
Clustering Large-Scale, Distributed Software Component Repositories

Marcos Paulo Paixão, Leila Silva

Computing Department

Federal University of Sergipe

São Cristóvão, SE, Brazil
marcospsp@dcomp.ufs.br, leila@ufs.br

Gledson Elias

Informatics Department

Federal University of Paraíba

João Pessoa, PB, Brazil

gledson@di.ufpb.br

Abstract — In software component repositories, search engines

have to deal with challenges related to storage space

requirements for indexing semi-structured data models, which

are adopted for representing syntactic and semantic features of

software assets. In such a context, clustering techniques seem

to be attractive for reducing the number of assets in a

repository, and so, the size of index files. Accordingly, this

paper proposes and evaluates a distributed clustering

approach for large-scale, distributed software component

repositories. Based on experiments, outcomes indicate relevant
gains in storage space requirements for index files.

Keywords-clustering techniques, indexing techniques, search

engines, software component repositories;

I. INTRODUCTION

Software component repositories have to handle
metadata for describing stored software assets, providing
information employed by search engines for indexing them
[1]. As endorsed by Vitharana [2], component description
models can adopt high level concepts for describing
component metadata, making possible to express syntactic
and semantic features, and so, facilitating developers to
search, select and retrieve assets. In practice, currently
available component description models [3][4], have adopted
approaches based on semi-structured data, more specifically
XML, allowing structural relationships among elements to
aggregate semantic to textual values.

Several proposals exist for indexing semi-structured data
[5][6][7]. Despite their contributions, existing techniques still
suffer from problems related to storage space requirements,
processing time and precision level of queries. For instance,
Brito et al. [7] proposes an indexing technique based on
semi-structured data, which is precise and efficient in terms
of query processing time, but suffer from problems related to
storage space requirements for index files. Thus, in the
context of large-scale software component repositories, it is a
challenge to design indexing techniques that minimize
storage space requirements, but without excessively
impacting on query processing time and precision level.

In such a context, an interesting insight for optimizing
the storage space required by index files is to construct a
clustered repository, in which clusters (groups) of similar
software assets are identified by applying a clustering
heuristic, according to defined similarity criteria. Then,
representative assets of the clusters can be generated for
defining the clustered repository. Thus, only the reduced set

of representative assets in the clustered repository needs to
be indexed, instead of all assets in the original repository. As
a result, storage space requirements can be notably reduced.

Motivated by such an insight, in [8], we have already
proposed a clustering approach for X-ARM based software
component repositories, which constructs a clustered
repository, reducing the number of assets, and so, optimizing
the storage space requirements. Despite the excellent gains in
storage space requirements, the clustering approach proposed
in [8] operates in local and centralized repositories only.

Based on Seacord [9], local and centralized repositories
lead to limited accessibility and scalability. Besides,
according to Frakes [10], a large quantity and variety of
components can increase software reuse. Thus, scalability
issues associated with centralized repositories obviously also
imply in low reusability levels. As a consequence, large-
scale, distributed software component repositories have been
proposed as an infrastructure for minimizing problems
related to limited accessibility, scalability and also
reusability provided by centralized repositories [11][12].

Accordingly, herein, we have evolved the centralized
clustering approach, already proposed in [8], to a distributed
clustering approach for large-scale, distributed software
component repositories, defined as a collection of connected,
integrated storage units that reside throughout independent
nodes of the repository in a network like the internet, for
instance. The proposed approach is structured in two stages.
The first stage is responsible for clustering each storage unit
of the distributed repository, generating a set of clustered
units. Then, the second stage puts together all clustered units
and once again applies the clustering algorithm for
constructing the whole clustered repository.

This paper is organized as follows. Section II describes
related techniques, evincing the contribution of evolving the
centralized cluttering approach. Section II reviews the
adopted component description model, called X-ARM. Then,
Section IV presents the proposed distributed clustering
approach. After that, outcomes observed in experiments are
presented in Section V. In conclusion, Section VI presents
final remarks and delineates future work.

II. RELATED TECHNIQUES

Data clustering is a NP-hard problem and several
heuristics have been proposed to group similar data. Xu and
Wunsch [13] present a relevant survey of the research field.
Among existing techniques, the hierarchical and the

124Copyright (c) IARIA, 2012. ISBN: 978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications

K-means algorithms are applied in several domains [14]. In
software engineering, clustering techniques have been used
in several problems, such as: software maintenance [15],
modularization [16], reverse engineering [17], software
evolution [18] and software requirements [19].

Although clustering techniques are applied in several
problems of software engineering, for the best knowledge of
the authors, we are the first research group that adopts such
techniques in the context of indexing software component
repositories, proposing a centralized clustering approach for
reducing the storage space requirements in local and
centralized software component repositories [8].

As an evolved version of the previous centralized
approach, the differential and so the contribution of the
evolved approach proposed herein is twofold. First, the
proposal of a new heuristic, also based on the hierarchical
algorithm, but adopting a divide and conquer strategy that
can be adopted for large-scale, distributed software
component repositories. The second contribution is the
consolidation of the similarity metric, initially proposed in
the centralized version of the clustering approach.

The proposed heuristic has been validated by considering
several thresholds for guiding the composition of component
groups and also different repository sizes. Moreover, the
heuristic was integrated as part of the indexing system
adopted in [7], allowing quality evaluation for queries.

III. THE X-ARM MODEL

The proposed approach explores the X-ARM description
model, which is a XML based semi-structured data model
for describing several types of software assets [4], which can
be produced in CBD (Component-Based Development)
processes, proving the required semantic for representing
their relationships. As illustrated in Fig. 1, X-ARM describes
component and interface specifications, as well as
component implementations.

Independent
Component

Specification

Dependent
Component
Specification

Independent
Interface

Specification

Dependent
Interface

Specification

required provided

Operation

1

1

Parameter

*

Return

1

1 ..*

1 ..* 1 ..*

*

required

*

provided

1 ..*

1

Component
Implementation

Figure 1. Relationships between assets.

Component and interface specifications can be described
as independent or dependent of component models.
Independent specifications abstract features and properties of
component models, such as CCM, JavaBeans, EJB and Web
Services. In turn, dependent specifications ought to consider
features and properties related to component models.

In X-ARM, both dependent and independent interface
specifications are described as a set of operations. Each
operation has a name, a set of input or output parameters and

a return value. In CBD processes, dependent interfaces must
be in conformance with their independent counterparts. So,
in Fig. 1, dependent interfaces refer to their respective
independent interfaces.

Dependent and independent component specifications
have a set of provided and required interface specifications.
However, note that dependent and independent component
specifications refer to dependent and independent interface
specifications, respectively. In CBD processes, dependent
components must be in conformance with their respective
independent counterparts. Thus, dependent components refer
to their respective independent components.

Similarly, in CBD processes, component
implementations must be in conformance with their
respective dependent component specifications. So, in Fig. 1,
note that component implementations must refer to their
correspondent dependent component specifications. Besides,
for each dependent component specification, several
component implementations can be realized.

As an X-ARM example, Fig. 2 illustrates a fragment of a
dependent component specification. Line 1 is the asset
header, which has the asset identifier (id). Lines 2 to 4 refer
to its respective independent component specification. Then,
lines 5 to 14 refer to all provided dependent interface
specifications. Although not illustrated in Fig. 2, required
interfaces can also be similarly specified.

01 <asset name=“dependentCompSpec-X”

id=“compose.depenpentCompSpec-X-1.0-beta”>

02 <model-dependency>

03 <related-asset name=“independentCompSpec-Z”

id=“compose.independentCompSpec-Z-1.0-stable”

relationship-type=“independentComponentSpec”/>

04 </model-dependency>

05 <component-specification>

06 <interface>

07 <provided>

08 <related-asset name=“dependentInterface-A”

id=“compose.dependentIntSpec-A-2.0-stable”

relationship-type=“dependentInterfaceSpec”/>

09 </provided>

10 <provided>

11 <related-asset name=“dependentInterface-B”

id=“compose.dependentIntSpec-B-3.0-stable”

relationship-type=“dependentInterfaceSpec”/>

12 </provided>

13 </interface>

14 </component-specification>

15 </asset>

Figure 2. Dependent component specification in X-ARM.

IV. A DISTRIBUTED CLUSTERING APPROACH

The task of indexing repositories based on semi-
structured data is a well-known relevant issue [5][6][7]. One
of the major challenges is to provide an indexing mechanism
that reduces storage space requirements, but without
excessively impacting on query processing time and
precision level. As mentioned, we have been investigating
clustering techniques as a mean to handle such a challenge.

As a result of our investigations, we propose herein a
distributed clustering approach for optimizing storage space
requirements in large-scale, distributed software component
repositories. To do that, the approach constructs a clustered

125Copyright (c) IARIA, 2012. ISBN: 978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications

repository in which each asset of the original repository
belongs to a group (cluster), formed by applying a clustering
heuristic, according to similarity criteria detailed afterwards.
The clustered repository is composed only by representative
assets of the identified clusters. Thus, instead of indexing the
original repository, the search engine needs only to index the
reduced set of representative assets in the clustered
repository, each one referring to its respective original assets.

Clustering techniques [14] consist of three basic phases:
(i) extraction of relevant features that express the behavior of
the elements to be clustered; (ii) definition of a similarity
metric, used to compare elements; and (iii) application of a
clustering algorithm in order to construct the clusters. For
extracting features, it is identified which information is
relevant to capture the behavior of the elements to cluster
and how this information is quantified. The result is a vector
of relevant features, called attribute vector. The similarity
metric expresses, in quantitative terms, the similarity
between elements. In general, a function is defined and the
Euclidean distance [14] between two elements is one of the
more common adopted metrics. Finally, the clustering
algorithm is a heuristic that generates groups of similar
elements, according to the adopted similarity metric.

It must be emphasized that both the centralized approach
proposed in [8] and the distributed approach proposed herein
adopt the same relevant features and similarity metrics. Thus,
such features and metrics are briefly reviewed herein.

A. Relevant Features and Similarity Metrics

The proposed approach considers five types of X-ARM
assets and the clustering technique is applied separately for
each one, which has a distinct attribute vector for
representing its relevant features. Thus, similarity metrics are
different for each type of asset.

The similarity between two assets a and b is quantified
by an integer number, called distance. To avoid negative
distances, the initial default distance �� is 300. The similarity
criterion is applied and this value may decrease, in such a
way that assets are more similar when the final distance
��(�, �) approximates to zero. So, for each type of asset, the

similarity between two assets a and b is defined by (1), in
which the term 	(�, �) represents a factor derived based on
the similarity criterion for the respective type of asset.

 ��(�, �) = �� − 	(�, �) (1)

The relevant features of an independent interface
specification are its defined operations, considering their
names, input and output parameters and return values. Thus,
independent interfaces are similar when they have in
common a considerable subset of operations. In this case, the
term 	(�, �) is defined by �(�, �) × 300, where �(�, �)
represents the percentage of common operations provided by
both interfaces. Note that the similarity criterion takes into
account syntactic features only. Thus, when operations are
semantically similar but syntactically different, the proposed
approach cannot detect similarity, reducing its effectiveness.

Taking into account dependent interface specifications,
the relevant features are the referenced independent interface
specification together with their operations. Hence,

dependent interface specifications are similar when they
refer to the same independent interface specification or have
in common a considerable subset of defined operations.
Accordingly, 	(�, �) is expressed as the sum of two terms:
�(�, �) and �(�, �) × 100. The term �(�, �) = 200 if both
assets refer to the same independent interface specification;
otherwise it is 0. In turn, the term �(�, �) is the ratio of
common operations provided by both interfaces.

In relation to independent component specifications, the
relevant features are the set of provided independent
interface specifications. So, independent component
specifications are similar when they have in common a
considerable subset of provided independent interface
specifications. Due that, the term 	(�, �) is given by
�(�, �) × 300, where �(�, �) is the percentage of common
independent interfaces provided by both assets.

For a dependent component specification, the relevant
features are its referenced independent component
specification, as well as its set of provided dependent
interface specifications. Therefore, dependent component
specifications are similar when they refer to the same
independent component specification or have in common a
subset of provided dependent interfaces. As a result, 	(�, �)
is the sum of two terms: �(�, �) and �(�, �) × 100 . The
term �(�, �) = 200 if both assets refer to the same
independent component specification; otherwise it is 0. In
turn, the term �(�, �) is the ratio of common dependent
interface specifications provided by both assets.

Finally, for a component implementation, the relevant
feature is its referenced dependent component specification.
Hence, different implementations of the same dependent
component specification are considered similar. Due that, the
term 	(�, �) = 300 if both assets refer to the same
dependent component specification; otherwise it is 0.

B. Clustering Algorithm

The proposed clustering algorithm has been designed to
be applied in distributed software component repositories,
like X-CORE [11], defined as a collection of connected,
integrated storage units, each one located in different
independent nodes, which are dispersed throughout a
network like the internet, for instance.

The clustering algorithm has two stages. The first stage
adopts a divide and conquer strategy, which is responsible
for separately clustering each storage unit of the distributed
repository, generating a set of independent clustered units.
Subsequently, the second stage joins together all clustered
units and generates the whole clustered repository by
adopting a pair-wised clustering scan. In order to reduce
processing time, the first stage must be concurrently
performed in all storage units, and the second stage ought to
be concurrently performed in a single node using a multi-
threaded, pair-wised clustering scan. In the following both
stages are described in more details.

In the first stage, which is executed in each storage unit,
initially, assets are randomly chosen from the storage unit
and kept in primary memory. It is suggested to exhaust
memory capacity with this operation. Next, but still in the
first stage, the classical hierarchical clustering algorithm [14]

126Copyright (c) IARIA, 2012. ISBN: 978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications

is applied to these assets. Initially, each asset is considered a
cluster. Then, the algorithm groups successively the two
nearest clusters, until the distance between clusters is greater
than an established threshold, specified by the user. The
algorithm considers the similarity metric described
previously to compute the distance. The combined cluster is
considered a representative asset of the joined clusters. For
each type of asset, the representative asset includes the
relevant features for the similarity metric and also references
to the joined assets. At the end of the iteration, a directory
containing all formed representative assets (clusters) is saved
in secondary memory. Then, in a new iteration, another set
of assets, remaining in the original storage unit, is arbitrarily
chosen and the process repeats. At the end of the first stage,
several directories of representative assets have been
constructed, one for each iteration of the algorithm. Fig. 3
illustrates the main steps of the first stage: (a) assets are
randomly selected from the original storage unit; (b) clusters
composed of similar assets are constructed by applying the
hierarchical clustering algorithm; (c) representative assets are
created in the respective directory for representing each
cluster; and (d) a clustered unit is defined based on
directories created in each iteration.

Asset Randomly Selected Asset Representative Asset Directory

(a) (b)

(d)(c)

Clustered Unit

Figure 3. The first stage of the clustering algorithm in each storage unit.

To conclude the description of the first stage, it remains
to explain how representative assets are generated. Note that
the generation of representative assets is different for each
type of asset. A representative asset, resulted from the
combination of two clusters composed by dependent
component specifications, includes all provided dependent
interface specifications of the joined assets and the
independent component specification they refer. This
specification is the one that mostly occurs in the assets of the
combined cluster. In turn, for clusters composed by
independent component specifications, the representative
asset includes all provided independent interface
specifications of the joined assets.

A representative asset, resulted from the combination of
two clusters composed by dependent interface specifications,
includes all operations of the joined assets, as well as the

independent interface they refer. This interface is the one
mostly referred by the joined clusters. Taking into account a
representative asset, resulted from the combination of two
clusters composed by independent interface specifications, it
includes all provided operations of the joined assets.

Finally, a representative asset, resulted from the
combination of two clusters of component implementations,
includes its referenced dependent component specification,
which is also the one mostly frequent in the joined assets.

After generating all representative assets, the second
stage takes place and joins together all clustered units,
generating the whole clustered repository based on a pair-
wised clustering scan. To do that, first, all clustered units are
transferred to a single node that constitutes the distributed
repository, in which the second stage takes place. Since
clustered units are composed of representative assets only,
the transmission of them to the selected node is faster than
the transmission of the original storage units.

Thus, the second stage takes as input a set of directories,
which have direct correlation with directories that belong to
all clustered units. Once clustered units are stored in the
selected node, the second stage adopts a multi-threaded, pair-
wised clustering scan, in which pairs of directories are
recursively processed and their representative assets are
combined by applying the hierarchical clustering algorithm.
At the end of the second stage, only one directory remains.

In order to join representative assets from directories A
and B, the following procedure is applied. For each
representative asset ��∈ � and ��∈ �, the distance between

them is computed, say ��(�� , ��). Let (�� , ��) be the pair for

which the distance is minimum. If ��(�� , ��) is less than the

defined threshold, then �� and �� are joined and the
combined asset is added to B (also, �� and ��are removed
from A and B); otherwise �� is moved from A to B. The
combinations of directories are performed in parallel,
according to a divide and conquer strategy. Thus, pairs of
directories are combined independently and successively
until only one remains.

V. RESULTS AND DISCUSSION

In order to evaluate the proposed approach, a set of
experiments has been carried out for identifying the gains in
terms of number of assets and storage space requirements
between the clustered repository and the original repository.
In experiments, the gains were evaluated taking into account
a repository composed by 14000 X-ARM assets of different
types, created by a customizable script that automatically
generates them. After creating the repository, the proposed
approach has been applied for grouping the stored assets in
clusters, generating their respective representative assets.

Table I presents the number of each type of asset in the
original repository and the clustered repositories after the
application of the proposed approach using different
thresholds, which vary from 100 to 200 in steps of 25. Note
that the proposed approach significantly reduces the number
of assets. As expected, the number of representative assets
decreases as the threshold increases. When the threshold is
increased, two assets have more chance of being considered

127Copyright (c) IARIA, 2012. ISBN: 978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications

similar, and so, more chance of being grouped together.
Thus, when the threshold increases from 100 to 200, the
number of original assets reduces to 11176 and 7204
representative assets, respectively.

TABLE I. NUMBER OF ASSETS FOR DIFFERENT THRESHOLDS.

 Indep
Int

Spec

Dep
Int

Spec

Indep
Comp
Spec

Dep
Comp
Spec

Comp
Impl

Total

Original 5000 3200 3200 1800 800 14000

Cluster 100 4104 2070 3023 1367 612 11176

Cluster 125 4053 2043 3012 1363 609 11080

Cluster 150 3386 1830 2634 1278 598 9726

Cluster 175 3315 1809 2628 1272 594 9618

Cluster 200 2168 1346 2045 1085 560 7204

For each considered threshold, the gain in number of
assets has been identified and evaluated. Fig. 4 illustrates the
gain in terms of the number of assets. For example, when the
threshold is 150, the number of stored assets in the original
repository is reduced around 30.5%, dropping from 14000
original assets to 9726 representative assets. As can be
noticed in Fig. 4, the proposed approach performs a
significant reduction in the number of stored assets,
achieving relevant gains between 48.5% and 20.2%.

Figure 4. Total gain in number of assets.

However, as shown in Fig. 5, the gains are different for
each type of asset. In general, the better gains are achieved
for independent and dependent interfaces. For independent
interfaces, the gains are between 56.6% and 17.9%.
Considering dependent interfaces, the gains become a little
bit more expressive, varying between 57.9% and 35.3%.
Such higher gains can be explained by the considerable
amount of assets of those types. As can be seen in Table I,
the original repository has 5000 and 3200 independent and
dependent interfaces, respectively. Thus, independent
interfaces are the prevalent type of asset in the repository,
increasing the likelihood of identifying similar assets.

In the case of dependent interface specifications, the
gains become better due to three reasons. First, the number
of assets of that type is also relevant. Second, in software
projects, it is not rare to implement different versions of
software systems for different target platforms. So, in
component-based software projects, different versions imply
on several dependent interface specifications for each
independent interface specification. Considering that
dependent interface specifications are considered similar
when they refer to the same independent interface
specification, it is easy to see that multiple implementations
impacts on the likelihood of identifying similar dependent

interface specifications. The third reason is a consequence of
high gains in independent interfaces, which directly impact
in the similarity metric of dependent interfaces.

Figure 5. Gains in number of assets for different types of assets.

In relation to independent component specifications,
despite the relevant number of assets (3200 assets according
to Table I), the gains are notably low, varying from 36.1% to
5.5%. Besides, as can be noticed in Fig. 5, the gain of 36.1%
occurs for the higher threshold only. When the threshold is
175 and 125, the respective gains decrease to 17.9% and
5.9%. Such gains are relatively low and indeed not expected.
As mentioned before, independent component specifications
are similar when they have in common a considerable subset
of provided independent interfaces. Thus, it can be inferred
that such low gains are a consequence of the difficulty of
finding two or more independent component specifications
that share a reasonable subset of independent interfaces.

In terms of dependent component specifications,
surprisingly, the gains become more expressive, increasing
to the range between 39.7% and 24.1%. It is possible to
mention two reasons for such a surprising gain and both
reasons are similar to effects pointed out before for
dependent interface specifications. First, the existence of
different versions of software systems for different target
platforms implies on several dependent component
specifications for each independent component specification.
Considering that dependent component specifications are
considered similar when they refer to the same independent
component specification, it is clear to notice that multiple
implementations impacts on the likelihood of identifying
similar dependent component specifications. The second
reason is a consequence of the gains in independent
component specifications, which directly impact in the
similarity metric of dependent component specifications.

Finally, considering component implementations, the
gains are once more surprisingly good, varying between
30.0% and 23.5%. Taking into account that component
implementations are considered similar when they refer to
the same dependent component implementation, it is also
possible to correlate such a good gain with the existence of
different implementations of the same component
specification, not only for different target platforms but also
for meeting a variety of non-functional requirements, like
performance, security and cost. Therefore, considering the
various methods, techniques and algorithms that can be

128Copyright (c) IARIA, 2012. ISBN: 978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications

employed to meet non-functional requirements, it is obvious
that such multiple implementations impact on the likelihood
of identifying similar component implementations.

Despite the mentioned gains, it is not enough to be
efficient in reducing the number of assets, but also in
downgrading storage space requirements for index files. So,
after generating the clustered repositories, they were indexed
using the indexing technique proposed in [7]. Table II
presents the storage space required by all repository versions,
after indexing them. As can be noticed, the proposed
approach significantly reduces the required storage space,
and, as expected, it decreases as the threshold increases.
Thus, when the threshold increases from 100 to 200, the
required storage space reduces from 12.50 to 9.22 MB.

TABLE II. STORAGE REQUIREMENTS FOR DIFFERENT THRESHOLDS.

Original
Clust
100

Clust
125

Clust
150

Clust
175

Clust
200

20.00 MB 12.50 MB 12.42 MB 11.35 MB 11.22 MB 9.22 MB

For each threshold, Fig. 6 illustrates the gains in terms of
storage space requirements. For example, when the threshold
is 150, the storage space required by index files reduces
around 45.2%, dropping from 20.70 to 11.35 MB. Note that,
the proposed approach significantly reduces storage space
requirements, achieving gains between 55.5% and 39.6%.

Figure 6. Total gain in storage requirements.

VI. CONCLUSION AND FUTURE WORK

Based on evaluation outcomes, it can be clearly observed
the potential of the proposed approach in significantly
clustering a large-scale, distributed repository and
consequently reducing storage space required by index files.
It must be highlighted that, the bigger the original repository
in terms of the number of stored assets, the more expressive
the likelihood of clustering assets, and so the better the gain
in terms of storage space requirements.

Taking into account that the indexing technique proposed
in [7] has an excellent performance in query processing time,
even in large-scale index files, it is expected a reasonable
gain in terms of query processing time due to the expressive
reduction in the size of index files. Thus, the proposed
approach clearly reduces storage space requirements, without
introducing query processing time costs.

However, such expressive gains in terms of storage space
requirements, almost certainly have an impact on the query
precision level, since the process of clustering assets
introduces some degree of information loss in representative
assets. It must be stressed that the tradeoff between the best
threshold and the query precision level has been initiated and

preliminary results are encouraging, showing high values of
precision and recall, which are two well-known metrics
adopted in evaluation of information retrieval systems.
Despite that, the impact of the proposed approach in terms of
information loss still needs to be evaluated in more details.
Besides, it is also under investigation a comparative analysis
contrasting the distributed approach proposed herein and the
centralized approach proposed in [8], both in terms of
storage requirements gains and time complexity.

ACKNOWLEDGMENT

This work was supported by the National Institute of
Science and Technology for Software Engineering (INES –
www.ines.org.br), funded by CNPq, grants 573964/2008-4.

REFERENCES

[1] A. Orso, M. J. Harrold, and D. S. Rosenblum, “Component Metadata
for Software Engineering Tasks”, Proc. 2nd Int. Workshop on
Engineering Distributed Objects, 2000, pp. 126-140.

[2] P. Vitharana, F. Zahedi, and H. Jain, "Knowledge-Based Repository
Scheme for Storing and Retrieving Business Components: A
Theoretical Design and an Empirical Analysis", IEEE Trans. on Soft.
Engineering., vol. 29, issue 7, July 2003, pp. 649-664.

[3] OMG, Reusable Asset Specification – Version 2.2, 2005.

[4] G. Elias, M. Schuenck, Y. Negócio, J. Dias, and S. Miranda, “X-ARM:
An Asset Representation Model for Component Repository”, 21st
ACM Symposium on Applied Computing, 2006, pp. 1690-1694.

[5] W. Meier, “eXist: An Open Source Native XML Database”, NODe
2002 Web and Database-Related Workshops on Web, Web-Services,
and Database Systems, 2002.

[6] R. Goldman and J. Widom, “DataGuides: Enabling Query Formulation
and Optimization in Semistructured Databases”, 23rd Int. Conf. on
Very Large Data Bases, 1997, pp. 436-445.

[7] T. Brito, T. Ribeiro, and G. Elias, “Indexing Semi-Structured Data for
Efficient Handling of Branching Path Expressions”, 2nd Int. Conf. on
Advances in Databases, Knowledge, and Data Applications, 2010,
pp. 197-203.

[8] M. P. Paixão, L. Silva, T. Brito, and G. Elias, “Large Software
Component Repositories into Small Index Files”, 3rd Int. Conf. on
Advances in Databases, Knowledge, and Data Applications, 2011,
pp. 122-127.

[9] R. C. Seacord, “Software Engineering Component Repositories”,
Technical Report, Software Engineering Institute (SEI), 1999.

[10] W. Frakes and K. Kang. “Software Reuse Research: Status and
Future”, IEEE Trans. on Soft. Engineering, vol. 31, no. 7, July, 2005.

[11] J. P. Oliveira, T. Brito, A.E. Oliverira, S. E. Rabelo, and G. Elias,
“X-CORE: A Shared, Disributed Component Repository Service”,
24th Tools Session / 21st Brazilian Symp. on Soft. Engineering, 2007,
pp.100-106 (in portuguese).

[12] C. Boldyreff, D. Nutter, and S. Rank, (2002) “Open-Source Artifact
Management”. Workshop Open Source Sof. Engineering, USA, 2002.

[13] R. Xu and D. Wunsch, “Survey of Clustering Algorithms”, IEEE
Trans. on Networks, vol.16, issue 3, pp. 645-678, May 2005.

[14] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data,
Prentice Hall, 1984.

[15] S. Mancoridis, et al. “Using Automatic Clustering to Produce High
Level System Organizations of Source Code”. Proc. IEEE Int.
Workshop on Program Comprehension, pp. 45–53, 1998.

[16] B. S. Mitchel and S. Mancoridis. “On the Automatic Modularization
of Software Systems Using the Bunch Tool”, IEEE Trans. on Soft.
Engineering, vol. 32, issue 3, pp. 1-16, March 2006.

[17] Y. Chiricota, F. Jourdan, and G. Melançon, “Software Component
Capture using Graph Clustering”, IEEE Int. Workshop on Program
Comprehension, 2003.

[18] J. Wu, A. E. Hassan, and R. C. Holt, "Comparison of Clustering
Algorithms in the Context of Software Evolution", 21st Int. Conf. on
Soft. Maintenance, 2005, pp. 525-535.

[19] Z. Li, Q. A. Rahman, and N. H. Madhavji, “An Approach to
Requirements Encapsulation with Clustering”, 10th Workshop on
Requirement Engineering, 2007, pp. 92-96.

129Copyright (c) IARIA, 2012. ISBN: 978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications

