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Abstract — In software component repositories, search engines 

have to deal with challenges related to storage space 

requirements for indexing semi-structured data models, which 

are adopted for representing syntactic and semantic features of 

software assets. In such a context, clustering techniques seem 

to be attractive for reducing the number of assets in a 

repository, and so, the size of index files. Accordingly, this 

paper proposes and evaluates a distributed clustering 

approach for large-scale, distributed software component 

repositories. Based on experiments, outcomes indicate relevant 
gains in storage space requirements for index files. 

Keywords-clustering techniques, indexing techniques, search 

engines,  software component repositories; 

I.  INTRODUCTION 

Software component repositories have to handle 
metadata for describing stored software assets, providing 
information employed by search engines for indexing them 
[1]. As endorsed by Vitharana [2], component description 
models can adopt high level concepts for describing 
component metadata, making possible to express syntactic 
and semantic features, and so, facilitating developers to 
search, select and retrieve assets. In practice, currently 
available component description models [3][4], have adopted 
approaches based on semi-structured data, more specifically 
XML, allowing structural relationships among elements to 
aggregate semantic to textual values. 

Several proposals exist for indexing semi-structured data 
[5][6][7]. Despite their contributions, existing techniques still 
suffer from problems related to storage space requirements, 
processing time and precision level of queries. For instance, 
Brito et al. [7] proposes an indexing technique based on 
semi-structured data, which is precise and efficient in terms 
of query processing time, but suffer from problems related to 
storage space requirements for index files. Thus, in the 
context of large-scale software component repositories, it is a 
challenge to design indexing techniques that minimize 
storage space requirements, but without excessively 
impacting on query processing time and precision level.  

In such a context, an interesting insight for optimizing 
the storage space required by index files is to construct a 
clustered repository, in which clusters (groups) of similar 
software assets are identified by applying a clustering 
heuristic, according to defined similarity criteria. Then, 
representative assets of the clusters can be generated for 
defining the clustered repository. Thus, only the reduced set 

of representative assets in the clustered repository needs to 
be indexed, instead of all assets in the original repository. As 
a result, storage space requirements can be notably reduced. 

Motivated by such an insight, in [8], we have already 
proposed a clustering approach for X-ARM based software 
component repositories, which constructs a clustered 
repository, reducing the number of assets, and so, optimizing 
the storage space requirements. Despite the excellent gains in 
storage space requirements, the clustering approach proposed 
in [8] operates in local and centralized repositories only. 

Based on Seacord [9], local and centralized repositories 
lead to limited accessibility and scalability. Besides, 
according to Frakes [10], a large quantity and variety of 
components can increase software reuse. Thus, scalability 
issues associated with centralized repositories obviously also 
imply in low reusability levels. As a consequence, large-
scale, distributed software component repositories have been 
proposed as an infrastructure for minimizing problems 
related to limited accessibility, scalability and also 
reusability provided by centralized repositories [11][12]. 

Accordingly, herein, we have evolved the centralized 
clustering approach, already proposed in [8], to a distributed 
clustering approach for large-scale, distributed software 
component repositories, defined as a collection of connected, 
integrated storage units that reside throughout independent 
nodes of the repository in a network like the internet, for 
instance. The proposed approach is structured in two stages. 
The first stage is responsible for clustering each storage unit 
of the distributed repository, generating a set of clustered 
units. Then, the second stage puts together all clustered units 
and once again applies the clustering algorithm for 
constructing the whole clustered repository. 

This paper is organized as follows. Section II describes 
related techniques, evincing the contribution of evolving the 
centralized cluttering approach. Section II reviews the 
adopted component description model, called X-ARM. Then, 
Section IV presents the proposed distributed clustering 
approach. After that, outcomes observed in experiments are 
presented in Section V. In conclusion, Section VI presents 
final remarks and delineates future work. 

II. RELATED TECHNIQUES 

Data clustering is a NP-hard problem and several 
heuristics have been proposed to group similar data. Xu and 
Wunsch [13] present a relevant survey of the research field. 
Among existing techniques, the hierarchical and the 
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K-means algorithms are applied in several domains [14]. In 
software engineering, clustering techniques have been used 
in several problems, such as: software maintenance [15], 
modularization [16], reverse engineering [17], software 
evolution [18] and software requirements [19]. 

Although clustering techniques are applied in several 
problems of software engineering, for the best knowledge of 
the authors, we are the first research group that adopts such 
techniques in the context of indexing software component 
repositories, proposing a centralized clustering approach for 
reducing the storage space requirements in local and 
centralized software component repositories [8]. 

As an evolved version of the previous centralized 
approach, the differential and so the contribution of the 
evolved approach proposed herein is twofold. First, the 
proposal of a new heuristic, also based on the hierarchical 
algorithm, but adopting a divide and conquer strategy that 
can be adopted for large-scale, distributed software 
component repositories. The second contribution is the 
consolidation of the similarity metric, initially proposed in 
the centralized version of the clustering approach. 

The proposed heuristic has been validated by considering 
several thresholds for guiding the composition of component 
groups and also different repository sizes. Moreover, the 
heuristic was integrated as part of the indexing system 
adopted in [7], allowing quality evaluation for queries. 

III. THE X-ARM MODEL 

The proposed approach explores the X-ARM description 
model, which is a XML based semi-structured data model 
for describing several types of software assets [4], which can 
be produced in CBD (Component-Based Development) 
processes, proving the required semantic for representing 
their relationships. As illustrated in Fig. 1, X-ARM describes 
component and interface specifications, as well as 
component implementations.  
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Figure 1.  Relationships between assets. 

Component and interface specifications can be described 
as independent or dependent of component models. 
Independent specifications abstract features and properties of 
component models, such as CCM, JavaBeans, EJB and Web 
Services. In turn, dependent specifications ought to consider 
features and properties related to component models. 

In X-ARM, both dependent and independent interface 
specifications are described as a set of operations. Each 
operation has a name, a set of input or output parameters and 

a return value. In CBD processes, dependent interfaces must 
be in conformance with their independent counterparts. So, 
in Fig. 1, dependent interfaces refer to their respective 
independent interfaces. 

Dependent and independent component specifications 
have a set of provided and required interface specifications. 
However, note that dependent and independent component 
specifications refer to dependent and independent interface 
specifications, respectively. In CBD processes, dependent 
components must be in conformance with their respective 
independent counterparts. Thus, dependent components refer 
to their respective independent components. 

Similarly, in CBD processes, component 
implementations must be in conformance with their 
respective dependent component specifications. So, in Fig. 1, 
note that component implementations must refer to their 
correspondent dependent component specifications.  Besides, 
for each dependent component specification, several 
component implementations can be realized. 

As an X-ARM example, Fig. 2 illustrates a fragment of a 
dependent component specification. Line 1 is the asset 
header, which has the asset identifier (id). Lines 2 to 4 refer 
to its respective independent component specification. Then, 
lines 5 to 14 refer to all provided dependent interface 
specifications. Although not illustrated in Fig. 2, required 
interfaces can also be similarly specified. 

01 <asset name=“dependentCompSpec-X”

id=“compose.depenpentCompSpec-X-1.0-beta”>

02     <model-dependency>

03         <related-asset name=“independentCompSpec-Z”

id=“compose.independentCompSpec-Z-1.0-stable”

relationship-type=“independentComponentSpec”/>

04     </model-dependency>

05     <component-specification>

06         <interface>

07             <provided>

08                 <related-asset name=“dependentInterface-A”

id=“compose.dependentIntSpec-A-2.0-stable”

relationship-type=“dependentInterfaceSpec”/>

09             </provided>

10             <provided>

11                 <related-asset name=“dependentInterface-B”

id=“compose.dependentIntSpec-B-3.0-stable”

relationship-type=“dependentInterfaceSpec”/>

12             </provided>

13         </interface>

14     </component-specification>

15 </asset>
 

Figure 2.  Dependent component specification in X-ARM. 

IV. A DISTRIBUTED CLUSTERING APPROACH 

The task of indexing repositories based on semi-
structured data is a well-known relevant issue [5][6][7]. One 
of the major challenges is to provide an indexing mechanism 
that reduces storage space requirements, but without 
excessively impacting on query processing time and 
precision level. As mentioned, we have been investigating 
clustering techniques as a mean to handle such a challenge. 

As a result of our investigations, we propose herein a 
distributed clustering approach for optimizing storage space 
requirements in large-scale, distributed software component 
repositories. To do that, the approach constructs a clustered 
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repository in which each asset of the original repository 
belongs to a group (cluster), formed by applying a clustering 
heuristic, according to similarity criteria detailed afterwards. 
The clustered repository is composed only by representative 
assets of the identified clusters. Thus, instead of indexing the 
original repository, the search engine needs only to index the 
reduced set of representative assets in the clustered 
repository, each one referring to its respective original assets. 

Clustering techniques [14] consist of three basic phases: 
(i) extraction of relevant features that express the behavior of 
the elements to be clustered; (ii) definition of a similarity 
metric, used to compare elements; and (iii) application of a 
clustering algorithm in order to construct the clusters. For 
extracting features, it is identified which information is 
relevant to capture the behavior of the elements to cluster 
and how this information is quantified. The result is a vector 
of relevant features, called attribute vector. The similarity 
metric expresses, in quantitative terms, the similarity 
between elements. In general, a function is defined and the 
Euclidean distance [14] between two elements is one of the 
more common adopted metrics. Finally, the clustering 
algorithm is a heuristic that generates groups of similar 
elements, according to the adopted similarity metric. 

It must be emphasized that both the centralized approach 
proposed in [8] and the distributed approach proposed herein 
adopt the same relevant features and similarity metrics. Thus, 
such features and metrics are briefly reviewed herein. 

A. Relevant Features and Similarity Metrics 

The proposed approach considers five types of X-ARM 
assets and the clustering technique is applied separately for 
each one, which has a distinct attribute vector for 
representing its relevant features. Thus, similarity metrics are 
different for each type of asset.  

The similarity between two assets a and b is quantified 
by an integer number, called distance. To avoid negative 
distances, the initial default distance �� is 300. The similarity 
criterion is applied and this value may decrease, in such a 
way that assets are more similar when the final distance 
��(�, �) approximates to zero. So, for each type of asset, the 

similarity between two assets a and b is defined by (1), in 
which the term 	(�, �) represents a factor derived based on 
the similarity criterion for the respective type of asset. 

 ��(�, �) = �� − 	(�, �) (1) 

The relevant features of an independent interface 
specification are its defined operations, considering their 
names, input and output parameters and return values. Thus, 
independent interfaces are similar when they have in 
common a considerable subset of operations. In this case, the 
term  	(�, �) is defined by �(�, �) × 300, where �(�, �) 
represents the percentage of common operations provided by 
both interfaces. Note that the similarity criterion takes into 
account syntactic features only. Thus, when operations are 
semantically similar but syntactically different, the proposed 
approach cannot detect similarity, reducing its effectiveness. 

Taking into account dependent interface specifications, 
the relevant features are the referenced independent interface 
specification together with their operations. Hence, 

dependent interface specifications are similar when they 
refer to the same independent interface specification or have 
in common a considerable subset of defined operations. 
Accordingly, 	(�, �) is expressed as the sum of two terms: 
�(�, �) and �(�, �) × 100. The term  �(�, �) = 200 if both 
assets refer to the same independent interface specification; 
otherwise it is 0. In turn, the term �(�, �) is the ratio of 
common operations provided by both interfaces. 

In relation to independent component specifications, the 
relevant features are the set of provided independent 
interface specifications. So, independent component 
specifications are similar when they have in common a 
considerable subset of provided independent interface 
specifications. Due that, the term  	(�, �)  is given by 
�(�, �) × 300, where �(�, �) is the percentage of common 
independent interfaces provided by both assets. 

For a dependent component specification, the relevant 
features are its referenced independent component 
specification, as well as its set of provided dependent 
interface specifications. Therefore, dependent component 
specifications are similar when they refer to the same 
independent component specification or have in common a 
subset of provided dependent interfaces. As a result, 	(�, �) 
is the sum of two terms: �(�, �)  and �(�, �) × 100 . The 
term �(�, �) = 200  if both assets refer to the same 
independent component specification; otherwise it is 0. In 
turn, the term �(�, �)  is the ratio of common dependent 
interface specifications provided by both assets. 

Finally, for a component implementation, the relevant 
feature is its referenced dependent component specification. 
Hence, different implementations of the same dependent 
component specification are considered similar. Due that, the 
term 	(�, �) = 300  if both assets refer to the same 
dependent component specification; otherwise it is 0. 

B. Clustering Algorithm 

The proposed clustering algorithm has been designed to 
be applied in distributed software component repositories, 
like X-CORE [11], defined as a collection of connected, 
integrated storage units, each one located in different 
independent nodes, which are dispersed throughout a 
network like the internet, for instance. 

The clustering algorithm has two stages. The first stage 
adopts a divide and conquer strategy, which is responsible 
for separately clustering each storage unit of the distributed 
repository, generating a set of independent clustered units. 
Subsequently, the second stage joins together all clustered 
units and generates the whole clustered repository by 
adopting a pair-wised clustering scan. In order to reduce 
processing time, the first stage must be concurrently 
performed in all storage units, and the second stage ought to 
be concurrently performed in a single node using a multi-
threaded, pair-wised clustering scan. In the following both 
stages are described in more details. 

In the first stage, which is executed in each storage unit, 
initially, assets are randomly chosen from the storage unit 
and kept in primary memory. It is suggested to exhaust 
memory capacity with this operation. Next, but still in the 
first stage, the classical hierarchical clustering algorithm [14] 
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is applied to these assets. Initially, each asset is considered a 
cluster. Then, the algorithm groups successively the two 
nearest clusters, until the distance between clusters is greater 
than an established threshold, specified by the user. The 
algorithm considers the similarity metric described 
previously to compute the distance. The combined cluster is 
considered a representative asset of the joined clusters. For 
each type of asset, the representative asset includes the 
relevant features for the similarity metric and also references 
to the joined assets. At the end of the iteration, a directory 
containing all formed representative assets (clusters) is saved 
in secondary memory. Then, in a new iteration, another set 
of assets, remaining in the original storage unit, is arbitrarily 
chosen and the process repeats. At the end of the first stage, 
several directories of representative assets have been 
constructed, one for each iteration of the algorithm. Fig. 3 
illustrates the main steps of the first stage: (a) assets are 
randomly selected from the original storage unit; (b) clusters 
composed of similar assets are constructed by applying the 
hierarchical clustering algorithm; (c) representative assets are 
created in the respective directory for representing each 
cluster; and (d) a clustered unit is defined based on 
directories created in each iteration. 

Asset       Randomly Selected Asset       Representative Asset       Directory

(a) (b)

(d)(c)

Clustered Unit

 
Figure 3.  The first stage of the clustering algorithm in each storage unit. 

To conclude the description of the first stage, it remains 
to explain how representative assets are generated. Note that 
the generation of representative assets is different for each 
type of asset. A representative asset, resulted from the 
combination of two clusters composed by dependent 
component specifications, includes all provided dependent 
interface specifications of the joined assets and the 
independent component specification they refer. This 
specification is the one that mostly occurs in the assets of the 
combined cluster. In turn, for clusters composed by 
independent component specifications, the representative 
asset includes all provided independent interface 
specifications of the joined assets. 

A representative asset, resulted from the combination of 
two clusters composed by dependent interface specifications, 
includes all operations of the joined assets, as well as the 

independent interface they refer. This interface is the one 
mostly referred by the joined clusters. Taking into account a 
representative asset, resulted from the combination of two 
clusters composed by independent interface specifications, it 
includes all provided operations of the joined assets. 

Finally, a representative asset, resulted from the 
combination of two clusters of component implementations, 
includes its referenced dependent component specification, 
which is also the one mostly frequent in the joined assets. 

After generating all representative assets, the second 
stage takes place and joins together all clustered units, 
generating the whole clustered repository based on a pair-
wised clustering scan. To do that, first, all clustered units are 
transferred to a single node that constitutes the distributed 
repository, in which the second stage takes place. Since 
clustered units are composed of representative assets only, 
the transmission of them to the selected node is faster than 
the transmission of the original storage units. 

Thus, the second stage takes as input a set of directories, 
which have direct correlation with directories that belong to 
all clustered units. Once clustered units are stored in the 
selected node, the second stage adopts a multi-threaded, pair-
wised clustering scan, in which pairs of directories are 
recursively processed and their representative assets are 
combined by applying the hierarchical clustering algorithm. 
At the end of the second stage, only one directory remains. 

In order to join representative assets from directories A 
and B, the following procedure is applied. For each 
representative asset ��∈ � and ��∈ �, the distance between 

them is computed, say ��(�� , ��). Let (�� , ��) be the pair for 

which the distance is minimum. If ��(�� , ��) is less than the 

defined threshold, then ��  and ��  are joined and the 
combined asset is added to B (also, ��  and ��are removed 
from A and B); otherwise ��  is moved from A to B. The 
combinations of directories are performed in parallel, 
according to a divide and conquer strategy. Thus, pairs of 
directories are combined independently and successively 
until only one remains. 

V. RESULTS AND DISCUSSION 

In order to evaluate the proposed approach, a set of 
experiments has been carried out for identifying the gains in 
terms of number of assets and storage space requirements 
between the clustered repository and the original repository. 
In experiments, the gains were evaluated taking into account 
a repository composed by 14000 X-ARM assets of different 
types, created by a customizable script that automatically 
generates them. After creating the repository, the proposed 
approach has been applied for grouping the stored assets in 
clusters, generating their respective representative assets. 

Table I presents the number of each type of asset in the 
original repository and the clustered repositories after the 
application of the proposed approach using different 
thresholds, which vary from 100 to 200 in steps of 25. Note 
that the proposed approach significantly reduces the number 
of assets. As expected, the number of representative assets 
decreases as the threshold increases. When the threshold is 
increased, two assets have more chance of being considered 
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similar, and so, more chance of being grouped together. 
Thus, when the threshold increases from 100 to 200, the 
number of original assets reduces to 11176 and 7204 
representative assets, respectively. 

TABLE I.  NUMBER OF ASSETS FOR DIFFERENT THRESHOLDS. 

 Indep 
Int 

Spec 

Dep 
Int 

Spec 

Indep 
Comp 
Spec 

Dep 
Comp 
Spec 

Comp 
Impl 

Total 

Original 5000 3200 3200 1800 800 14000 

Cluster 100 4104 2070 3023 1367 612 11176 

Cluster 125 4053 2043 3012 1363 609 11080 

Cluster 150 3386 1830 2634 1278 598 9726 

Cluster 175 3315 1809 2628 1272 594 9618 

Cluster 200 2168 1346 2045 1085 560 7204 

 

For each considered threshold, the gain in number of 
assets has been identified and evaluated. Fig. 4 illustrates the 
gain in terms of the number of assets. For example, when the 
threshold is 150, the number of stored assets in the original 
repository is reduced around 30.5%, dropping from 14000 
original assets to 9726 representative assets. As can be 
noticed in Fig. 4, the proposed approach performs a 
significant reduction in the number of stored assets, 
achieving relevant gains between 48.5% and 20.2%. 

 
Figure 4.  Total gain in number of assets. 

However, as shown in Fig. 5, the gains are different for 
each type of asset. In general, the better gains are achieved 
for independent and dependent interfaces. For independent 
interfaces, the gains are between 56.6% and 17.9%. 
Considering dependent interfaces, the gains become a little 
bit more expressive, varying between 57.9% and 35.3%. 
Such higher gains can be explained by the considerable 
amount of assets of those types. As can be seen in Table I, 
the original repository has 5000 and 3200 independent and 
dependent interfaces, respectively. Thus, independent 
interfaces are the prevalent type of asset in the repository, 
increasing the likelihood of identifying similar assets. 

In the case of dependent interface specifications, the 
gains become better due to three reasons. First, the number 
of assets of that type is also relevant. Second, in software 
projects, it is not rare to implement different versions of 
software systems for different target platforms. So, in 
component-based software projects, different versions imply 
on several dependent interface specifications for each 
independent interface specification. Considering that 
dependent interface specifications are considered similar 
when they refer to the same independent interface 
specification, it is easy to see that multiple implementations 
impacts on the likelihood of identifying similar dependent 

interface specifications. The third reason is a consequence of 
high gains in independent interfaces, which directly impact 
in the similarity metric of dependent interfaces. 

 
Figure 5.  Gains in number of assets for different types of assets. 

In relation to independent component specifications, 
despite the relevant number of assets (3200 assets according 
to Table I), the gains are notably low, varying from 36.1% to 
5.5%. Besides, as can be noticed in Fig. 5, the gain of 36.1% 
occurs for the higher threshold only. When the threshold is 
175 and 125, the respective gains decrease to 17.9% and 
5.9%. Such gains are relatively low and indeed not expected. 
As mentioned before, independent component specifications 
are similar when they have in common a considerable subset 
of provided independent interfaces. Thus, it can be inferred 
that such low gains are a consequence of the difficulty of 
finding two or more independent component specifications 
that share a reasonable subset of independent interfaces. 

In terms of dependent component specifications, 
surprisingly, the gains become more expressive, increasing 
to the range between 39.7% and 24.1%. It is possible to 
mention two reasons for such a surprising gain and both 
reasons are similar to effects pointed out before for 
dependent interface specifications. First, the existence of 
different versions of software systems for different target 
platforms implies on several dependent component 
specifications for each independent component specification. 
Considering that dependent component specifications are 
considered similar when they refer to the same independent 
component specification, it is clear to notice that multiple 
implementations impacts on the likelihood of identifying 
similar dependent component specifications. The second 
reason is a consequence of the gains in independent 
component specifications, which directly impact in the 
similarity metric of dependent component specifications. 

Finally, considering component implementations, the 
gains are once more surprisingly good, varying between 
30.0% and 23.5%. Taking into account that component 
implementations are considered similar when they refer to 
the same dependent component implementation, it is also 
possible to correlate such a good gain with the existence of 
different implementations of the same component 
specification, not only for different target platforms but also 
for meeting a variety of non-functional requirements, like 
performance, security and cost. Therefore, considering the 
various methods, techniques and algorithms that can be 
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employed to meet non-functional requirements, it is obvious 
that such multiple implementations impact on the likelihood 
of identifying similar component implementations. 

Despite the mentioned gains, it is not enough to be 
efficient in reducing the number of assets, but also in 
downgrading storage space requirements for index files. So, 
after generating the clustered repositories, they were indexed 
using the indexing technique proposed in [7]. Table II 
presents the storage space required by all repository versions, 
after indexing them. As can be noticed, the proposed 
approach significantly reduces the required storage space, 
and, as expected, it decreases as the threshold increases. 
Thus, when the threshold increases from 100 to 200, the 
required storage space reduces from 12.50 to 9.22 MB. 

TABLE II.  STORAGE REQUIREMENTS FOR DIFFERENT THRESHOLDS. 

Original 
Clust 
100 

Clust 
125 

Clust 
150 

Clust 
175 

Clust 
200 

20.00 MB 12.50 MB 12.42 MB 11.35 MB 11.22 MB 9.22 MB 

 

For each threshold, Fig. 6 illustrates the gains in terms of 
storage space requirements. For example, when the threshold 
is 150, the storage space required by index files reduces 
around 45.2%, dropping from 20.70 to 11.35 MB. Note that, 
the proposed approach significantly reduces storage space 
requirements, achieving gains between 55.5% and 39.6%. 

 
Figure 6.  Total gain in storage requirements. 

VI. CONCLUSION AND FUTURE WORK 

Based on evaluation outcomes, it can be clearly observed 
the potential of the proposed approach in significantly 
clustering a large-scale, distributed repository and 
consequently reducing storage space required by index files. 
It must be highlighted that, the bigger the original repository 
in terms of the number of stored assets, the more expressive 
the likelihood of clustering assets, and so the better the gain 
in terms of storage space requirements. 

Taking into account that the indexing technique proposed 
in [7] has an excellent performance in query processing time, 
even in large-scale index files, it is expected a reasonable 
gain in terms of query processing time due to the expressive 
reduction in the size of index files. Thus, the proposed 
approach clearly reduces storage space requirements, without 
introducing query processing time costs. 

However, such expressive gains in terms of storage space 
requirements, almost certainly have an impact on the query 
precision level, since the process of clustering assets 
introduces some degree of information loss in representative 
assets. It must be stressed that the tradeoff between the best 
threshold and the query precision level has been initiated and 

preliminary results are encouraging, showing high values of 
precision and recall, which are two well-known metrics 
adopted in evaluation of information retrieval systems. 
Despite that, the impact of the proposed approach in terms of 
information loss still needs to be evaluated in more details. 
Besides, it is also under investigation a comparative analysis 
contrasting the distributed approach proposed herein and the 
centralized approach proposed in [8], both in terms of 
storage requirements gains and time complexity. 
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