
Leveraging Compression in In-Memory Databases
Jens Krueger, Johannes Wust, Martin Linkhorst, Hasso Plattner

Hasso Plattner Institute for Software Engineering
University of Potsdam

Potsdam, Germany
Email: {jens.krueger@hpi.uni-potsdam.de, johannes.wust@hpi.uni-potsdam.de,

martin.linkhorst@hpi.uni-potsdam.de, hasso.plattner@hpi.uni-potsdam.de}

Abstract—Recently, there has been a trend towards column-
oriented databases, which in most cases apply lightweight com-
pression techniques to improve read access. At the same time,
in-memory databases become reality due to availability of huge
amounts of main memory. In-memory databases achieve their
optimal performance by building up cache-aware algorithms
based on cost models for memory hierarchies. In this paper, we
use a generic cost model for main memory access and show how
lightweight compression schemes improve the cache behavior,
which directly correlates with the performance of in-memory
databases.

Keywords-in-memory databases; database compression; dictio-
nary compression.

I. INTRODUCTION

Nowadays, most database management systems are hard
disk based and - since I/O-operations are expensive - therefore,
limited by both the throughput and latency of those hard
disks. Increasing capacities of main memory that reach up
to several terabytes today offer the opportunity to store an
entire database completely in main memory. Besides, the much
higher throughput of main memory compared to disk access
significant performance improvements are also achieved by the
much faster random access capability of main memory and at
the same time much lower latency. A database management
system that stores all of its data completely in main memory -
using hard disks only for persistency and recovery – is called
an in-memory database (IMDB).

In earlier work, we have shown that in-memory databases
perform especially well in enterprise application scenar-
ios [12], [14]. As shown in [12], enterprise workloads are
mostly reads rather than data modification operations; this has
lead to the conclusion to leverage read-optimized databases
with a differential buffer for this workloads [11]. Furthermore,
enterprise data is typically sparse data with a well known
value domain and a relatively low number of distinct values.
Therefore, enterprise data qualifies particularly well for data
compression as these techniques exploit redundancy within
data and knowledge about the data domain for optimal results.
We apply compression for two reasons:

• Reducing the overall size of the database to fit the entire
database into main memory, and

• Increasing database performance by reducing the amount
of data transferred from and to main memory.

In this paper, we focus on the second aspect. We analyze
different lightweight compression schemes regarding cache
behavior, based on a cost model that estimates expected cache
misses.

A. The Memory Bottleneck

During the last two decades, processor speed increased
faster than memory speed did [6]. The effect of this de-
velopment is that processors nowadays have to wait more
cycles to get a response from memory than they needed to
20 years ago. Since processors need to access data from
memory for any computation, performance improvements are
limited by memory latency time. As seen from a processor’s
perspective, main memory access becomes more and more
expensive compared to earlier days – the Memory Gap widens.
Nevertheless, it would be possible to manufacture memory that
is as fast as a processor is but there is a direct trade-off between
memory size and latency. The more capacity memory has, the
longer is its latency time or - important as well - the faster
memory is, the more expensive it gets. Since manufacturers
concentrated on increasing capacity of main memory there
wasn’t much focus on improving latency times.

A solution to the problem found in modern processors is
the use of a cache hierarchy to hide the latency of the main
memory. Between the processors registers and main memory,
a faster but smaller memory layer is placed that holds copies
of a subset of data found in main memory. When a processor
finds the needed data in the cache it will copy it from there
waiting less processor cycles. The whole cache is usually much
smaller and much faster than main memory. Since the Memory
Gap widens with every new processor generation one layer of
cache is not enough to fulfill both capacity and latency time
demands. Therefore, modern CPUs have up to three layers of
cache, each of which with more capacity but worse latency
times than the one closer to the processor [8].

Since programs usually do not need to access the whole
address space of main memory randomly there is the concept
of locality. When a processor fetches a processor word from
memory, it is very likely that it needs to fetch another
word close by, so-called data locality. Leveraging that fact,
processors do not only copy the requested data to its registers
but also copy subsequent bytes to the cache. The amount of
bytes that are copied at once to the cache is called a cache
line or a cache block and usually is about four to 16 processor

147Copyright (c) IARIA, 2012. ISBN: 978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications

words long depending on the specific CPU architecture. On a
current 64 bit machine, it is between 32 and 128 bytes.

Consequently, memory access is not truly random since
always a complete cache line is fetched regardless the actual
requested value. In the worst case, only one value out of the
cache line are needed while the rest of the transferred date
is polluting both the limited memory bandwidth and limited
capacity on each cache. Data that are not found in the cache
needs to be fetched from main memory, a so-called cache
miss. There is a direct dependency between the performance
of in-memory database algorithms and the number of issued
cache misses as for instance described in [4], [15]. To gain
significant performance improvements or to avoid performance
loss, algorithms have to be cache conscious, which means that
they have to efficiently use the cache and cache lines issuing
as few cache misses as possible. This means data should be
read sequentially from main memory instead of randomly.

Multicore processors that are supposed to work in parallel
have to wait for other cores to finish their shared memory ac-
cess before starting its own. Additionally, the physical distance
between a processor and its cache also influences the latency
time. Multicore processors’ shared cache is normally placed in
equal distance to each core resulting in less performance than
possible on a single core chip. Intel has a solution called Non-
Uniform Memory Access (NUMA), where the shared memory
is logically the same but physically splitted on the chip. For
example the first half of the address space is local to core
one and the second half is local to core two resulting in better
performance for core one when accessing addresses in the first
half but worse performance for the other addresses. When core
one requests data from main memory it will be fetched into an
address in the first half of the address space if possible [16].

B. In-memory databases in Enterprise Application scenarios

Today’s disk-based database management systems are ei-
ther optimized for transactional record-oriented or analytical
attribute-oriented workload, also called Online Transaction
Processing (OLTP) and Online Analytical Processing (OLAP).
The distinguishment arises from enterprises that have trans-
actional systems to support their daily business and need
to answer analytical queries on top of that data. OLAP
style queries are typically slow on OLTP system; therefore,
enterprises usually have a separate OLAP system, e.g., a data
warehouse, that stores the same information in a different way
and precomputes certain values up-front to improve query
performance of analytical queries. The main reason for the
performance loss is that OLAP queries are attribute-focused
rather than entity-focused, usually reading only a few attributes
but more records, e.g., read a whole column or apply a
predicate on a complete column. Most OLTP systems store
their data row-oriented: a record is stored sequentially on
disk and then another record follows maintained by a page
layout. Since OLAP queries read only a part of many records,
e.g., one attribute of each record, the needed data is not
stored sequentially on disk resulting in less read performance.
Furthermore, the page layout determines the access pattern

that read complete pages from disk as this is the finest gran-
ularity to read a record. Due to this fact lots of unnecessary
data is transferred in case a few attributes of a relation are
requested. Therefore, modern OLAP systems organize the data
column-oriented to improve performance of accessing whole
attributes [21].

With up to several terabytes of main memory available to
applications as well as the increase of computing power with
new multi core hardware architectures holding entire databases
in main memory becomes feasible [17]; the application of
these in-memory databases is especially promising in the field
of enterprise applications.

In [14], we could show that Enterprise Applications typ-
ically reveal a mix of OLAP and OLTP characteristics. In
order to combine both requirements for mixed workload
scenarios, the introduction of a write optimized differential
buffer together with a read-optimized main storage has been
proposed [7], [11], [21]. The differential buffer stores all
write operations in an uncompressed manner to allow fast
appends. At regular intervals, the differential buffer is merged
with the main database to maintain compression and query
performance. During this process the buffered values are
merge into the read-optimized store as described in [11].

The merge process essentially does two things: it merges
the main dictionary with the delta dictionary and keeps track
of value ids that may have changed along with their new value.
Then, it merges the main attribute vector of the compressed
read-optimized store and the attribute vector of the differential
buffer while applying the old-value-id/new-value-id mapping
from the step before. That second step is not needed if value
ids cannot change like in the basic dictionary or hash map
approach. However, in an order-preserving dictionary approach
that mapping needs to be applied taking a significant amount of
clock cycles of the overall merge process. The same happens
if the value id are bit compressed and a new dictionary entry
make an additional bit necessary in order to represent the
values.

II. COMPRESSION

A. Motivation

As described in the previous section, main memory latency
is a bottleneck for the execution time of computations: proces-
sors are wasting cycles while waiting for data to arrive. This is
especially true for databases as described in [4]. While cache
conscious algorithms are one way to improve performance
significantly [3], [19], [20] another option is to reduce the
amount of data transferred from and to main memory, which
can be achieved by compressing data [22]. On the one hand,
compression reduces I/O-operations between main memory
and processor registers, on the other hand it leverages the
cache hierarchy more effectively, because more data fits in
each cache line.

The needed processor cycles to compress and decompress
data and the less wasted cycles while waiting for memory
result in increased processor utilization. This increases overall
performance as long as memory access time is the bottleneck.

148Copyright (c) IARIA, 2012. ISBN: 978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications

Once compression and decompression become so processor-
intensive that the processor is limiting the performance instead
of the memory, compression has a negative effect on the
overall execution time. Therefore, most in-memory databases
use light-weight compression techniques that have low CPU
overhead [1].

In addition, some operators can operate directly on com-
pressed data - saving decompression time. Abadi et al. illus-
trate [2] this concept of late materialization to further improve
execution speed of queries.

In order to estimate the performance improvements achieved
by different compression techniques, the cost model to esti-
mate cache misses presented in [15] is extended by taking
compression into account. The basic formula of the model for
an uncompressed column scan is:

M(s trav(R)) =

⌈
R.w ·R.n

B

⌉
(1)

where M(s trav(R)) are the estimated cache misses on
one cache level while traversing a region R in memory
sequentially for the first time. The parameters are R.w being
the width of one data item in bytes, R.n which is the number
of data items to traverse, as well as B which is the number
of data items that fit into the cache. In case of an in-memory
database R.w is the width of a tuple while R.n is the number
of tuples.

As in [15], an inclusive Level 1 cache is assumed meaning
that all data that is present in the Level 1 cache is also present
in the Level 2 cache. This condition may only be violated
temporarily when data in the L1 is changed and marked as
dirty before being written back to L2. This assumption holds
for Intel CPUs but not for AMD CPUs which have an exclusive
cache, meaning that data can be either in L1 or in L2 bot not
in both. Modeling exclusive caches is left for future work.

In the following, we provide the cost model for various
light-weight compression techniques and compare their per-
formance for a typical analytical query size. Other atomic data
patterns as the conditional traversal read [12] can be extended
the same way.

B. Run-Length Encoding

When using run-length encoding (RLE), subsequent
equal values in memory are stored as a RLE-tuple
of (value, runLength), thus encoding a sequence of
(1, 1, 3, 3, 3, 4, 4, 4) as ((1, 2), (3, 3), (4, 3)) reducing the size
in memory the larger runs in the data exist. Whether a good
amount of runs exist depends on two parameters: First, equal
values need to be stored subsequently - this is usually the case
if the column is stored in sort order of the values. Second,
if the column is ordered, the number of distinct values in
the data defines the number of tuples needed to be stored.
However, having sorted data is much more important because
a randomly ordered column with a few distinct values can
contain no runs in worst case if the data is distributed equally.
On the other hand, if the number of unique values is close to

the number of data items, sorting the items has limited impact
on compression, as there are only few runs in this case.

In a sorted run-length encoded column the main indicator
of the size of the column is the cardinality of distinct values.
Hence, the performance on aggregate operations in an in-
memory database is mainly based on the amount of distinct
values. Assuming a column’s values are in sorted order and
the number of distinct values of that column is given by
|D|, the column can be encoded with |D| RLE-tuples, each
holding the value and the run-length. A defensive approach
to determine the space needed for saving the run-length is to
take the maximum run-length one value can span. Then, the
maximum run-length is R.n, and therefore, can be encoded
with dlog2 R.ne bits (for simplicity reasons. Actually, it is
runLengthmax = R.n− |D|+ 1), while bit-compressing the
run-length value.

The basic cost model can then be extended to take a run-
length encoded column into account:

M(s trav(R)) =

⌈
(R.w + dlog2 R.ne) · |D|

B

⌉
(2)

Since each tuple has the overhead of storing the run-length,
run-length encoding becomes less effective as |D| comes close
to R.n. Hence, the number of distinct values is important. The
break even point can be estimated with:

|D| =
⌈

R.w ·R.n

R.w + dlog2 R.ne

⌉
(3)

A generalized formula for unsorted columns encoded with
run-length encoding depends on the average run-length of
values in the collection which can be answered by examining
the topology of the data. For example, imagine a customer
table with a column of the customer’s address’ city name that
is ordered in the sort order of another column with zip codes.
Clearly the city names aren’t in their sort order but they will
contain a good amount of runs since equal and similar zip-
codes map to the same city name. Given that average run-
length |r|, one can estimate the cache misses with:

M(s trav(R)) =

(R.w + dlog2 R.ne) ·

⌈
R.n
|r|

⌉
B

 (4)

The break even point, i.e., the minimal number of the
average run-length can be computed with:

r =
R.w + dlog2 R.ne

R.w
(5)

C. Bit-Vector Encoding

Bit-vector encoding stores a bitmap for each distinct value.
Each bitmap has the length of the number of data items to
encode in bits. The value 1 in a bitmap for a distinct value
indicates that the data item with the same index has this
particular value. As each data item can only have one value
assigned, only one bitmap has the value 1 at a given index.

149Copyright (c) IARIA, 2012. ISBN: 978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications

The compression size is therefore dependent on the number
of data items and the number of distinct values to encode.

M(s trav(R)) =

⌈
(R.w +R.n) · |D|

B

⌉
(6)

For each distinct value, the value itself needs to be stored
once plus a bitmap of the number of tuples in bits. The break
even point can be estimated with:

|D| =
⌈
R.w ·R.n

R.w +R.n

⌉
(7)

D. Null Suppression

Null Suppression stores data by omitting leading 0s of each
value. The main indicator of how good the compression will
be is the average number of 0s that can be suppressed. Think
of an integer column that stores the number of products sold
per month. Since only the less significant bits would equal to
1 and no negative values would appear one could get a good
compression ratio with Null Suppression. Since each value has
a variable length Null Suppression needs to store the length
of each value. A good way to do that is to suppress only
byte-wise, so a value can be stored with one to four bytes. To
encode that length one needs two bits so the length-metadata
for four values fits on one byte. Given an average number of
0s to suppress |z| and the suppressable bits |zb| = 8 ·

⌊
|z|
8

⌋
an

estimation of the cache misses is possible:

M(s trav(R)) =

⌈
R.n · (R.w − |zb|) + 2 ·R.n

B

⌉
(8)

E. Dictionary Encoding

Dictionary Encoding is a widely used compression tech-
nique in column-store environments. A dictionary is created
by associating each distinct value with a generated unique
key - a value id - and replacing the original values in the
attribute vector with their value id replacements. By combining
the attribute vector with the dictionary entries the original
values can be reconstructed. Each distinct value is stored only
once while the smaller value ids are used as their references
which saves space in memory as well as allowing compatible
operators to directly work on the dictionary only, e.g find all
distinct values, or vice versa operate on the attribute vector
without accessing the dictionary. Usually, storing the value ids
instead of the actual values take much less space in memory
and their length is fixed allowing variable length values to be
treated as fixed length values in the document vector, which
leads to increased performance [9]. Given the dictionary fits
into the cache the cache misses for a single column scan can
be estimated with the following formula:

M(s trav(R)) =

⌈
R.id ·R.n

B

⌉
+

⌈
|D| ·R.w

B

⌉
(9)

The more distinct values the dictionary needs to hold the
more likely it is that a lookup leads to a cache miss. Since

the access is random previously unloaded cache lines need to
be fetched again. Hence, the size of the dictionary matters.
The cache misses can be estimated with the formula for a
repetitive random access pattern rr acc presented in [15],
since the accessed position in the dictionary is random and
can be the same multiple times.

M(s trav(R)) =

⌈
R.id ·R.n

B

⌉
+M(rr acc(|D| ·R.w))

(10)
with:

M(rr acc(R)) =

⌈
C + (

r

I
− 1) · (C − #

C
·#)

⌉
(11)

and C =
⌈
I·R.w

B

⌉
where I is an approximation of the

number of accessed tuples. Since the whole data is read, each
value in the dictionary is read at least once and I = R.n. r is
the number of access operations which is equal to R.n, too.
is the number of slots in the cache and therefore equals to
cacheSize/B in a fully associative cache.

F. Comparison

We compare the expected cash misses for a table with a size
typical in Enterprise Data: Given one million 48 byte string
values of which 50,000 are distinct an uncompressed column
scan would issue

⌈
48·106

64

⌉
= 750, 000 cache misses with a 64

byte cache line. We calculate the expected cash misses for each
algorithm and provide a sensitivity analysis on the number of
distinct values.

1) Run-Length Encoding: A run-length encoded
column when stored in sort order would issue only⌈
(8·48+log2 106)·50,000

8·64

⌉
= 39, 454 cache misses.

The break even point would be at
⌈

8·48·106
8·48+log2 106

⌉
= 950, 496

distinct values.
If the column was stored unsorted the number of expected

cash misses would be in the worst case
⌈
(8·48+log2 106)·106

8·64

⌉
=

788, 929. This worst case would occur in the scenario of an
average run-length of 1. The average run-length for each value
has to be at least

⌈
8·48+log2 106

8·48

⌉
= 1, 05 to issue less cache

misses compared to no compression.
2) Bit-Vector Encoding: For the example above a full scan

would issue
⌈
(8·48+106)·50,000

8·64

⌉
= 97, 693, 750 cache misses.

Bit-vector encoding clearly is not suitable for lots of distinct
values or a small amount of bytes to compress. Since each
column has a good number of 0-runs, run-length encoding on
top of bit-vector encoding might help. The break even point
is at

⌈
8·48·106
8·48+106

⌉
= 384 distinct values.

On the other hand, the formulas show that the amount of
bytes per value play a little role in the overall amount of cache
misses. Thus, bit-vector encoding should be used when the
values to compress have a certain size.

150Copyright (c) IARIA, 2012. ISBN: 978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications

3) Null Suppression: Given that the average amount of
bytes to suppress is 3 then the estimated cache misses are⌈
106·(8·48−8·3)+2·106

8·64

⌉
= 707, 032.

4) Dictionary Encoding: Given a 4 byte value id the num-
ber of cache misses for a single column scan in a dictionary
encoded column are

⌈
4·106
64

⌉
+
⌈
50,000·48

64

⌉
= 100, 000

The following table shows the estimated number of cache
misses for the example above with the 5% distinct cardinality.

Cache Misses
No compression 750,000
RLE (sorted) 39,454
RLE (unsorted, worst case) 788,929
Bit-Vector Encoding 97,693,750
Null Suppression 707,032
Dictionary Encoding 100,000

Figure 1 shows a sensitivity analysis with regards to the
number of distinct values in order to investigate the influence
of a changing cardinality of those.

G. Evaluation
The usefulness of compression algorithms depends on the

data profile of a column. The following table describes the
applicability of each compression technique for several data
profiles.

few distinct many distinct
No compression - - - -
RLE (sorted) + + +
RLE (unsorted) - - - -
Bit-Vector Encoding + - -
Null Suppression - -
Dictionary Encoding + +

Our goal is to find a compression technique that performs
best under OLTP as well as OLAP workloads in an enter-
prise environment. Based on our findings of enterprise data
characteristics in [12], we focus on a sparse data set with
a vast amount of columns but most of them storing a small
number of distinct values. We use a column-oriented store
since it performs better under an OLAP workload than a row
store does [21]. However, in an OLTP scenario most queries
fetch only few complete records. The column store finds each
respective entry in all columns separately and then reconstructs
the record. Since there are lots of columns finding those entries
has to be fast.

Run-length encoding on a sorted column issues by far the
fewest cache misses of all presented compression techniques.
However, applying run-length encoding requires sorting each
column before storing it. In order to reconstruct records
correctly we would have to store the original row number
as well, called the surrogate id. When reconstructing records
each column needs to be searched for that id resulting in a
complexity of O(R.n) per column. As Enterprise Applications
typically operate on tables with up to millions records we
cannot use surrogate ids and prefer direct or implicit offsetting
instead (O(1)).

Basic dictionary encoding allows for direct offsetting into
each column and also benefits from a sparse data set as
enterprises have it. In addition the compaction process’ perfor-
mance increases when using dictionary encoding compared to
run-length encoding. Therefore, dictionary encoding fits our
needs best and is our compression technique of choice for
a mixed workload. Furthermore, it still can be optimized as
described in the following section.

III. DICTIONARY COMPRESSION TECHNIQUES

In this section, we discuss various optimization of the basic
dictionary approach introduced in section II-E. We evaluate
their applicability for different data access profiles.

A. Order-Indifferent Dictionary

The basic dictionary approach described in the last chapter
did not care about how the values in the dictionary are ordered.
That makes finding a value in the dictionary, e.g., for an
insert - one needs to find out whether the value is already in
the dictionary - an expensive operation (O(|D|)). A possible
solution is to store the values based on their hash value. Given
a good hash function one can find a value in the dictionary
in O(1) as well as finding a value for a specific value id in
O(1). This clearly depends on a good hash function and may
increase compression size.

B. Order-Preserving Dictionary

In comparison to the basic dictionary a hash value supported
dictionary approach could speed up finding a value in the
dictionary but still does not enforce ordered data items in
memory. That becomes a disadvantage when executing range
queries like finding all records that begin with the letter
K, e.g., in a column that stores names. An order-indifferent
dictionary needs to traverse the whole dictionary filtering all
values that begin with K and returning their associated value
ids. This has a complexity of O(|D|). In a sorted dictionary,
one could find the first occurrence of a value starting with
K and L with binary search and then return the lower and
upper bound for all value ids that are associated with values
beginning with K without actually checking their values. The
complexity is O(log2 |D|). The downside of that approach is
that if new values need to be added to the dictionary they can
destroy the sort order invalidating possibly all value-id/value
associations and resulting in a complete rewrite of the attribute
vector O(R.n).

C. Bit-Compressed Attribute Vector

The size of the attribute vector, hence the read performance,
is also affected by the compression ratio between the original
values and the value id replacements. However, the number
of distinct values in the uncompressed values collection is
important as well. Firstly, because the entries in the dictionary
increase with every unique value - for every value-id/value
compression ratio, there is a number of distinct values hat
dictionary encoding becomes useless - secondly, the more
unique values need to be encoded, the more unique value

151Copyright (c) IARIA, 2012. ISBN: 978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications

0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

800000	

900000	

1000000	

0,01%	 0,10%	 1,00%	 5,00%	 10,00%	 20,00%	 30,00%	 40,00%	 50,00%	 60,00%	 70,00%	 80,00%	 90,00%	 100,00%	

Ca
ch
e	
m
is
se
s	

Percentage	 of	 dis2nct	 values	

no	 compression	

RLE	 sorted	

RLE	 unsorted	

BVE	

Null	 Suppr.	

Dict.	 Enc.	

Bit	 compressed	 dict	

Fig. 1. Compression techniques with regards to cache misses and distinct values.

ids are needed. In the basic dictionary example above a lot
of compression opportunities are wasted by reserving 32 bits
to define the value id space. Dictionary encoding with bit-
compressed value ids varies the length of the value ids and
reserves only the needed number of bits to encode all distinct
values but still guarantees fixed-length value ids. Given 200
values in the dictionary, the attribute vector that needs to
be compressed needs only one byte to store each value id,
allowing 64 value ids to fit on a 64 byte cache line. Similar
to the order-preserving dictionary the disadvantage of this
approach is that the bit-length of the value ids needs to be
increased and all values in the attribute vector need to be
rewritten when the number of distinct values in the dictionary
exceeds the amount of values that can be encoded with the
current number of bits - O(R.n).

The cost model can then be extended with:

M(s trav(R)) =

⌈
dlog2 |D|e ·R.n

B

⌉
+

⌈
|D| ·R.w

B

⌉
(12)

Taking the same parameters from the previous section the
issued cache misses then are

⌈
dlog2 50,000e·106

8·64

⌉
+
⌈
50,000·48

64

⌉
=

68, 750 which is almost half the amount of the basic dictionary.

D. Bit-Compressed Order-Preserving Dictionary Encoding

The last two described dictionary compression techniques
have the same problem of rewriting the whole attribute vector
for different reasons. However, the two problems are con-
nected. A reordering of the dictionary can only happen if new
distinct values are added to the collection or when deleting
values. Furthermore, an extension of the value id space can
only be a result of adding new distinct values to the dictionary.
Using both approaches together can lower the cost of inserts
and updates. When new values are added to the dictionary

and the amount of values exceeds the value id space then the
rewriting of the attribute vector can do both, updating to new
value ids with the new bit-length, in one step.

E. Comparison

The following table shows the different dictionary encoding
variants under different workloads.

Basic Hash
Map

Bit-
Compr.

Order-
Pres.

few inserts, many
equal queries

+ + + + -

few inserts, many
range queries

- - - + + +

many inserts,
many equal
queries

+ + + - -

many inserts,
many range
queries

- - - - +

The following table lists the advantages and disadvantages
of the different dictionary encoding variants.

ADVANTAGES DISADVANTAGES

Basic Dict. fixed length, com-
pression time

compression size

Hash Map compression time execution time
Bit-Compr. compression size compression time
Order-Pres. execution time compression time
Order-Pres. &
Bit-Compr.

execution time,
compression size

compression time

IV. RELATED WORK

In the area of database management systems, compression is
also used to improve query speed as described in [22] as work

152Copyright (c) IARIA, 2012. ISBN: 978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications

focused on reducing the amount of data only. That becomes
especially useful when data is stored column-wise such as in
C-Store, a disk-based column-oriented database, see [21]. The
work presented in [1] describes how compression can be inte-
grated into C-Store and shows the impact on read performance.
In a real world scenario one has to consider the negative impact
on write performance when using compression. [10] comes
to the conclusion that column stores perform better than row
stores in most cases.

However, data compression can limit the applicability to
scenarios with frequent updates leading to dedicated delta
structures to improve the performance of inserts, updates and
deletes. The authors of [7] and [18] describe a concept of
treating compressed fragments as immutable objects, using
a separate list for deleted tuples and uncompressed delta
columns for appended data while using a combination of both
for updates. In contrast, the work of [11] maintains all data
modification of a table in one differential buffer that is write-
optimized and keeps track of invalidation with a valid bit-
vector. Later work of the same authors shows how to enable
fast updates on read-optimized databases by leveraging multi-
core CPUs [13].

The work of [5] depicts a technique of maintaining a dic-
tionary in a order-preserving way while still allowing inserts
in sort order without rebuilding the attribute vector due to
changed value id’s.

In the area of in-memory databases with the focus on OLTP
and real-time OLAP, the customer study presented in [12]
show a very high amount of read queries compared to write
queries supporting the fact that a compressed read-optimized
store is useful.

V. CONCLUSION

In this paper, we showed and explained the positive im-
pact on read performance for an in-memory database when
using data compression. In order to compare different kinds
of lightweight compression techniques under different data
distributions we extended the generic cost model to take com-
pression into account. We also presented several lightweight
compression techniques and different optimizations regarding
dictionary compression as well as trade-offs that have to be
made in favor of late materialization and write performance.
The paper also described why focussing on read performance
is necessary and how a sufficient write performance can be
achieved as well. It concludes that under most circumstances
- especially for column stores - dictionary compression is
the best choice when it comes to optimizing read and write
performance under a mixed workload.

REFERENCES

[1] D. J. Abadi, S. Madden, and M. Ferreira. Integrating compression
and execution in column-oriented database systems. In Proceedings of
the ACM SIGMOD International Conference on Management of Data,
Chicago, Illinois, USA, June 27-29, 2006, pages 671–682, 2006.

[2] D. J. Abadi, D. S. Myers, D. J. DeWitt, and S. Madden. Materialization
Strategies in a Column-Oriented DBMS. In Proceedings of the 23rd In-
ternational Conference on Data Engineering, ICDE 2007, The Marmara
Hotel, Istanbul, Turkey, April 15-20, 2007, pages 466–475, 2007.

[3] A. Ailamaki, D. J. DeWitt, and M. D. Hill. Data page layouts for
relational databases on deep memory hierarchies. VLDB J., 11(3):198–
215, 2002.

[4] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood. DBMSs on
a Modern Processor: Where Does Time Go? In VLDB’99, Proceedings
of 25th International Conference on Very Large Data Bases, September
7-10, 1999, Edinburgh, Scotland, UK, pages 266–277, 1999.

[5] C. Binnig, S. Hildenbrand, and F. Färber. Dictionary-based order-
preserving string compression for main memory column stores. In
Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD 2009, Providence, Rhode Island, USA, June
29 - July 2, 2009, pages 283–296, 2009.

[6] P. A. Boncz, S. Manegold, and M. L. Kersten. Database Architecture
Optimized for the New Bottleneck: Memory Access. In VLDB’99,
Proceedings of 25th International Conference on Very Large Data Bases,
September 7-10, 1999, Edinburgh, Scotland, UK, pages 54–65, 1999.

[7] P. A. Boncz, M. Zukowski, and N. Nes. MonetDB/X100: Hyper-
Pipelining Query Execution. In CIDR, pages 225–237, 2005.

[8] U. Drepper. What every programmer should know about memory, 2007.
[9] S. Harizopoulos, V. Liang, D. J. Abadi, and S. Madden. Performance

tradeoffs in read-optimized databases. In VLDB ’06: Proceedings of the
32nd international conference on Very large data bases, pages 487–498.
VLDB Endowment, 2006.

[10] S. Harizopoulos, V. Liang, D. J. Abadi, and S. Madden. Performance
Tradeoffs in Read-Optimized Databases. In Proceedings of the 32nd
International Conference on Very Large Data Bases, Seoul, Korea,
September 12-15, 2006, pages 487–498, 2006.

[11] J. Krüger, M. Grund, C. Tinnefeld, H. Plattner, A. Zeier, and F. Faerber.
Optimizing Write Performance for Read Optimized Databases. In
Database Systems for Advanced Applications, 15th International Con-
ference, DASFAA 2010, Tsukuba, Japan, April 1-4, 2010, Proceedings,
Part II, pages 291–305, 2010.

[12] J. Krüger, M. Grund, A. Zeier, and H. Plattner. Enterprise Application-
Specific Data Management. In Proceedings of the 14th IEEE Inter-
national Enterprise Distributed Object Computing Conference, EDOC
2010, Vitoria, Brazil, 25-29 October 2010.

[13] J. Krüger, C. Kim, M. Grund, N. Satish, D. Schwalb, J. Chhugani,
H. Plattner, P. Dubey, and A. Zeier. Fast Updates on Read-Optimized
Databases Using Multi-Core CPUs. PVLDB, 5(1):61–72, 2011.

[14] J. Krüger, C. Tinnefeld, M. Grund, A. Zeier, and H. Plattner. A case
for online mixed workload processing. In Proceedings of the Third
International Workshop on Testing Database Systems, DBTest 2010,
Indianapolis, Indiana, USA, June 7, 2010, 2010.

[15] S. Manegold, P. A. Boncz, and M. L. Kersten. Generic Database Cost
Models for Hierarchical Memory Systems. In VLDB 2002, Proceedings
of 28th International Conference on Very Large Data Bases, August
20-23, 2002, Hong Kong, China, pages 191–202, 2002.

[16] D. E. Ott. Optimizing software applications for numa.
[17] H. Plattner. A common database approach for OLTP and OLAP using

an in-memory column database. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2009,
Providence, Rhode Island, USA, June 29 - July 2, 2009, pages 1–2,
2009.

[18] R. Ramamurthy, D. J. DeWitt, and Q. Su. A case for fractured mirrors.
VLDB J., 12(2):89–101, 2003.

[19] J. Rao and K. A. Ross. Cache Conscious Indexing for Decision-Support
in Main Memory. In VLDB’99, Proceedings of 25th International Con-
ference on Very Large Data Bases, September 7-10, 1999, Edinburgh,
Scotland, UK, pages 78–89, 1999.

[20] J. Rao and K. A. Ross. Making B+-Trees Cache Conscious in Main
Memory. In Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data, May 16-18, 2000, Dallas, Texas,
USA, pages 475–486, 2000.

[21] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack,
M. Ferreira, E. Lau, A. Lin, S. Madden, E. J. O’Neil, P. E. O’Neil,
A. Rasin, N. Tran, and S. B. Zdonik. C-Store: A Column-oriented
DBMS. In Proceedings of the 31st International Conference on Very
Large Data Bases, Trondheim, Norway, August 30 - September 2, 2005,
pages 553–564, 2005.

[22] T. Westmann, D. Kossmann, S. Helmer, and G. Moerkotte. The
Implementation and Performance of Compressed Databases. SIGMOD
Record, 29(3):55–67, 2000.

153Copyright (c) IARIA, 2012. ISBN: 978-1-61208-185-4

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications

	Introduction
	The Memory Bottleneck
	In-memory databases in Enterprise Application scenarios

	Compression
	Motivation
	Run-Length Encoding
	Bit-Vector Encoding
	Null Suppression
	Dictionary Encoding
	Comparison
	Run-Length Encoding
	Bit-Vector Encoding
	Null Suppression
	Dictionary Encoding

	Evaluation

	Dictionary Compression Techniques
	Order-Indifferent Dictionary
	Order-Preserving Dictionary
	Bit-Compressed Attribute Vector
	Bit-Compressed Order-Preserving Dictionary Encoding
	Comparison

	Related Work
	Conclusion
	References

