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Abstract—Some of the existing techniques for approximate
similarity retrieval in metric spaces are focused on shrinking
the query region by user-defined parameter. We modify this
approach slightly and present a new approximation technique
that shrinks data regions instead. The proposed technique can
be applied to any metric indexing structure based on the ball-
partitioning principle. Experiments show that our technique
performs better than the relative error approximation and
region proximity techniques, and that it achieves significant
speedup over exact search with a low degree of error. Beyond
introducing this new method, we also point out and remedy
a problem in the relative error approximation technique,
substantially improving its performance.

Keywords-approximation algorithms, experiments, similarity
search, metric space.

I. INTRODUCTION

Nowadays, efficient similarity retrieval is becoming more
important in various applications such as multimedia repos-
itories (images, audio, video) because of the rapid growth of
these data sets and the increasing demand for access to them.
In such search applications, the relevance of a data object
is often measured by some distance function that provides
quantitative information about its similarity to some given
sample query. For search techniques that treat the distance
as a black-box relevance measure, the main challenge is
to quickly retrieve a small set of the most relevant objects
(either all within a search radius, or the k nearest neighbors,
k-NN) relying on the properties of the distance—usually by
exploiting the metric axioms.

Numerous metric indexing structures have been proposed
to reduce the computational cost (such as the total num-
ber of distance computations at query time) of similarity
retrieval [1]. These methods primarily rely on various forms
of filtering based on the triangle inequality. Triangular
filtering is efficient in low-dimensional spaces. However, as
the dimensionality of a space increases, the performance
of these indexes degrades because of the so-called curse
of dimensionality: distances grow increasingly similar, and
eventually one may need to examine more or less all data
objects, the equivalent of a linear scan. One promising
approach to ameliorating this curse is approximate similarity
search, where some result quality is sacrificed in order to
gain performance. This is acceptable in many applications,
as distance-based retrieval is generally approximate to begin

with—the distance function is most likely an approximation
of the user’s perception of similarity, and the user probably
wants similar objects (e.g., pictures of horses), not neces-
sarily the most similar objects (i.e., the most similar horse).

Some important methods used in approximate similar-
ity search are discarding data regions at query time (by
shrinking the query ball by a user-defined factor [2–4] or
by analyzing the intersection of query and data regions [5]),
representing data objects as permutations of a set of piv-
ots [6], and estimating the distance by linear regression [7].
We focus on the first approach, trying to develop a method
for discard regions that overlap with the query, but that
are likely to contain few relevant objects, if any. Our main
contributions are:

• We propose a new approximation technique that shrinks
data regions instead of the query region, and show
empirically that it is superior to existing methods in
many cases.

• We amend a problem in the relative error approximation
technique of Zezula et al. [2]. In several experimental
studies, this technique was found to be the worst
one [1, 2, 5]. We point out a problem with how the
method has been used, and show how the amended
version has significantly improved performance wrt.
the original, making it comparable even to the region
proximity method [5].

The rest of the paper is organized as follows. In Section II,
we briefly review related work. In Section III, we propose
our approximation technique, and describe how to amend the
relative error approximation technique. Section IV provides
experimental results and some discussion of those results.
Finally, Section V contains some concluding remarks.

II. RELATED WORK

In this section, we briefly review two metric indexing
structures based on the ball-partitioning principle—the M-
and SSS-trees—explain some issues in the construction of
indexes and also review some approximate techniques that
can be applied to those structures.

The M-tree [8] is a hierarchical dynamic metric ball tree
that is designed for secondary memory. The M-tree is built
in a bottom-up manner like B-trees. The insertion algorithm
starts from the root and moves toward the leaves by selecting
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nodes that are closer to the new object or that require a
minimum enlargement of existing balls. The new object is
finally inserted into a leaf node. This may cause the leaf to
split (if the node capacity is exceeded), which may trigger
splits in some of its ancestor nodes, possibly even the root.
For a leaf node split, the covering radius of the split node
is set to the distance from the center to the object furthest
away, that is, the actual covering radius. For an internal node
split, the covering radius is not computed exactly, but over-
estimated, as follows. For every child node, the covering
radius of that node is added to the distance between the
center of that child and that of the split node. Then, the
covering radius of the split node is then set to the maximum
of those sums.

Brisaboa et al. have proposed a static index structure so
called the Sparse Spatial Selection (SSS) tree [9], in which
the first object in a data set is selected as the first cluster
center and then the rest of the objects become new cluster
centers if they are far enough away from all current centers
(i.e., the minimum distance between the object and current
cluster centers is greater than αM , where α is a user-defined
parameter and M is the maximum distance between any
two objects); otherwise, they are assigned to the cluster
associated with the nearest center. The process is recursively
applied to those clusters that have not yet fallen below a
given size threshold and the diameter M of each such cluster
is estimated by using twice the covering radius of the node.
Because of the clustering principle used in the construction
phase, the internal nodes of SSS-trees will generally have
smaller regions than the internal nodes of M-trees. However,
there are still sparse regions at higher levels of SSS-trees.

Three approximate techniques for k-NN search were
introduced by Zezula et al. [2]. The first, the so-called
relative error approximation technique, controls approxima-
tion through a user-defined relative distance error ε ≥ 0.
For a given query q and error ε, an approximation of a
kth nearest neighbor Ok

A is called a (1 + ε) kth nearest
neighbor, compared to the true kth nearest neighbor Ok

N ,
if and only if d(q,Ok

A) ≤ (1 + ε) · d(q,Ok
N ). Thus, the

search algorithm uses the radius rq/(1 + ε) instead of the
covering radius of the current k-NN candidate set rq to
check overlap between query and data regions and candidate
object qualification as well. An example of this approach is
given in Figure 1a. The second, the so-called good fraction
approximation technique, uses a distance distribution to
provide an early termination criterion which leads to an
approximate kNN search. In the third, the so-called small
chance of improvement approximation technique, the search
algorithm is based on the fact that the dynamic radius of the
result set initially decreases rapidly and eventually will slow
down. Thus the search stops as soon as the decrease of the
radius becomes sufficient.

The PAC method [3] is an extension of (1 + ε) nearest
neighbor search by a user-specified confidence parameter

δ ∈ (0, 1). The search algorithm stops immediately if the
result satisfies the (1+ε) nearest neighbor with a confidence
of at least δ.

Probabilistic LAESA [4] is a probabilistic technique for
range search that provides user-customizable limits (θ) for
the probability of false dismissals. More specifically, the
radius rq is scaled down by a factor (1+ε) (ε > 0) during the
filtration of indexed objects. The upper bound for (1+ ε) is
rq
√
1− (1− θ)1/p/(

√
2σ), where p is the number of pivots

and σ2 is the variance of the distance distribution of the data
set. Figure 1b shows an example of this technique.

The region proximity technique [5] estimates the prob-
ability of the intersection of the query and data regions
containing objects relevant to the query. The data region
is discarded if the estimated probability is less than a user-
specified threshold.

III. OUR APPROACH

First, we explain the basic principles of the so-called best
first strategy [10] for k-NN search. In essence, we maintain
a set of at most k (initially zero) candidates throughout
the search. We also maintain a covering radius for this
candidate set. This covering radius is infinite as long as
we have fewer than k candidates. The algorithm processes
the most promising metric regions first by maintaining a
priority queue of pair of distances to regions and pointers to
those regions. The following actions are repeated until the
lower bound of the distance from the query to the region
about to be processed is greater than the current dynamic
query radius. The most promising region is popped from the
queue. The objects of the current region are checked with
the current dynamic query radius and, if necessary, the list
of candidate k-NN is updated. If we have k candidate, this
leads the reduction of the dynamic query radius. Those sub-
regions of the current region that intersect with the query
region reinserted into the queue along with the lower bound
distances to them from the query.

We now look at our approach. Metric indexes may have
highly sparse data regions at higher levels, with the ball
radii covering large amounts of empty space—especially for
high dimensionalities. During a search, in order to discard
those regions that might not contain relevant objects for
the query we could use any version of of the (1 + ε) NN
technique (for instance, the relative error approximation).
Our suggested approach is similar to the relative error
approximation technique and the key difference is to divide
the data ball radius by (1+ ε), rather than the query radius.
See Figure 2 for an example. In the figure, we have shown
what happens if we divide both the query radius and the
data radius by (1 + ε). In the first example (Figure 2a),
the query lies close to the data ball, on the outside. In this
case, our method lets us eliminate the region simply because
it increases the lower bound more. In the second example
(Figure 2b), the query is just inside the data ball. In this case,
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Figure 1: Examples of data and query ball regions in R2 with L2. (a) Relative error approximation in the M-tree [8] with
two levels (i.e., top level with center O1 and bottom levels with centers O1 and O7). RCO1 represents the covering radius
of top region centered at O1 while rcO1 represents its “true” covering radius. (b) Probabilistic LAESA.

shrinking the query radius will never lead to an elimination,
whereas our method does.

q O

(a)

q O

(b)

Figure 2: Examples of data and query regions in R2 with
L2 (a) query q is outside the data region with center O and
(b) q is inside the data region.

These examples demonstrate the twofold intuition behind
our method: First, ball trees are generally built using some
form of clustering. If the data set itself is clustered, and the
clustering algorithm is good, this will presumably lead to
the center region of a ball being more densely populated
than its periphery. Even if this is not the case, by setting
the radius to the maximum of all center–object distances,
the radius is sensitive to outliers, and the more extreme they
are, the fewer there are likely to be. Even if we do not
assume a Gaussian distribution, it is not unreasonable to
guess that our distance histogram will have the majority of
its values clustered roughly around the mean, with fewer
occurrences of very high and low distances (ignoring self-
distances, d(x, x)). Assume that we have a global distance
histogram somewhat like that in Figure 3, for example. We
also assume that the center–object distances are distributed
roughly according to the global distance histogram. Chávez
et al. call this behavior as a “reasonable approximation” [11,
p. 304]. In this case, it seems that it would be safe to shrink
large data balls more than smaller ones, as the number of
objects lost would be smaller. The same could be said about
the smallest balls, of course; however, we would probably
want to examine most of those, if they are close to the query,
as they more precisely represent the objects inside them.
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Figure 3: Distance histogram (solid) and cumulative distance
histogram (dashed).

Second, shrinking the data balls affords us some elimina-
tion possibilities that simply do not exist with the original
query-shrinking approach, that is, when the query falls inside
the data ball. We have performed some tentative experiments
to explore the relative importance of these two factors. At
parameter settings that yield similar levels of error, our
method generally uses fewer distance computations than the
relative error method (see Section IV). We estimate that the
proportion of the saved distance computations caused by
cases where the query is inside the data ball to vary from
about 1% to over 50% (data not shown).

Another contribution of this paper is that we point out
and remedy a problem in the relative error approximation
technique. Several experimental studies have showed that
the performance of the relative error method (as originally
described) is very poor [1, 2, 5]. According to Zezula et
al., “the chief reason for the markedly poor performance of
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the Relative Error Approximation method (with respect to
the others) is that precise nearest neighbors algorithms find
good candidates for the result sets soon on, and then spend
the remainder of their time mostly in refining the current
results” [1, p. 157]. We claim, instead, that the main reason
for this performance issue is found in the pruning criterion
for a candidate given object O, given by Equation 16 on
page 280 of the original paper by Zezula et al. [2]:

rq
d(q,O)

< 1 + ε ,

or, equivalently,
rq

1 + ε
< d(q,O) ,

where rq is the covering radius of the current k-NN candi-
date set.

Now, the radius shrinking is intended to reduce the num-
ber of distance computations needed by excluding regions
of low relevance. There is no need to use it here, as the
distance d(q,O) has already been computed, and we simply
wish to know whether the object O is an improvement over
the candidates we have found so far. We can determine this
by simply comparing d(q,O) directly to rq . Indeed, if

rq
1 + ε

< d(q,O) < rq

we will lose an improvement to our candidate set, involving
an object whose distance we have already computed. This
can be particularly important early on, where we wish to
add good candidates (thereby reducing the dynamic search
radius) as quickly as possible. In our experiments, we use
this improved version of the relative error approximation
technique, checking each candidate object against the actual
covering radius of the candidate set.

IV. EXPERIMENTS

In this section, we evaluate the performance and result
quality of our technique against the amended version of
the relative error approximation and the region proximity
techniques on synthetic and real-world data sets. For all data
sets we use the Euclidean distance.

• Uniform 10: Synthetic. 100 000 uniformly generated
10-dimensional vectors.

• Clusters 10: Synthetic. 100 000 clustered 10-dimen-
sional vectors with 10 cluster centers. The centers
were randomly chosen from a uniform distribution
and objects in the clusters were generated from the
multivariate normal distribution around each of the
cluster centers with a variance of 0.1.

• Corel: 60 000 feature vectors with 64 dimensions ex-
tracted from the Corel image data set.

• NUS [12]: 269 648 color histograms extracted from
Flickr images. Each histogram is 64-dimensional.

Amato et al. claimed that there was no practical differ-
ence between the proximity and the PAC-NN technique [5,

p. 225]. Also PAC-NN is designed only for approximate NN
retrieval (k = 1). Therefore, PAC-NN is not considered for
our experiments.

We have applied our method, region proximity, and the
amended version of the relative error technique on M- and
SSS-trees. The maximum arities of the trees were set to 30
for the synthetic and 15 for the real-world data sets. We
selected 1000 queries from the respective data set at random
and the remaining objects in the data set used for indexing.
We compared the search performance and result quality of
three techniques by varying the result size threshold (k),
using the values 1, 5, 10, 20, 40 and 80. We report only
the results with 10 NN because the results with the other
result size thresholds were quite similar. For the relative error
approximation technique, the relative error α was varied in
the interval [0.001, 2.0] with step size 0.1 following the
experimental settings of Zezula et al. [2]. For the region
proximity technique, the proximity value was varied in the
interval [0.003, 0.06] with step size 0.003 following the
experimental settings of Amato et al. [5]. For our technique,
the data region stretching factor was varied between 0.1 and
2.0 with step size 0.1.

For each query, we counted the number of distance
computations needed for the approximate search (the most
commonly used criterion for measuring the performance
of metric indexing structures), normalized by the number
needed for an exact search, and measured a slightly modified
version of the error on the position [1, 5]. The original
version of the error on the position has some drawbacks.
First, it gives an error value that is normalized by the size
of data set. The normalized values are harder to interpret.
For example, we can not directly see the absolute position
difference between exact and approximate results. Second,
the error should not be normalized by the approximate
result’s size and should take missing objects in the result
set into account.

Let us have a look at a simple example: Let n be data set
size and the result size threshold k be 80 (k < n) and the
approximate result be only true 3 NNs. For some reason,
the approximate result did not retrieve other 77 NNs (for
instance, the search algorithm was terminated early). Then
if we apply the original formula on this example, the error on
the position is ((1−1)+(2−2)+(3−3))/(3n) = 0. The error
value 0 means that the approximate result has no error and
as we see that it should not be 0 in this case. The modified
version takes these situations into account, and the error is
increased by n as a fine for every missing object and then
the error is only normalized by k. This modified version of
the error on the position yields the average absolute position
difference between every point of the exact and approximate
results.

In general, approximation techniques will produce results
that vary both in performance and accuracy. In order to
make a fair comparison between different techniques we
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have to compare their speed-up factors with the same error
or vice versa. In some cases, it would be difficult to achieve
this goal, as neither performance measure is a deterministic
function of the parameter settings. In order to compare the
results properly, we plot them as a lines with one point for
each parameter setting, with the coordinates for each point
given by the mean error and mean normalized distance count
for all queries. On the y-axis, the value 10−1 means that the
indexing structure performed 10 times as fast as an exact
search. On the x-axis, the value 101 means that the average
absolute position difference between exact and approximate
result is 10 (for instance, if the result size threshold is 1,
then the 11th NN is reported instead of the NN).

In Figure 4, the errors on the position vs normalized
distance counts for 10NN on M-trees are shown. Note that
both axis are logarithmic. For the results of NUS 10 NN in
Figure 4, our technique achieved a speed-up by a factor of
more than 4 over the exact search, with the position error
less than 10, while the region proximity technique achieved
almost same speed-up with relatively high position error 104

(i.e., reported 10 objects from around 10 000 NNs for the
query). For the other data sets, our technique achieved about
2.5 speed-up over exact search with the position error less
than 10.

Figure 5 shows the results for SSS-trees. The most inter-
esting results are once again obtained with the NUS data set.
For NUS 10 NN, the maximum value of the error was 48.39
(with normalized distance count 0.135) for our technique
while for the region proximity technique the error was
1751.39 (with normalized distance count 0.136). The results
show that our technique is faster than two other competing
techniques with a low degree of the error on the position.
The relative error approximation technique outperforms the
region proximity technique on the real-world data sets while
on the synthetic data sets it does not.

In addition to the experiments presented, we have also
performed some tentative experiments involving various
tradeoffs between query- and data-ball shrinking. So far, this
has not yielded substantial improvements.

V. CONCLUSIONS

We have proposed an approximate similarity search tech-
nique for metric spaces and we have amended a problem in
the relative error approximation technique. We have empir-
ically evaluated our technique, showing that it outperforms
the amended version of relative error approximation and the
region proximity techniques.
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Figure 4: Performance vs. result quality of approximation on the synthetic and real-world data sets with M-trees.
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Figure 5: Performance vs. result quality of approximation on the synthetic and real-world data sets with SSS-trees.
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