
range, we use binary search. Each work box may find this
range independently. After that, the boxes start to send
envelopes with requested data in round-robin manner. This
is an example of a very simple stateful operation, since the
only state of the box is position of the triple which was sent
for the last time. Algorithm S is very simple, because it only
adds value C x (N — 1) to the position where C is number
of triples in one envelope and N is number of work boxes.

B. Decomposition of filter operation

Filter operation is a typical stateless operation, therefore,
we may use the scheme for decomposition of stateless
operation. Unfortunately, this straightforward approach has
one drawback — the output envelope contains typically less
rows than the input envelope. However, it is ineffective to
work with half-empty envelopes since the manipulation with
them brings some overhead such as box scheduling etc. If
the envelopes are too small, this overhead may be higher
than the useful work and it may yield to significantly slow
down of evaluation. Therefore, we need to defragment the
envelopes in order that the output envelopes of the filter
operation have the optimal size.
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defragment

defragment

dispatch

aggregate ”—){ broadcast

dispatch

Figure 3.

The solution we chose is to create boxes which join the
output envelopes of the filter boxes and copy their data
into the envelopes with optimal size. The output envelopes
from filter boxes are aggregated and broadcasted to the
stateful defragment boxes. These boxes follow the scheme
for stateful operation. The phase counter is increased when
an output envelope is sent. Algorithm P is easy, because
it only copies some subset of incoming data into the output
envelope. Algorithm S is also simple, because the box knows
the number of rows in incoming envelopes. According to this
number, the algorithm decides to either skip the incoming
envelope or process it.

Output envelopes from the defragment boxes are simply
aggregated and sent to consecutive operation. The complete
scheme is shown in Figure 3. On the other hand, the defrag-
mentation may bring some slow down when the selectivity
of the filter is very high. In this case, the defragmentation
may become a blocking operation, which receives data, but
does not send them into the output. The rest of the execution
plan must wait at the worst case until the all data are filtered.
The optimal solution of this problem would probably require
some hints from the compilator, which we plan in future.

C. Decomposition of nested loops join

Nested loops join operation has two inputs — we denote
them as left and right. The join tries all combination of one
row from the left input and one row from the right input. If
the combination is compatible, i.e. selected variables in the
left row are compatible with selected variables in the right
row, it evaluates given filter condition on the combination. If
the condition is true, then this combination should be send
to the output.

Because the input data are received in envelopes, we may
modify the algorithm as follows: The operation tries all
combination of left and right envelopes and for each such
combination it tries all rows from left and right envelope.
Since the output of the nested loops join may be in arbitrarily
order, both these algorithms are equivalent.

A simple approach to implementation of the algorithm is
an use of N work boxes. Work box number ¢ is responsible
for processing all, for example left, envelopes of which
sequence number mod NN is equal to ¢, i.e. the box generates
all combinations of left envelopes it is responsible for and
all right envelopes.
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defragment
defragment

Decomposition of filter operation

This approach, however, may lead to the situation, in
which one box processes all data and the others do nothing.
If the left input consists of very few envelopes and the op-
posite input of a large number of envelopes, then redundant
work boxes do nothing and the employed boxes become
bottleneck of the system.

To avoid this situation, the combinations of envelopes
must be processed uniformly by the work boxes. Therefore,
we numbered all combinations of left and right envelopes by
ordinal numbers as shown in Table I. This numbering does
not prefer neither left nor right input. The corresponding
formula is (L + R) * (L + R+ 1)/2 + R where L is the
number of the left envelope and R is the number of the right
envelope. The work box number i processes combination
only if its number mod N equals to ¢ which causes that
boxes are utilized uniformly.

Table I
NUMBERING OF PAIRS OF ENVELOPES

right

left o 1 2 3
0 0o 2 5 9
1 1 4 8
2 3 7
3 6

The nested loops utilize memory bus in a great deal
because all pairs of rows must be tested and therefore fetched
from the main memory. This slows down the evaluation,
especially when the nested loops join is computed on
multiple thread since the memory becomes the bottleneck
of the system. Fortunately, the modified algorithm prevents
this situation. The size of envelopes is optimal according
to cache memory. When the box generates all combinations
of rows from one envelope with another, the data of one
envelope are kept hot in cache while the data of the other
are read sequentially from the main memory, and sequential
access to memory is cache optimal.

D. Optional nested loops join

Optional nested loops join works in two phases. In the
first phase, it does the same operation as nested loops join.
In the second phase, it sends to the output all rows from the
left input which were not send to the output so far.
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In order to implement the second phase, boxes need to
know which rows from the left input were already sent and
which not. To fulfil this requirement, we used the fact that
the data in one envelope are shared among all boxes which
received the envelope. Therefore, if we add one column of
boolean variables to envelopes from the left input before
their are broadcasted to work boxes, they can easily mark
all left rows which were sent to the output. When the boxes
finishes the first phase, they know which rows from the left
should be sent to the output in the second phase.

V. EXPERIMENTS

To measure the influence of the decomposition of selected
operations, we selected three queries from SP?Bench bench-
mark [18] since they may be evaluated completely with the
new decomposed operation. We chose this benchmark, since
this is considered to be standard in the area of semantic
processing. We used a computer with two Intel Xeon E5310,
which run at 1,60GHz with 6MB shared L2 cache. Each
processor has 4 cores, thus the system has 8 physical threads.
The size of operating memory is 8 GB. The operating system
is Red Hat Enterprise Linux Server 6.1 and we used g++
4.4.5 with -O2 switch. The database was in-memory.

For each query, we performed four different tests to
measure scalability of our solution. The tests differ in the
number of parallel work boxes we used in decomposition of
operations. We used 1,2,4 and 8 parallel boxes. Important
fact is, that the first test (with 1 work box) is the same as
if no decomposition was performed. Additionally, each test
was evaluated twice — single-threaded and multithreaded, i.e.
we used each physical thread in the system for the query
evaluation.

We performed each experiment 5 times and we selected
the median of all measurement. Since the database loading
and query compilation time is not relevant for the experi-
ments the results do not include them. On ther other hand,
they include time spent by the operation decomposition,
since such overhead is an integral part of the query exe-
cution.
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1 2 4 8

Figure 4. Results of query ql

The first query we used is the query q1 on a database with
5M triples. This query uses only index scan and nested loops
join operation. The results are show in Figure 4. The second
query is q3a on a database with 250k triples which utilizes
both nested loops join and filter operation (Figure 5) and the
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last is query q6 on the same database as the query q3a which
additionally uses optional nested loops joins (Figure 6).
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Figure 5.

Results of query q3a
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Figure 6. Results of query q6

The query g6 benefits from multithreading even in the
case when no decomposition is performed. This is caused
due to the pipeline processing and the fact that there are
independent braches in the plan. Additional experiments
show that increasing the number of work boxes in the
decomposition increases the performance.

The query g3a benefits only a little from parallel environ-
ment when there is no decomposition. The execution plan
contains one filter operation followed by the nested loops
join and the small speed up is caused by the fact that filter
operation is much faster operation then the nested loops join.
Therefore, the evaluation of the filter operation in parallel
with the join operation is not so profitable. However, the
decomposition of the operations, mainly of the nested loops
join, increases the performance noticeably.

The query ql is a little bit atypical. The graph contains
two consecutive nested loops joins, but the input data are
very small. In fact, they fit in one or two envelopes.
Therefore, the decomposition of problem does not cause
significant speed up, since the whole operation is performed
by only a subset of work boxes.

In each test, the single-threaded evaluation shows that
with the increasing number of work boxes, the overhead
caused by the manipulation of envelopes is slightly increas-
ing.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented possibility of the decompo-
sition of basic SPARQL operations to increase parallelism
during the evaluation of execution plans when evaluated by
Bobox. In our pilot implementation, we focused on subset
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of basic operations - nested loops join, filter and index scan.
These operations were sufficient to measure the influence of
the decomposition on a query evaluation performance.

The tests were performed using SP?Bench test queries
that used implemented operations only. As follows from
presented results, further decomposition of basic SPARQL
operations can provide additional performance gain — for
8 physical threads in the system, the evaluation of time
consuming queries is almost 6 times faster than single-
threaded execution, therefore, our solution scales well.

We do not compare these results with other RDF stores,
since the execution plans were not optimal because we
forced the compiler to use only nested loops join instead
of merge joins, with which the evaluation would be much
faster. The comparison between version with optimal but
not decomposed plans and the SESAME database may be
found in our previous work [9]. On the other hand, for
the database sizes, for which we performed the tests, the
evaluation of the queries with decomposed operations is
faster than the evaluation without the decomposition but with
optimal operations.

In the future, we want to focus on paralellizing extended
set of basic SPARQL operations such as sorting, union or
faster join operations such as hash join, or merge join. After
that, we will be able to perform more extensive and accurate
performance tests and comparisons of parallel version with
similar semantic engines.
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