
Modeling a Data Storage System (DSS)

for Seamless Real-Time Information Support from Information Manufacturing

System (IMS)

Mohammad Shamsul Islam
Faculty of Engineering & Computing

Dublin City University (DCU)

Dublin, Ireland

Email: mohammad.islam6@dcu.ie

Paul Young
Faculty of Engineering & Computing

Dublin City University (DCU)

Dublin, Ireland

Email: paul.young@dcu.ie

Abstract—Nowadays, a large number of enterprises operate in

a business time schedule of 24×7. These enterprises need to

deliver information as fast as possible for information support.

Therefore, the information manufacturing system of the

enterprises should have the ability for seamless real-time

information support. Data storage system in the information

manufacturing system plays the role of providing non

interrupted real-time information support. Therefore, 2-Data

Storage System oriented information manufacturing system is

developed for providing real-time information support. This 2-

Data Storage System oriented information manufacturing

system can provide real-time information support for a short

period of time. However, it is not possible to provide seamless

real-time information support by this information

manufacturing system. Hence, modeling a data storage system

for seamless real-time information support from the

information manufacturing system is the purpose of this paper.

Keywords-data loading; indexing; query processing.

I. INTRODUCTION

An IMS (Information Manufacturing System) is an

information system that manufactures information from the

raw data [23]. The most important component of the IMS is

a DSS (Data Storage System). The DSS integrates multiple

sources of the system and so contains raw data from

multiple sources. Data come from multiple sources are

processed by the refreshment function of the availability of

data in the DSS. Available data in the DSS are then

delivered as information by the execution of query function.

Traditionally, IMS works in the non real-time

environment. Single or cluster (replication) DSS oriented

IMS is used for providing information support for this non

real-time environment. The DSS is updated periodically,

typically in a daily, weekly or even monthly basis in the non

real-time environment [24]. The DSS needs to update

continuously for providing real-time information support

with most recent data. Update is done with the refreshment

function in the DSS. Continuous execution of the

refreshment function (single DSS) and non simultaneous

update (cluster DSS) can cause of the poor quality

information support from the IMS [6]. More specifically,

the poor quality information support occurs for not

executing the refreshment and query function

simultaneously (single DSS) or the propagation delay for

updating the DSS (cluster DSS) of IMS. Therefore, these

DSS oriented IMS are not suitable for real-time information

support.

Enterprises such as stock brokering, e-business, online

telecommunication, health system and traffic systems need

to deliver information as fast as possible to knowledge

workers or decision-makers who make a decision in a real-

time or near real-time environment, according to the new

and most recent data captured by an organization’s IMS

[12]. Therefore, Santos and Berardino [18] as well as

Hanson and Willshire [10] developed a 2-DSS oriented IMS

for providing real-time information support. However, this

2-DSS oriented IMS cannot provide real-time information

support seamlessly. Nowadays, some enterprises need to

operate in a business time schedule of 24 × 7 for providing

information support in real-time environment. Therefore,

the purpose of this research is for modeling a data storage

system in the IMS that can provide non-interrupted real-

time information support for the business time schedule of

24 × 7. The modeled data storage system is 3-DSS for

serving the purpose.

The remaining part of this paper is organized as follows:

Section 2 presents the related research of the data storage

system. Section 3 describes the 3-DSS. Section 4 shows the

regulating procedure of the tasks of the refreshment and

query function in the 3-DSS. Section 5 presents the

management of the system at the down period of principal

3-DSS and the execution of tasks for restarting the principal

3-DSS again in the system. Experimental evaluation as well

as conclusion and future work are shown in Section 6 and

Section 7 respectively.

II. RELATED RESEARCH

So far, some researches have been done over DSS (DW,

distributed DW, etc.). Bouzeghoub et al. [1] and Vavouras

et al. [21] presents the modeling of the data warehouse

refreshment process. They explain the difference between

134Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

loading and refreshment process to these papers. Analyzing

the information manufacturing system of many

organizations, Mannino and Walter [13] identify that

timeliness and availability of data in the DSS are

responsible for bad quality information in the IMS. They

also find that the refresh period of a system influences the

timeliness and availability of data. Theodoratus and

Bouzeghoub [20] discuss the data currency quality factors in

data warehouses and propose a DW design that considers

these factors. An important issue for near real-time data

integration is the accommodation of delays, which has been

investigated for (business) transactions in temporal active

databases in [17]. Vrbsky [22] developed a model to get

approximate information from the IMS within a certain time

in real-time environment. McCarthy and Risch [16] provide

the data structure for execution of real-time queries.

Capiello et al. [6] shows that multiple scattered DSS has the

lowest degree of integration. It is evident that there is a data

quality problem as a result of both long refresh period and

propagation delay. On the other hand, single DSS in the

IMS has the highest degree of integration, therefore, it does

not make the data quality problem. Santos and Berardino

[18] present a table structure replication technique to ensure

fresh decision support for the real-time or frequently

changing data. The table structure replications have two

tables, the permanent table and the temporary table. The

data stored in a temporary table are transferred to a

permanent table for the deterioration of the query response .

At the time of transfer, no access is possible in the table of

data storage for the information support. Hanson and

Willshire [10] developed a faster data warehouse model

providing an auxiliary structure for quick query response.

This is also a 2-DSS oriented IMS. It has a temporary table

as well where only data will be loaded and no administrative

overhead such as indexing will be done. In this model

storage capacity of temporary tables is limited as it is

installed in the non-volatile NVRAM. After fulfilling the

95% of the temporary tables, data is transferred to the

permanent table. Therefore, no data access will be possible

in this period. As a result, 24 × 7 services will be not

possible with these 2-DSS oriented IMS seamlessly.

The data storage model of this research does not need to

transfer data by pushing the system to offline or by stopping

the system. Therefore, it will be possible to provide 24 × 7

services seamlessly with this DSS model. Further, it will

update the data in the DSS in real-time manner for

providing the real-time information support.

III. 3-DATA STORAGE SYSTEM (3-DSS)

According to [1][13][18], refreshment and query

function execute in a data storage system of the IMS to

make the data available and for the information support

respectively.

Refreshment Function: This is a complex process

comprising the tasks, such as data loading, indexing and

propagation of data for synchronizing data in the

information manufacturing system (IMS) [1][13][18].

Data loading: Key activities of data loading include

extraction, transformation, integration, cleaning etc.

Therefore, storage of manipulating [insert, update] data are

to extract from the sources , then, transformed data if the

source data are in the different format. After that, extracted

and transformed data are to integrate and to clean for

loading data in the data storage system [1][13][18].

Indexing: Update the index for newly loaded data or

delete data to align the data in the data storage system [18].

Indexing determines the effective usability of data collected

and aggregated from the sources and increases the

performance of the data storage system for information

support [1][13].

Propagation of Data: Data is propagated through the

refreshment process for synchronizing the data of multiple

DSSs of the system.

Query Function: This function of data storage system

in IMS is done by the query processing task. A requested

query of the user is processed in the data storage system for

delivering the information to the user.

In the 3-DSS, three individual DSS are mutually

interconnected with each other. The tasks of the refreshment

and the query function of data storage system work

simultaneously in three individual DSS . Therefore, data

loading and indexing with updated data propagation task of

the refreshment function work in two individual DSS of 3-

DSS and another DSS of 3-DSS executes the task of the

query function at the same time. After each successive

period, the tasks of the refreshment and the query function

of data storage system will interchange with cyclic order.

As, propagation of manipulated data in the DSS is done

simultaneously at the working period of the task of the

functionalities, there may not have propagation delay.

Therefore, 3-DSS will hold exact the same data. The 3-DSS

is shown in Figure 1.

Figure 1. 3-DSS

In the following sub-sections, the execution process of

3-DSS, protocol of 3-DSS and the partitioning procedure of

3-DSS will be discussed.

DSS2

DSS1

DSS3

Data Loading

IndexingQuery

Processing

135Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

A. Execution Process of 3-DSS

Suppose, DB1, DB2 and DB3 is three individual DSS

for 3-DSS. These three DSS are mutually interconnected

with each other. Now, if DB1 store some data from

operational data sources, DB2 and DB3 must have the same

data. The tasks of the query and refreshment function work

simultaneously in these three data storage systems. There

must have a synchronization of starting and finishing time

of the tasks of the query and refreshment function of these

three data storage systems. Manipulated data from

operational data sources will load into one database. At the

same time, another database will do the indexing and

updated data propagation task for synchronizing data with

other two DSS and the third one will be used for query

processing. The indexed and query processing database lead

the process. When the indexing with the propagation of

updated data and the query processing are finished, the tasks

of the refreshment and query function of data storage

system will interchange with cyclic order. The rotation

algorithm for the interchanging process is given in the

Figure 2.

DB3

DB1

DB2

Indexing

 Data LoadingQuery Processing

DB3

DB1

DB2

 Data Loading

Query ProcessingIndexing

DB3

DB1

DB2

Query Processing

Indexing Data Loading

Seq 2

Seq 3Seq 1
Figure 2. Rotation of the tasks of functionalities in 3-DSS

The algorithm for the rotation of function (Data

Loading, Indexing and Query Processing) in data storage

system is shown in Figure 3.

Rotation of Tasks of Functionalities in 3-DSS (Data

Loading, Indexing with update propagation, Query

Processing)

DB1 = Database 1, DB2 = Database 2, DB3 = Database 3

Step 1: DB1=>Data Loading, DB2=>Nothing, DB3=>Nothing

Step 2: DB1=>Indexing and send updated data to DB2, DB2=>Data

Loading, DB3=>Nothing

Step 3: DB2=>Indexing and send updated data to DB3, DB3=>Data

Loading, DB1=>Query Processing

Step 4: DB3=>Indexing and send updated data to DB1, DB1=>Data

Loading, DB2=>Query Processing

Step 5: DB1=>Indexing and send updated data to DB2, DB2=>Data

Loading, DB3=>Query Processing

Step 6: Repeat Step 3, 4 and 5.

Figure 3. Algorithm for Rotation of Tasks of Functionalities in 3-DSS

In the algorithm, Steps 1 and 2 indicate the initialization

of the system. Data come from multiple sources are loaded

into DB1 in Step 1. DB1 executes the indexing task and

send the updated data to DB2 and DB2 loads the updated

data and source data simultaneously in Step 2. Each task of

the functionalities of data storage system works

simultaneously in Steps 3, 4 and 5. As, data have been

loaded into DB2 in Step 2, DB2 is indexed in Step 3 and

send the updated data to DB3. At the same time, DB3 loads

the manipulated data including the updated data of DB2.

Further, DB1 provides the information by processing the

query request of the system in Step 3. Steps 4 and 5 will

follow the same process but interchange the roles of each

DB of the system. Therefore, Steps 3, 4 and 5 will continue

repeatedly in the system.

B. 3-DSS Protocol

A protocol is a set of rules for regulating a system [9]. 3-

DSS is the data storage system where multiple tasks will

execute simultaneously. Therefore, 3-DSS are to maintain a

set of rule for avoiding the cumbersome operations of the 3-

DSS in the IMS.

1. N, 2N, 3N,...............NN amount of manipulating

new data will be loaded each time to be available

in the DSS after completion of the task of the

refreshment function.

2. Three individual DSS of the 3-DSS will be located

contiguously in the same place.

3. Functionalities do not interchange if the indexing

task is in progress. It means that functionalities do

not interchange before the completion of indexing

task.

4. Functionalities do not interchange if the

propagation of update data from one DSS to

another DSS is in progress. Otherwise, the

propagated data receiver DSS can not load the all

new data of the sender DSS.

5. Functionalities do not interchange if query

processing task is in progress. Otherwise, the query

can process an incomplete query result.

6. Throughput of the three interconnected network

link of 3-DSS should be same.

7. Rotation of the tasks of functionalities will be

clockwise cyclic order like the Figure 2.

8. Previous DSS

of indexing DSS will always process

the query and next DSS of indexing DSS always

load the manipulated data. It is seen in Figure 2

that in every sequence (seq) previous DSS of

indexing DSS process the query.

136Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

9. Previous DSS

of query processing DSS will always

load the manipulated data and next DSS of query

processing will always indexed the loaded data of

the DSS. It is seen in Figure 2 that in every

sequence (seq) previous DSS of query processing

DSS load the manipulated data.

10. Previous DSS

of data loading will always indexed

the loaded data of the DSS and next DSS of data

loading DSS will always process the query. It is

seen in Figure 2 that in every sequence (seq)

previous DSS of data loading DSS indexed the

loaded data.

11. Interchange of the tasks of functionalities will be

done after the completion of the indexing and

query processing tasks.

C. 3-DSS Partitioning

Partitioning is the technique of fragmenting large

relations (tables) into smaller ones. In the large DSS,

(tables), if manipulation of data (insertion, update, delete) is

done, it needs more time to rebuild the indices of the large

DSS (tables). As a result, a requested query may not execute

in time or may provide a poor query result. The partitioning

of a large table can resolve this problem. In a partitioning

DSS (tables), the problem that created at the time of index

rebuilding for the manipulation of data is limited only in a

particular partition. Therefore, except the partitions where

data is being manipulated, other partitions of the DSS

(tables) can provide the query result for the requested query

as the index rebuilding process is limited to the certain

partition. Additionally, it needs less time to rebuild the

index than the non-partitioned DSS (tables) as the volume

of data of each partition will be certain. There are two ways

to partition a DSS: vertically and horizontally. Vertical

partitioning involves splitting the attributes (columns) of a

DSS (tables), placing them into two or more DSS (tables)

linked by the DSS (tables) primary key. Horizontal

partitioning involves splitting the tuples of a DSS (table),

placing them into single or more DSS (tables) with the same

structure. For keeping the certain volume of data in the DSS

(table), horizontal partitioning will be used in the 3-DSS.

There are two types of horizontal partitioning: primary and

derived. Primary horizontal partition (HP) of a DSS (table)

is performed using attributes defined on that DSS (table).

On the other hand, derived horizontal partition is the

fragmentation of a DSS (table) using the attributes defined

on another DSS (tables) [4]. Horizontal partitioning for 3-

DSS is discussed in below,

Let, F is the primary or fact table, D is the derived or

dimensional table. Example of a primary (fact) relational

table and derived (dimensional) table are depicted in Figure

4.

Table 2

T2Attr1

T2Attr2

T3Attr3

T4Attr4

Table 1

T2Attr1

T3Attr2

T1Attr3

T1Attr4

T1Attr5

Table 3

T3Attr1

T3Attr2

T3Attr3

T4Attr4

Figure 4. Primary (fact) relational table and derived (dimensional) table

In Figure 4, Table 2 and Table 3 is primary table. On the

other hand, Table 1 is derived table. Fragmentation of Table

1 depends on Table 2 and Table 3. If primary Table 2 and

Table 3 are manipulated, Table 1 must have to be

manipulated. Therefore, tuple of Table 1, Table 2 and Table

3 will be horizontally partitioned simultaneously

considering the instruction of the predicate.

A predicate is the Boolean expression over the attributes

of a relational table and constants of the attribute’s domains.

Horizontal partitioning can be defined as a pair (T, Ф),

where T is a relation and Ф is a predicate. This predicate

partitions T into at most 2 fragments with the same set of

attributes. The first fragment includes all tuples of t of T

which satisfy Ф, i.e., t = Ф. The second fragment includes

all tuples t of T which does not satisfy Ф, i.e., t ≠ Ф. It is

possibly one of the fragments to be empty if all tuples of T

either satisfy or do not satisfy Ф.

Let Ф = (counted tuple = N), which results into fragment

horizontally where tuple of a relational table will be

counted. If the condition of the predicate Ф is true,

relational table will be fragmented into 2 partitions. The first

partition will hold N numbers of the tuple. If manipulation

of data in the information manufacturing system (IMS) is

stopped after being partitioned, the second partition will

remain empty. When manipulation of data in the IMS is

continued and the total insertion of tuple reaches to N

number, this partition will again fragment into two pieces.

This partitioning process will continue as long as the

information manufacturing system is not stopped. This

single table partitioning process can be applied to the

multiple relation tables of the DSS in the IMS. The

horizontal Partitioning algorithm and the partitioning

algorithm of the 3-DSS are given in Figure 5 and Figure 6,

respectively.

Horizontal Partition (DSS

)

Existing Tuple := M, New Tuple := N

Delete Frequency := D, Insert Frequency := I

Partition Tuple Limit := T

1. Count Existing Tuple M

2. M := | M | - | D |

3. If (M == T)

4. Create Partition

5. Else

6. Insert New Tuple N

7. Count New Tuple N

8. N := | I |

9. Count Total Tuple O

10. O := | M | + | N |

11. If (O == T)

12. Create Partition

13. Else

14. Insert More Tuple Until (O == T)

Figure 5. Horizontal Partitioning algorithm for 3-DSS

137Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

Partitioning (DSS1, DSS2, DSS3)

1. Locate the DSS that execute L ()

2. If (DSS == DSS1)

3. Execute Horizontal Partition (DSS) for DSS1 in

Loading Period L(t)

4. Else If (DSS == DSS2)

5. Execute Horizontal Partition (DSS) for DSS2 in

Loading Period L(t)

6. Else

7. Execute Horizontal Partition (DSS) for DSS3 in

Loading Period L(t)

8. Go On Step1 and Repeat

Figure 6. Partitioning algorithm for 3-DSS

Partitioning of DSS of the 3-DSS will be done by

following the partitioning algorithm given in Figure 6.

According to this algorithm, DSS will be located for the

partitioning in the executing period of data loading of a

particular DSS. Then, the horizontal partitioning algorithm

will be applied for partitioning the DSS of the 3-DSS. The

horizontal partitioning algorithm is shown in Figure 5. In

this algorithm, Existing and new tuples have to calculate for

the horizontal partitioning. Deleting of a tuple from DSS

will detect the tuple from the existing tuple. On the other

hand, insertion of the tuple will count as a new tuple. A DSS

will be partitioned if total tuples of the DSS is reached in the

partition limit N. Therefore, the existing tuple will be

counted by deducting the deleted tuple from the DSS.

Hence, the number of existing tuples will be counted for

checking whether the existing tuple is in partition limit or

not. If, it is in partition limit, the partition will be created.

Otherwise, new tuple will be inserted in the DSS. Therefore,

new tuple will be counted by the number of new insertions.

After that, total tuple will be counted by adding existing

tuple with new tuple. Henceforth, it will be checked for

whether a counted number of total tuples are in partition

limit or not. If total tuple equals to the partition limit, the

partition will be created. Otherwise, more tuple has to be

inserted until the total tuple reaches to the range of the

partition limit of the tuple.

IV. REGULATING PROCEDURE OF THE TASKS OF

REFRESHMENT & QUERY FUNCTION OF 3-DSS

3-DSS executes three individual DSS simultaneously in

the information manufacturing system (IMS). The tasks of

the functionalities of data storage system work in these three

individual DSS of the 3-DSS. These tasks also need to

interchange in the 3-DSS. Further, this 3-DSS is to give an

assurance of quick update of data for the real-time

information support. As a result, DSS of the 3-DSS is

fragmented with a partitioning procedure. Therefore, there

must have a coordination and communication among the

tasks of the functionalities of the 3-DSS for doing the

simultaneous operation, interchanging of the tasks of the

functionalities and the partitioning of the DSS. The

regulator algorithm will play the role for making the

coordination and communication among the tasks of the

functionalities with the help of some other algorithms. The

regulator algorithm is given in Figure 7.

Regulator (DSS1, DSS2, DSS3)

(Loading), (Indexing and propagation) and (query processing) is

represented as L, Ix and IS respectively

3-DSS is controlled by a controller thread represented as CT

Step 1: Create Thread 1, Thread 2, Thread 3 and Controller Thread as

T1, T2, T3 and CT

Step 2: T1 Ix (), T2 IS (), T3 L ()

Step 3: T1 L (), T2 Ix (), T3 IS ()

Step 4: T1 IS (), T2 L (), T3 Ix ()

Step 5: CT

 I. Execute Synchronizing Agent Algorithm

 II. Execute Partitioning Algorithm

Step 6: Go on step 2 and repeat from step 2

Figure 7. Regulator algorithm for 3-DSS

In the regulator algorithm of the 3-DSS, four threads

will be created for the execution of the operation of 3-DSS.

Thread 1, thread 2 and thread 3 are created for the

simultaneous operation of the tasks of the functionalities of

the 3-DSS in three individual DSS. On the other side,

controller thread CT is constructed for the execution of the

synchronizing agent and the partitioning algorithms.

Synchronizing agent and partitioning algorithms are shown

in Figure 8 and Figure 6 respectively. As thread 1, thread 2

and thread 3 work simultaneously, so, when thread 1

executes indexing function, thread 2 and thread 3 will

execute the query and loading function, respectively. This

will continue until thread 1, thread 2 and thread 3 get a

message from the synchronizing agent of controller thread

to change their tasks of the functionalities. If thread 1,

thread 2 and thread 3 get a message from the synchronizing

agent of controller thread to change their activities, then,

thread 1 executes the function for loading task, thread 2 and

thread 3 execute function for indexing and query processing

tasks respectively. These activities of threading will

continue until these threads do not get any message to

interchange their activities. As soon as, each thread gets the

message to interchange their activities, thread 1 will start

query processing, thread 2 will start loading of data and

thread 3 will start the indexing task. Hence, the sequence of

activities of among threads will continue until the system is

stopped by the user or any other reasons. For the shortening

of indexing period, DSS will be partitioned by partitioning

algorithm after a certain number of storage data. This

partitioning process will provide the service from the

controller thread together with synchronizing agent. Details

of the synchronizing agent algorithm are given in Figure 8.

138Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

Synchronizing Agent (DSS1, DSS2, DSS3)
1. Ix (), L () and IS () is executing simultaneously in T1, T2 and T3 by rotation.

2. Ix () And IS () inform CT of its completion status

3. L () sends a message to CT to get the status information of Ix () And IS ()

4. Waiting for the reply of CT about the status of Ix () And IS ()

5. IS () sends a message to CT after its completion to get the status information of Ix ()

6. Waiting for the reply of CT about the status of Ix ()

7. Ix () sends a message to CT after its completion to get the status information of IS ()

8. Waiting for the reply of CT about the status of IS ()

9. Completion of the status of Ix () And IS () = Boolean Value

10. If Boolean Value of Ix () = False AND Boolean Value of IS () = False

 10.1 Continue Current Functions in T1, T2 and T3

11. Else If Boolean Value of Ix () = True AND Boolean Value of IS () = False

 11.1 Continue Current Functions in T1, T2 and T3

12. Else If Boolean Value of Ix () = False AND Boolean Value of IS () = True

 12.1 Continue Current Functions in T1, T2 and T3

13. Else

 13.1 T1 : Move to Next Function and Execute

 13.2 T2 : Move to Next Function and Execute

 13.3 T3 : Move to Next Function and Execute

14. Set

 14.1 Next Function Current Function in T1

 14.2 Next Function Current Function in T2

 14.3 Next Function Current Function in T3

Figure 8. Synchronizing Agent algorithm for 3-DSS

Figure 8 presents the algorithm for the interchange

process among of the tasks of the functionalities of the 3-

DSS. It shows, how the tasks of the functionalities of the 3-

DSS communicate with each other for providing their

service rotationally in three individual DSS of the 3-DSS.

According to the regulator algorithm of the 3-DSS, each

task of the functionalities of the 3-DSS (indexing, loading

and query processing) executes simultaneously in three

separate threads by rotation. Further, each individual DSS of

the 3-DSS changes role after a certain period of time. Query

processing and indexing tasks are not possible to stop in the

middle of the execution or before the completion of these

tasks. Therefore, the indexing and the query processing

tasks can be called dependent tasks. On the other hand, it is

possible to stop the loading of data at any moment of time.

Therefore, this task could be called independent task.

Hence, the interchanging process of the tasks of the

functionalities in the 3-DSS depends on both the indexing

and the query processing tasks. In line 1 of algorithm

indicates that step 1, step 2 and step 3 of regulator algorithm

will be executed simultaneously by rotation. In line 2,

function of the indexing and the query processing tasks will

inform their current status to the controller thread. Then, the

function of the loading task will send the message to the

controller thread to know the current status of the indexing

and the query processing function in line 3. The controller

thread will deliver a reply about the status of the indexing

and the query processing in line 4. In line 5 and 6, the query

processing function will send a message to the controller

thread to know the status of the indexing function after the

completion its task and wait for the reply. Similarly, in line

7 and 8, indexing function will do the same and wait for the

reply about the status of the query function. Now, from line

10 to line 13 shows that whether the tasks of the

functionalities of the 3-DSS will be interchanged or not. If

the completion status of the query processing or the

indexing function is false, the tasks of the functionalities of

the 3-DSS will not be interchanged. So, from line 10 to line

12, current function is continued in thread 1, thread 2 and

thread 3. In line 13, the completion status of both the query

processing and the indexing function is true, so, the tasks of

the functionalities of the 3-DSS is interchanged. For this

reason, current function of each thread is stopped and move

to the next function. Current function move to the next

function in the regulator algorithm mean that indexing,

loading and query processing function execute in step 1,

step 2 and step 3 respectively in thread 1; query processing,

indexing and loading function execute in step 1, step 2 and

step 3 respectively in thread 2 and loading, query processing

and indexing function execute in step 1, step 2 and step 3

respectively in thread 3. Now, if the current function of step

1 of thread 1, thread 2 and thread 3 are indexing, query

processing and loading function respectively, next function

will be the function of thread 1, thread 2 and thread 3 of step

2 and so on for step 2 and step 3. Therefore, when the next

function will be prepared for execution, it will be executed

as current function. Finally, in line 14, next function is set

and executed as the current function in thread 1, thread 2

and thread 3. The whole process executes repeatedly to

continue the interchanging of the tasks of the functionalities

in three individual DSS simultaneously in the 3-DSS.

V. ADDITIONAL TASKS FOR HANDLING THE SYSTEM FOR

THE FAILURE OF PRINCIPAL 3-DSS

Two 3-DSS can be installed in IMS for the real-time

information support seamlessly. One 3-DSS can be said

principal 3-DSS. Another can be told alternative 3-DSS.

The principal 3-DSS can be down at any moment of time in

the system for the crashing or other difficulties for any of

the DSS of the principal 3-DSS. An alternative 3-DSS can

facilitate the seamless real-time time information support at

the down period of the principal 3-DSS. Therefore, some of

the additional tasks have to include in the regulator

algorithm of Figure 7 for handling the system for the failure

of the principal 3-DSS. These tasks will be executed in the

controller thread. The additional tasks that will be included

in the controller thread are,

Sending the Source Data to Alternative 3-DSS: The

source data will be stored in the alternative 3-DSS at the

same time of loading data in the principal 3-DSS. It is done

by sending source data to one DSS of the alternative 3-

DSS. This DSS then replicates the data to other two DSS of

the alternative 3-DSS.

Recovery System: The log based or the shadow paging

recovery system described in [19] can be used for

recovering the data for crashing of 3-DSS.

139Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

Activation of Alternative 3-DSS: Alternative 3-DSS

will be activated for information support just after the

failure of principal 3-DSS. This alternative 3-DSS will then

work just like the principal 3-DSS.

Storage of Data in Temporary DSS: The source data

will also be stored in the temporary DSS for supporting the

principal 3-DSS. It will store data as long as principal 3-

DSS will be down.

Transferring the Temporary DSS Data to Principal

3-DSS: After fixing the problem of the principal 3-DSS, the

stored data in the temporary DSS will now be transferred to

the principal 3-DSS.

Restart the Principal 3-DSS: Now, the principal 3-

DSS will be restarted and the activities of principal 3-DSS

will be released from the alternative 3-DSS. This alternative

3-DSS will then perform its general task.

Now, the controller thread of the regulator algorithm in

Figure 7 can be written as:

Controller Thread (CT)

 If Principal 3-DSS ≠ Fail

 CT

I. Execute Synchronizing Agent Algorithm

II. Execute Partitioning Algorithm

III. Sending the Source Data to Alternative 3-DSS

 Else

CT

I. Execute Recovery System for Principal 3-DSS

II. Activation of Alternative 3-DSS

III. Execute Synchronizing Agent Algorithm

IV. Storage of Data in Temporary DSS

V. Transferring the Temporary DSS Data to Principal 3-DSS

VI. Restart the Principal 3-DSS

Figure 9. Additional tasks in controller thread for handling both principal

and alternative 3-DSS

In Figure 9, if principal 3-DSS is not in failing state,

then, the controller thread will execute the general 3-DSS

tasks and Sending the source data to alternative 3-DSS task.

On the other hand, if the principal DSS is in failing state,

then, the controller thread will execute recovery system for

principal 3-DSS. Then, it will activate the alternative 3-

DSS. At the same time, synchronizing agent algorithm will

start to work on the alternative 3-DSS. Storage of data in

temporary DSS, transferring the temporary DSS data to

principal 3-DSS and restarting the principal 3-DSS tasks

will also execute in the controller thread. Once the principal

3-DSS restarts, the controller thread will again execute the

tasks of not failing state.

VI. EXPERIMENTAL EVALUATION

The experiments have been done for the 2-DSS and 3-

DSS oriented IMS. 2-DSS is used as the benchmark for

showing the real-time information support of 3-DSS.

Temporary DSS is considered for the experiment of 2-DSS.

Only loading of data task work in the temporary DSS of the

2-DSS for providing the real-time information support . The

tasks of the DSS functionalities work in three individual

DSS simultaneously in the 3-DSS. Four machines were used

for doing the experiments. Among the four machines, three

machines were used for implementing the 3-DSS, another is

used as a server for controlling the 3-DSS, inserting data

from the sources to the 3-DSS and sending the query request

to the 3-DSS. Server machine and one more machine were

used for the experiment of the 2-DSS. Multi core 2.2 Ghz

processors, 4GB RAM and 5400 r.p.m hard drive were used

for the server machine. The rest of the machine used single

core 1.69 Ghz processor, 1GB RAM and 5400 r.p.m hard

drive. SQL server was the database software for creating the

data storage system.

For doing three experiments, 1GB data was stored in

both the 2-DSS and the 3-DSS oriented IMS. Fifty thousand

new rows (tuple) were extracted from the sources and stored

in the 2-DSS and the 3-DSS with the refreshment function

at the time of each individual experiment for delivering the

data for the query request. One experiment of 3-DSS was

done without storing 1GB data in the 3-DSS. In the real

world, user may send the query request in the refreshment

period. For this reason, query and refreshment functions

executed simultaneously in these experiments. Query

request for retrieving all newly inserted data was sent

repeatedly after each single minute. Therefore, the query

result was delivered for each respective query request.

These query results were measured to get the result for both

the 2-DSS and the 3-DSS oriented IMS. Start of data

insertion time means the first data insertion time from the

source to the DSS and query delivery time is the time the

query result is delivered. Therefore, the distance between

start of data insertion time and query delivery time is

measured by subtracting query delivery time from the start

of data insertion time. Volume of query result data is

measured by dividing the number of inserted data in the

DSS with the total data for insertion. The results are given

in Table I, Table II, Table III, and Table IV.

TABLE I. EXPERIMENTAL RESULT OF 2-DSS (BENCHMARK DSS)

1 1 11.00

2 2 20.80

3 3 31.20

4 4 41.27

5 5 50.30

6 6 61.16

Query

Request No.

Distance between Start of

Data Insertion T ime and

Query Delivery T ime

(Minute)

Volume of

Query Result

Data (%)

140Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

TABLE II. EXPERIMENTAL RESULT OF 3-DSS (NO EXISTING

DATA)

1 1 10.70

2 2 20.30

3 3 30.60

4 4 41.15

5 5 50.00

6 6 60.80

Query

Request No.

Distance between Start of

Data Insertion T ime and

Query Delivery T ime

(Minute)

Volume of

Query Result

Data (%)

TABLE III. EXPERIMENTAL RESULT OF 3-DSS (1GB EXISTING

DATA)

1 1 10.30

2 2 18.20

3 3 26.37

4 4 33.32

5 5 41.60

6 6 49.78

Query

Request No.

Distance between Start of

Data Insertion T ime and

Query Delivery T ime

(Minute)

Volume of

Query Result

Data (%)

TABLE IV. EXPERIMENTAL RESULT OF 3-DSS (PARTITIONING)

1 1 10.90

2 2 20.40

3 3 30.38

4 4 41.00

5 5 50.10

6 6 61.10

Query

Request No.

Distance between Start of

Data Insertion T ime and

Query Delivery T ime

(Minute)

Volume of

Query Result

Data (%)

Table I is representing the experimental result for the 2-

DSS. Table II, Table III and Table IV are showing the

experimental result for the non-partitioned 3-DSS, the non-

partitioned 3-DSS with 1 GB existing data and the

partitioned 3-DSS with 1 GB existing data respectively.

Query result of Table I and Table II is almost the same.

There is a big difference between the query result of Table I

and Table III. Indexing of data was the cause for this

difference. It was not visible in the Table II for the low

volume of data (only newly data was inserted and no

existing data were there). As, partition was done after 1GB

of data , Table IV presents almost the same volume of query

result for each query request like Table I. Therefore, it can

be said that 3-DSS can provide real-time information

support. Further, as 3-DSS does not need the data transfer

from non-indexed DSS to indexed DSS, it can provide

information support seamlessly.

VII. CONCLUSION AND FUTURE WORK

This paper showed that the 3-DSS model can provide

seamless real-time information support from the IMS. It is

quite possible to down any of the DSSs of the 3-DSS at the

period of execution in the real world. Therefore, there

should have a redundant or replication system of 3-DSS to

provide information support service in the down period.

Additionally, a recovery system needs to develop for this 3-

DSS for recovering the data for the failure of the system for

crashing or some other reasons. Replication and recovery

system are described briefly in this paper. Further, details

work is needed on the dynamic partitioning system.

Therefore, future work will be conducted on the replication

system of the 3-DSS, the recovery system of the 3-DSS and

the dynamic partitioning system of the 3-DSS in a broader

aspect. Additionally, comparison of 3-DSS oriented IMS

with the 2-DSS oriented IMS will also be the future research

work.

REFERENCES

[1] M. Bouzeghoub, F. Fabret and M. Matulovic-Broqué,

“Modeling Data Warehouse Refreshment Process as a

Workflow Application”, Proceedings of the International

Workshop on Design and Management of Data

Warehouses, 1999, pp. 6.1-6.12.

[2] D.P. Ballou and H.L. Pazer, “Modeling data and process

quality in multi-input, multi-output information

systems”, Management Science, vol. 31, 1985, pp. 150–

162.

[3] C. Batini and M. Scannapieco, “Data Quality: Concepts,

Methodologies and Techniques”, Publisher: Springer,

Berlin, Germany, 2006.

[4] L. Bellatreche, K. Karlapalem, M. Mohania and M.

Schneider, “What can partitioning do for your data

warehouses and data marts?”, IEEE, 2000, pp. 437-445.

[5] C. Cappiello, C. Francalanci and B. Pernici, “Data

Quality and Multichannel Services”, PhD Thesis.

Politecnico di Milano, 2005.

[6] C. Cappiello, C. Francalanci and B. Pernici, “Time-

Related Factors of Data Quality in Multichannel

Information Systems”, Journal of Management

Information Systems, vol. 20, 2003, pp. 71-92.

[7] C. Cappiello, C. Francalanci and B. Pernici, “A Self-

monitoring System to Satisfy Data Quality

Requirements”, Springer Verlag, vol. 3761, 2005, pp.

1535-1552.

141Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

[8] C. Cappiello and M. Helfert, “Analyzing Data Quality

Trade-Offs in Data-Redundant Systems”,
Interdisciplinary Aspects of Information Systems Studies
, Physica-Verlag HD, 2008, pp. 199-205.

[9] B.A. Forouzan, C. Coombs and S.C. Fegan, “Data

Communications and Networking”, Publisher: Tata

Mcgraw-Hill, 2003.

[10] J.H. Hanson and M.J. Willshire, “Modeling a Faster

Data Warehouse”, IEEE, 1997, pp. 260-265.

[11] Y. Hu, S. Sundara and J. Srinivasan, “Supporting Time-

Constrained SQL Queries in Oracle”, Proceedings of the

33rd international conference on Very large data bases,

2007, pp. 1207-1218.

[12] W.H. Inmon, R.H. Terdeman, J. Norris-Montanari and

D. Meers, “Data Warehousing for E-Business”, J. Wiley

& Sons, 2001.

[13] M.V. Mannino and Z. Walter, “A framework for data

warehouse refresh policies”. Decision Support Systems,

vol. 42, 2006, pp. 121-143 .

[14] C.L. Pape and S. Gancarski¸ “Replica Refresh Strategies

in a Database Cluster”, Springer-Verlag, LNCS vol.

4395, 2007, pp. 679-691.

[15] C.L. Pape, S. Gancarski and P. Valduriez, “Refresco:

Improving Query Performance Through Freshness

Control in a Database Cluster”, Springer-Verlag, vol.

3290, 2004, pp. 174-193.

[16] T. Padron-McCarthy and T. Risch, “Performance-

Polymorphic Execution of Real-Time Queries.

Workshop on Real-Time Databases: Issues and

Applications”, Newport Beach, California, USA, 1996.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1

.48.2149. [Accessed 2nd January 2013].

[17] J.F. Roddick and M. Schrefl, “Towards an

Accommodation of Delay in Temporal Active

Databases”, 11th Australasian Database Conference

(ADC), 2000.

[18] R.J. Santos and J. Bernardino, “Real-Time Data

Warehouse Loading Methodology”, ACM, vol. 299,

2008, pp. 49-58.

[19] A. Silberschatz, H.F. Korth and S. Sudarshan,

“Database System Concepts”. Publisher: Mcgraw-Hill,

1997.

[20] D. Theodoratus and M. Bouzeghoub, “Data Currency

Quality Factors in Data Warehouse Design”, Int.

Workshop on Design and Management of Data

Warehouses (DMDW), 1999.

[21] A. Vavouras, S. Gatziu and K.R. Dittrich, “Modeling and

Executing the Data Warehouse Refreshment

Process”,IEEE, 2000, pp. 66-73.

[22] S.V. Vrbsky, “A data model for approximate query

processing of real-time databases”, ACM Data &

Knowledge Engineering, vol. 21, 1996, pp. 79-102.

[23] R.Y. Wang, M. Ziad and Y.W. Lee, “Data Quality”,

Publisher: Kluwer Academic, 2001.

[24] T. Zurek and K. Kreplin, “SAP Business Information

Warehouse From Data Warehousing to an E-Business

Platform”, 17th Int. Conf. on Data Engineering (ICDE),

2001.

[25] K. Zdenek , M. Kamil, M. Petr and S. Olga, “On

updating the data warehouse from multiple data

sources”, Springer, vol. 1460, 1998, pp. 767-775.

142Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

http://www.springerlink.com/content/u2j066/?p=5e54f8b2f8744529ac2010030d568523&pi=0
http://www.sciencedirect.com/science/journal/03064379

