
Feature Construction for Time Ordered Data
Sequences

Michael Schaidnagel
School of Computing

University of the West of Scotland
Email: B00260359@studentmail.uws.ac.uk

Fritz Laux
Faculty of Computer Science

Reutlingen University
Email: fritz.laux@reutlingen-university.de

Abstract—The recent years and especially the Internet have
changed the way on how data is stored. We now often store
data together with its creation time-stamp. These data sequences
potentially enable us to track the change of data over time.
This is quite interesting, especially in the e-commerce area, in
which classification of a sequence of customer actions, is still
a challenging task for data miners. However, before standard
algorithms such as Decision Trees, Neuronal Nets, Naive Bayes
or Bayesian Belief Networks can be applied on sequential data,
preparations need to be done in order to capture the information
stored within the sequences. Therefore, this work presents a
systematic approach on how to reveal sequence patterns among
data and how to construct powerful features out of the primitive
sequence attributes. This is achieved by sequence aggregation and
the incorporation of time dimension into the feature construction
step. The proposed algorithm is described in detail and applied
on a real life data set, which demonstrates the ability of the
proposed algorithm to boost the classification performance of
well known data mining algorithms for classification tasks.

Index Terms—feature construction, sequential data, temporal
data mining

I. INTRODUCTION

Huge amounts of data are being generated on a daily basis,
in almost every aspect of our live. Advancements in computer
science as well as computer hardware enable us to store and
analyze these data. Especially in the e-commerce area it is
common to log all user activities in an online shop. Such
data can be ordered by their timestamp and can be allocated
to data sequences of particular users. However, the logged
activities or actions are not stored in a form that enables
data mining right away. Therefore, it is important to pre-
process the data before analyzing it (see also Han [1], Liu
[2]). When data is only represented by primitive attributes and
there is no prior domain expert knowledge available, the pre-
processing task becomes challenging and creates the need for
automated techniques. At this point attribute selection and/or
feature construction techniques need to be applied. Attribute
selection can be defined as the task of selecting a subset of
attributes, which are able to perform at least as good on a
given data mining task as the primitive (original) attributes
set. The original values of the data set are called attributes,
while the constructed data are called features. It is possible
that primitive attributes are not able to adequately describe
eventually existing relations among primitive attributes. Such
interrelations (or also called interactions, see Shafti [3]) can

occur in a data set, if the relation between one attribute and
the target concept depends on another attribute (see also Shafti
[4]). Attribute selection alone can fail to find existing interac-
tion among data. Therefore, one goal for feature construction
is to find and highlight interactions. Feature construction can
be defined as the process of creating new compound properties
using functional expressions on the primitive attributes. Shafti
[3] distinguishes between two types of features construction
techniques in terms of their construction strategy:
• hypothesis-driven: create features based on a hypothesis

(which is expressed as a set of rules). These features are
then added to the original data set and are used for the
next iteration in which a new hypothesis will be tested.
This process continues until a stopping requirement is
satisfied.

• data-driven methods: create features based on pre-
determined functional expressions, which are applied on
combinations of primitive features of a data set. These
strategies are normally non-iterative and the new features
are evaluated by directly assessing the data.

A. Problem description

Both feature construction strategies are not able to include
a dimension that is unique to sequential data: the time elapsed
between the corresponding actions. The so far described
strategies are not able to express a pattern, which occurs in
the course of time. Reason for this is their focus on tuples
(rows) in a database. In this work, we will focus on the data-
driven strategy and propose a new technique that is able to find
patterns that are spread across several rows of a sequence. This
can be achieved by creating meaningful features that are able
to transform sequence information into the tuple-space.

B. Structure of the paper

The remainder of this work is structured as follows: Section
II will give a short overview about the related literature.
Subsection II-A will highlight our contribution to the particular
research field. Our proposed algorithm takes additional consid-
eration on sequential data. The characteristics of such data is
described in Section III. Our approach to feature construction
will be described in detail in Section IV. We divided the
algorithm into four logical parts, which are respectively de-
scribed in the subsections of Section IV. This is followed by an

1Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

experimental analysis in Section V, in which we demonstrate
the ability of our proposed algorithm to boost classification
performance on a real life data set. The paper is concluded by
the sections Conclusion (Section VI) and Future Work (Section
VII).

II. RELATED WORK

Earlier work in the field of feature construction was done
by Setiono and Liu [5]. They used a neuronal network to
construct features in an automatic way for continuous and
discrete data. Pagallo [6] proposed FRINGE, which builds a
decision tree based on the primitive attributes to find suitable
boolean combinations of attributes near the fringe of the tree.
The newly constructed features are then added to the initial
attributes set and the process is repeated until no new features
are created. Zupan and Bohanec [7] used a neuronal net for
attribute selection and applied the resulting feature set on the
well known C4.5 [8] induction algorithm. Feature construction
can also be used in conjunction with linguistic fuzzy rule
models. Garcı́a [9] et al. use previously defined functions over
the input variables in order to test if the resulting combination
returns more information about the classification than the
single variables.

However, in order to deal with increasing complexity of
their genetic algorithm in the empirical part, Garcı́a only
used three functions (SUM{Xi, Xj}, PRODUCT{Xi, Xj},
SUBSTRACT ABS{Xi, Xj}) to enlarge the feature space.
Another approach to feature construction, which utilizes a
genetic algorithm, is described by Alfred [11]. Although,
his approach is not using different functions to create new
combinations of features, it can create a big variety of features
since it is not limited to binary combination. That means
that it is able to combine more than two attributes at a time.
The genetic algorithm selects thereby the crossover points for
the feature sequences. Another mentionable contribution to
the field of feature construction was done by Shafti [4]. She
describes MFE3/GA, a method that uses a global search strat-
egy (i.e., finding the optimal solution) to reduce the original
data dimensions and find new non-algebraic representations of
features. Her primary focus is to find interactions between the
original attributes (such as the interaction of several cards in
a poker game that form a certain hand). Sia [12] proposes a
’Fixed-Length Feature Construction with Substitution’ method
called FLFCWS. It constructs a set that consist of randomly
combined feature subsets. This allows initial features to be
used more than once for feature construction.

A. Contribution

We propose an automated algorithm that is able to system-
atically construct and assess suitable new features out of data
sequences for binary classification tasks. It thereby is also able
to utilize the time dimension in a sequence of actions in order
to access information, which can have a significant impact on
the discriminatory power of features. Thereby, the algorithm
transforms sequential data into tuple-based data in a way,
that allows standard algorithm such as Neuronal Networks,

Bayesian Belief Network, Decision Trees or Naive Bayes to
be applied on sequential data.

So far, feature construction techniques build new features
’horizontally’ by combining columns of a data set. We also
apply this techniques with a larger variety of mathematical op-
erators. In addition to that we include the time elapsed between
data points. Our approach is novel, since we try to ’vertically’
go down the time axis of a sequence and create features
by combining numeric values (or its probabilities in terms
of string attributes) of the corresponding occurrences. The
original values are aggregated during the feature construction
process and this allows to store sequence based information on
tuple level. As a result of that, the above mentioned standard
algorithms can be applied (not all are able to handle sequenced
data sets).

III. GENERAL CHARACTERISTICS OF SEQUENTIAL DATA

This work often refers to the term sequential data. Thereby
we understand data, that can be ordered by time and can
be attributed to logical units (i.e., the sequence). A simple
example for that are sessions in an online shop. Customers
can view products and put them into their shopping basket.
Every action can be represented in a data base as a row r
with several attributes ai ∈ E. Each row is provided with
a timestamp t. A row can be associated to a logical unit
sid (in our case the session id). There are n sequences sidn

in a data set E. Each sequence sidn consist of at least one
row r. The number of rows in a sequence equals to the
length of a sequence ls, so that 1 ≤ ls ≤ m. Table I,
depicts the general schema of sequential data: It is important

TABLE I: Schema of sequence data

r t sid a1 a2 . . . ai slabel
r1 t1 sid1 a11 a21 . . . ai1 0
r2 t2 sid1 a12 a22 . . . ai2 0
r3 t3 sid1 a13 a23 . . . ai3 0
r4 t4 sid2 a14 a24 . . . ai4 1
r5 t5 sid2 a15 a25 . . . ai5 1
r6 t6 sid2 a16 a26 . . . ai6 1
. .
rm tm sidn a1m a2m . . . aim . . .

to differentiate between the number of rows (or tuples) m of
a data set and the number of sequences n. Sequence sid1

, for
example, has a length ls of three and contains a matrix such

as sid1
=

a11 a21 . . . ai1
a12 a22 . . . ai2
a13 a23 . . . ai3

In order to use our proposed method, which is described in

detail in the following section, the user has also to mark the
following columns on a data set:
• t: timestamp column that is used for temporal based

features. It is used to calculate the time elapsed between
the collected data points of a sequence.

• sid: sequence identifier column that is used for sequence
aggregation. It identifies events/objects that can be logi-
cally associated to one entity

2Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

• slabel: the proposed algorithm requires a binary column
as target value. This is needed in order to automatically
calculate the information gain of newly constructed fea-
tures. Every sequence must only have one label, i.e., a
customer in an online shop is either a returning customer
or not (it can not be both at the same time).

During the feature construction process, we will create a
feature table, which includes the sid, slabel and the created
features fp ∈ S. Please refer to Table II, for a schema of
such a table. The data sequences are aggregated on a tuple-

TABLE II: Schema of feature table

sid f1 f2 . . . fp slabel
sid1 f11 f21 . . . fp1 0
sid2 f12 f22 . . . fp2 1
.
sidn f1n f2n . . . fpn . . .

based level. This enable the application of many standard
classification algorithms.

IV. FEATURE CONSTRUCTION FOR DATA SEQUENCES

Our goal is to extend and search the initial problem
space as much as possible. Problem space is thereby defined
through the primitive (original) attributes E, which are used
to solve a binary classification task. The accessible feature
space expands, if more features are constructed. Albeit, this
leads to an increase in search time, it brings a higher chance
to find discriminatory features. In order to keep things as
simple as possible, we describe the algorithm in four different
subsections, each describing a certain sort of features creation
technique. Please note that the initial attributes are, in a first
step, categorized in string and numeric attributes. Reason for
this is, that not all described functions are applicable on
string values. Please note, that after each feature construction
technique, we normalize the newly generated features with
min-max normalization, depicted in (1). This provides an easy
way to compare values that are on different numerical scales
or different units of measure.

Normalized(ei) =
ei − Emin

Emax − Emin
, for Emax > Emin (1)

The first Subsection IV-A will show construction techniques
for both string and numeric attributes. The second Subsec-
tion IV-B describes construction techniques for string-only
attributes. After that we will focus in the third Subsection IV-C
on numeric-only construction techniques. Subsection IV-D
concludes this section by describing temporal based feature
construction techniques.

A. Distinct occurrences based features

The general idea for this type of technique is to analyze
if different occurrences per sequence allows to discriminate
between the given labels. Basically, we aggregate all sequences
sidn

and count the distinct occurrences (so no duplicates are
counted) for each given string as well as numeric attribute
ain . The constructed features fp are than collected in S,

Input: E // set of string and numeric attributes
slabel ∈ {0, 1} // single value label indication

Def: ai ∈ E // single attribute or a column in a data set
sid = (r1, r2, . . . , rm) // sequences of rows r
S = ∅ // set of constructed features

for each ai ∈ E {
for each sid ∈ E {
fp := (|{ain}|, sid, slabel)
S := S ∪ fp
}

}
return S

Fig. 1: Pseudo-code feature construction based on distinct
occurences per label

together with its corresponding sequence identifier sid and
the corresponding session label slabel. Please note that the
sequence identifier sid is unique in S (as opposed to E). The
corresponding pseudo-code is depicted in Fig. 1.

In order to assess the quality of the new constructed feature
fi, we calculate the average of all aggregated values per label
slabel ∈ {0, 1}. The difference between both averages is called
split and is calculated as depicted in (4).

avg0 = avg({fp ∈ S|slabel = 0}) (2)
avg1 = avg({fp ∈ S|slabel = 1}) (3)

splitfi = |avg0−avg1|
avg0+avg1

(4)

B. Concatenation based features

Purpose of this type of feature construction is to highlight
simpler interactions among data. We systematically concate-
nate every string attribute in pairs of two and then again,
count the distinct value-pairs per sequence identifier. Thereby
interactions such as, if a1 AND a2 have low value-pair variety
for label 0, but a high value-pair variety for label 1, are
highlighted. Even for data sets with a high number of different
occurrences, this kind of feature construction will highlight
distinct occurrences between both labels. This procedure is
only applicable on string attributes. This approach is similar
to most common column combinations that is described widely
in the literature (e.g., [4], [7], [11]). However, we once again
use this technique on a different abstraction layer since we
aggregate via the sequence identifier sid. The corresponding
pseudo-code is depicted in Fig. 2.

The algorithm copies the input attribute list E for looping
purposes into a second variable E2. Right after the second
loop, it deletes the current attribute from copied list (E2−a2i).
Reason for this is to avoid the same features to occur twice,
due to symmetric properties. If, for example, we combine
column ai = X and aj = Y of a data set, we will yield
feature XY . This feature will have the same variability per
sequence as the vice versa feature Y X . The construction of
such features can be avoided by deleting the current feature
from the copied feature list E2.

3Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

Input: E // set of primitive string attributes
slabel ∈ {0, 1} // single value label indication

Def: ai ∈ E // single attribute or a column in a data set
sid = (r1, r2, . . . , rm) // sequences of rows r
S = ∅ // set of constructed features
E2 = E // copy of E, used for looping
con() // concatenates two values

for each ai ∈ E {
//remove ai to avoid vice versa features
E2 := E2 − {ai}
for each aj ∈ E2 {

for each sid ∈ E {
fp = (|(con(ai, aj))|, sid, slabel)
S = S ∪ fp
}
}

}
return S

Fig. 2: Pseudo-code feature construction based on
concatenated string attributes

C. Numeric operator based features

The basic idea of this feature construction technique is to
combine two numeric attributes with basic arithmetic operators
such as ”+”, ”-”, ”*” or ”/”. Garcia [9] and Pagallo [6] for
instance are using similar techniques with fewer operators.
In addition to the repeated use of arithmetic operators we,
once again, use the sequence identifier attribute to aggregate
the constructed features for each sequence. Lets put this
into an example: attributes ai and aj are combined with the
multiplication operator ”*” for a sequence sid1

. The resulting

feature f = ai ∗aj exists in the sequence sid1
=

ai1 aj1
ai2 aj2
ai3 aj3

The sequence consists of three data points. In the aggregation
phase, we sum up the multiplied attributes for all sequences∑

3
j=1fij . This process is repeated for all possible combi-

nations of numeric attributes for all of the above mentioned
mathematical operators. The full pseudo-code is depicted in
Fig. 3. For these technique, we also avoid vice versa features
as described in previous Subsection IV-B.

D. Temporal axis based features

The general idea for this feature construction technique is
to use the time axis, which is displayed in each sequence
by the time indicator column t. This is applicable for both,
numeric as well as string attributes. However, for string
attributes, there needs to be some preparations done, which are
explained further down in this subsection. We continue here to
describe the process for numeric attributes. What the algorithm
basically does, is to multiply the time interval (e.g., days,
hours, minutes), between earliest data point and the current
data point with the numeric value of corresponding attribute,
which results in a weighting.

Input: E // set of primitive numeric attributes
slabel ∈ {0, 1} // single value label indication

Def: ai ∈ E // single attribute or a column in a data set
sid = (r1, r2, . . . , rm) // sequences of rows r
S = ∅ // set of constructed features
E2 = E // copy of E, used for looping
O // set of arithmetic operators
ls // length of a sequence sid

for each ai ∈ E {
//remove ai to avoid vice versa features
E2 := E2 − {ai}
for each aj ∈ E2 {

for each o ∈ O {
for each sid ∈ E {
fp = (

∑ls
i=1(ai o aj), sid, slabel)

S = S ∪ fp
}

}
}

}
return S

Fig. 3: Pseudo-code feature construction based on numeric
attributes

Table III, shows this for two example sequences. We have
two attributes ai and aj for two sequences as well as the t
column. In order to calculate the temporal based feature for
attribute sequence sid = 1 in terms of attribute ai, we first
have to calculate the time between the earliest data point of
sid = 1 and each of the ’current’ data points. In Table III, this
is depicted by the ∆time in days column. The next step is to
multiply the value of each ti in sid = 1 with its corresponding
delta time value: (ai1 ∗ 1, ai2 ∗ 10, . . . , ai4 ∗ 23). The sum of
this value is the new time based constructed feature fp. This
process is repeated for all sequences s and for all numerical
attributes E.

TABLE III: Example for creating temporal based features

sid t min(t) ∆time−
in days

ai aj slabel

1 01.01.2013 01.01.2013 1 ai1 aj1 0
1 10.01.2013 01.01.2013 10 ai2 aj2 0
1 15.01.2013 01.01.2013 15 ai3 aj3 0
1 23.01.2013 01.01.2013 23 ai4 aj4 0
2 24.01.2013 24.01.2013 1 ai5 aj5 1
2 28.01.2013 24.01.2013 4 ai6 aj6 1
2 30.01.2013 24.01.2013 6 ai7 aj7 1

However, there are two directions of including the time
for this feature construction technique. What we described
above puts a stronger emphasis on the recent history. It
is also possible to increase the weight of the past by us-
ing the (max date - current date) operator to calculate the
∆time in days column.

The above mentioned techniques are applicable on numeric

4Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

Input: E // set of primitive numeric attributes
t // time indicator column
slabel ∈ {0, 1} // label indication

Def: ai ∈ E // single attribute or a column in a data set
sid = (r1, r2, . . . , rm) // sequences of rows r
S = ∅ // set of constructed features
E2 = E // copy of E, used for looping
ls // length of a sequence sid
max() // returns max value of a set

for each ai ∈ E {
for each sid {
fp = (

∑ls
i=1((max

k=1,...,ls
(tk)− ti) ∗ ai), sid, slabel)

S = {S ∪ fp}
}
}

return S

Fig. 4: Pseudo-code feature construction of temporal based
attributes

attributes. For string attributes, it is possible to replace the
string by the posterior probability p(θ|x) (see also Hand
[14], pp. 117-118 and pp. 354-356). Thereby θ represents the
probability of the parameters for a given evidence x. In our
example case, we have the distribution of our two labels as
parameters θ and occurrences of ai as evidence x. Based on
this the posterior probability can be calculated as depicted in
(5)

p(slabel = 1|ai) = p(ai|slabel=1)∗p(slabel=1))
p(ai)

(5)

In order to apply this for string based attributes, we can
construct new features f for string attributes as depicted in
(6)

fp =

ls∑
i=1

(max
k=1,...,m

(tk)− ti) ∗ (p(slabel = 1|ai)) (6)

If there are occurrences in the data that have a great tendency
towards a particular label (i.e., having a high possibility for
one label), we can make this pattern visible by multiplying
the posterior possibility with the temporal axis of the given
sequence.

However, if there are too many different occurrences, lets
say more than 1.000 different values per attribute, this tech-
nique could have problems dealing with very small proba-
bilities. So, it is recommended to take the logarithm of the
posterior probability for cases with high cardinality.

V. EXPERIMENTAL SETUP AND RESULTS

This section is divided into three subsection in which we
will first look at the technical framework we used during our
experiments. This is followed by a brief look at the data profile
and the corresponding classification task. The third subsection
will then compare and discuss the results of our experiments.

A. Technical Framework and Infrastructure

All implementations and experiments were carried out on
a Microsoft Windows Server 2008 R2 Enterprise Edition
(6.1.7601 Service Pack 1 Build 7601) with four Intel Xeon
CPUs E5320 (1.86 GHz, 1862 MHz). The available RAM
comprised of 20 GB installed physical memory and 62 GB
virtual memory (size of page file 42 GB). The widespread
freeware data mining software RapidMiner (version 5.2.008)
was used for the standard methods under comparison: Decision
Tree, Naive Bayes, Neuronal Network and Random Forrest
(for a closer description please also see Witten [13] pp. 191-
294, Han [1] pp. 291-337). The method Bayesian Belief
Network required the installation of the free RapidMiner
extension WEKA. We used the default parameters for all of
the above mentioned classification algorithms.

B. Data Profile

The data we used for our experiments was retrieved from the
DataMiningCup 2013. The training as well as the test data set
can be downloaded on the following site: ’http://www.data-
mining-cup.de/en/review/dmc-2013/’. The given historical
data from an online shop consisting of session activities from
customers. The goal of the task is to classify sessions into a
buyer and a non-buyer class. The given training data has the
following parameters:
• total number of rows: 429,013
• number of sessions: 50,000
• number of numeric attributes: 21
• number of string attributes: 2
The test data has the following parameters:
• total number of rows: 45,068
• number of sessions: 5,111
• number of numeric attributes: 21
• number of string attributes: 2
Most of the given attributes are numeric. Please note that

there is no exact time column given. Therefore, we used a
artificial id column to map the temporal order of the various
sessions. We also used this column to calculate the temporal
based features described in Subsection IV-D.

C. Comparison of original attributes vs constructed features
sets

As a first step, we used the given primitive attributes to
solve the task. We used the accuracy measurement (7) due to
a similar label distribution (45 % to 55 %) and both labels are
associated with the same ’costs’ for misclassification.

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

As it can be seen in Fig. 6, the Naive Bayes classification
algorithm was able to achieve better result than the base line
(the other algorithms defaulted and predicted label = 0 for all
sessions). The Bayesian Belief Networks are not applicable
for situations in which the same sid can occur several time
(therefore a accuracy rate of 0 %). In a next step, we used our

5Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

Fig. 5: All constructed features ranked by their split value.

Fig. 6: Accuracy rate comparison original data set with
primitive attributes and the same algorithms applied

including the top 29 constructed features.

suggested feature construction algorithm in order to aggregate
the sessions and find useful features. During this process, a
grand total of 732 features were created:
• # of distinct occurrences based features: 23
• # of string concatenation based features: 2
• # of arithmetic based features: 686
• # of temporal axis based features: 21
All features were normalized with the min-max normaliza-

tion and assessed by calculating the split value for each feature.
The features were ranked by their split value, as it can be seen
in Fig. 5. The best feature achieve a split value of 0.815, the
lowest of 0.0003. In order to keep execution times low, we
chose only the top 29 constructed features for our second run.
Fig. 6 shows the impressive improvement for the compared
standard methods. Since the sid is unique for the constructed
features set, the Bayesian Belief Networks are applicable.

VI. CONCLUSION

Data pre-processing and selection are very important steps
in the data mining process. This can be challenging, if there
is no domain expert knowledge available. The algorithm
proposed in this work helps, not only to understand the

patterns within the data, but also, to simplify more complex
data structures (such as sequential data). It can be applied
in conjunction with well known standard algorithms and can
boost classification performance in a big variety of fields
with similar specifications (such as the detection of credit
card fraud, network intrusions, bots in computer games). Its
systematic approach can also help domain experts to find
previously unknown interactions among data and therefore,
to get a better understanding of their domain.

VII. FUTURE WORK

Further ways for extending the features space could be to
implement more numerical features generated by logarithm,
exponential powers or combinations of more than two at-
tributes. The algorithm itself could be optimized to assess
the quality of a candidate feature before actually calculating
it. Another development direction could be to align the con-
structed features in a way, that would allow to classify data
without the help of one of the standard algorithms.

REFERENCES

[1] J. Han and M. Kamber, ”Data mining: Concepts and techniques” 2. edition
pp. 48-97 second edition, San Francisco, Morgan Kaufmann, 2006

[2] H. Liu and H. Motoda, ”Feature Extraction, Construction and Selection:
A Data Mining Perspective”, Boston, Kluwe Academic Publisher, 1998

[3] L. S. Shafti and E. Pérez ”Constructive Induction and Genetic Algorithms
for Learning Concepts with Complex Interaction”, in Proceedings of The
Genetic and Evolutionary Computation Conference, Washington, June
2005, pp. 1811-1818

[4] L. S. Shafti and E. Pérez ”Data Reduction by Genetic Algorithms
and Non-algebraic Feature Construction: a Case Study”, in Proceed-
ings of: Eighth International Conference on Hybrid Intelligent Systems,
Barcelona, September 2008, pp. 573-578

[5] R. Setiono and H. Liu ”Fragmentation Problem and Automated Feature
Construction”, in Proceedings of: fourth Conference on Data Mining and
Optimization (DMO), Langkawi, September 2012, pp. 53-58

[6] G. Pagallo ”Learning DNF by Decision Trees”, Machine Learning, pp.
71-99 Kluwer Academic Publishers, 1990

[7] B. Zupan and M. Bohanec ”Feature Transformation by Function Decom-
position”, in Journal IEEE Intelligent Systems archive Volume 13 Issue
2, March 1998, pp. 38-43

[8] J.R. Quinlan ”C4.5: Programs for Machine Learning”. Morgan Kaufmann,
1993

[9] D. Garcı́a, A. González and R. Pérez, ”A Two-Step Approach of Feature
Construction for a Genetic Learning Algorithm”, in Proceedings of: IEEE
International Conference on Fuzzy Systems, Taipei, June 2011, pp. 1255-
1262

[10] D. Garcı́a, Antonio González and R. Pérez, ”An Iterative Strategy for
Feature Construction on a Fuzzy Rule-Based Learning Algorithm”, in
Proceedings of: 11th International Conference on Intelligent Systems
Design and Applications, Cordoba, November 2011, pp. 1235-1240

[11] R. Alfred ”DARA: Data Summarisation with Feature Construction”, in
Proceedings of: Second Asia International Conference on Modelling &
Simulation, Kuala Lumpur, May 2008, pp. 830-835

[12] F. Sia and R. Alfred ”Evolutionary-Based Feature Construction with
Substitution for Data Summarization using DARA”, in Proceedings of:
fourth Conference on Data Mining and Optimization (DMO), Langkawi,
September 2012, pp. 53-58

[13] I. Witten and F. Eibe, ”Data mining : practical machine learning tools
and techniques” 2. edition, San Francisco, Morgan Kaufmann, 2005, pp.
48-97

[14] D. Hand, H. Mannila and P. Smyth ”Principles of Data Mining”, MIT
Press, 2001

6Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

