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Abstract—In the last few years, several public persons in Ger-
many have been convicted of inadequate scientific practice and or
scientific misconduct in writing their dissertations. An examples
is the former German Federal Minister of Defense Guttenberg,
who had to resign as a consequence of this scandal. These
events have led to an increased interest in methodologies to
automatically detect plagiarism in documents. In today’s digital
society, however, the vast growth of available information makes
this a challenging task. To address this situation, tools for the
detection of plagiarism must be built up on highly efficient data
structures and utilize very fast operations. In our approach, we
propose the use of compressed bitmaps as a representation form.
We introduce a new concept of plagiarism detection, which is
based on mapping suspicious documents and potential source
documents onto these compressed bitmaps. We will explain how
the detection process can be accelerated.

Keywords-Compressed bitmaps; plagiarism detection; visualiza-
tion

I. INTRODUCTION

The fully automated search for plagiarized sections in
documents is gaining more and more importance. This search
is a multi-stage process [1] with the initial point being a
suspicious document that has to be examined as to whether
its content is plagiarized. In a first preselection step, which
is called source retrieval, a number of so-called “candidate
documents” are extracted. As the number of these reference
documents typically is very high (i.e., all documents in the
WWW), the efficiency of this step is of high importance. The
challenge is to extract a possibly small number of documents
for further investigation, without neglecting potentially relevant
documents (high recall). In a second step, the so-called text
alignment procedure, the preselected candidate documents are
examined for text fragments that also appear in the suspicious
document. In this step, a mapping between text fragments
in the suspicious and the candidate set is performed. After
this mapping process, a final knowledge-based process is
performed, by means of which overlapping text fragments are
combined or deleted and visualized.

In practice, it is required to distinguish between two
possible scenarios. In the first case, the algorithm has access to
a complete data pool. For example, this is the case in a well-
defined research area where all relevant literature is stored in
a local database. In this case, the algorithm is in full control
of the complete procedure of plagiarism search. This scenario
is not very likely. In the second more likely case, the first step
depends on the utilization of an internet search engine, such
as Google or Yahoo!.

The structure of the paper is as follows: In the next section
we give a brief overview of the state of the art in plagiarism
detection. Then in Section III we give an introduction of Zipf’s
Law and the size of typical vocabularies. After that, we present
our approach (section IV) and in Section V we provide an
algorithm for this approach. We conclude our paper with a
number of tasks we plan for the future.

II. STATE OF THE ART

Since 2009, a competition has been organized in the
context of the “Conference and Labs of the Evaluation Forum”
(CLEF). The Plagiarism Analysis, Authorship Identification,
and Near Duplicate Detection) (PAN) competition uses a
standardized collection to compare the different approaches.
In 2013, 32 teams joined the competition, in which a number
of plagiarized documents was to detected by the developed
software systems. In the following paragraphs, we focus on
some of the different approaches according to the different
tasks of a Plagiarism Detection System (PDS):

A. Source Retrieval

In source retrieval the following steps can be distin-
guished [2]: In order to generate the search request, the
document under evaluation will be chopped into a number of
paragraphs (chunking). For example, this fragmentation can be
based on chapters or a defined number of lines or sentences.
Often, dynamic chunking techniques are utilized. For example,
intrinsic methods / procedures which search the document for
conspicuities, such as lexis or average word length, in order
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Figure 1. Zipf distribution of the words in all papers of the DBKDA 2013
conference

to find variations leading to potential plagiarized fragments in
the document. After completing the first step, the chunks will
be used to create keywords or key phrases which then will be
implemented in the request for the search engine. This step is
typically carried out by i.e. observation of the td∗idf values [3]
for single words within the chunks or by the generation of
one or more so-called n-grams (phrases with a typical length
of 5 to 8 words). These keywords or key phrases will then
be submitted to a search engine. Based on the response from
the search engine, a number of documents will be downloaded
and analyzed in the following step.

B. Text Alignment

The main purpose of the text alignment step is to identify
text fragments from the source data / documents that found
their way into the document under investigation. Not only 1:1
plagiarized text fragments should be identified, the objective
is to identify disguised or faked fragments as well. These
faked phrases are often characterized by simply changing
the sequence of words, adding or deleting single words or
combining sentences.

C. Post Processing and Final Visualization

After this mapping process, a final knowledge-based pro-
cess is carried out in which overlapping text fragments are
combined or deleted and accordingly visualized.

III. WORDS, SENTENCES, AND LANGUAGE

A. Zipf’s Law

Zipf’s law [4] postulates that the frequency of any word
in a language is inversely proportional to its rank in the
corresponding frequency table. Figure 1 shows the distribution
of the words that appeared in the papers of the DBKDA-
2013 conference [5]. It can be seen that, the distribution is
represented by a hyperbolic function.

Examining the articles of the DBKDA 2013 conference,
we made the following findings:

• Altogether, about 7000 different (stemmed) words are
used.

• The average size of an article is about 5000 words.

• A typical article only contains about 1000 different
(stemmed) words.

• The average length of a sentence was between 14 and
22 words for the different articles.

• A paragraph comprised between 7 and 14 sentences
for the different articles on the average.

These values were not specific of the conference selected,
but can be reproduced with other scientific publications as well.
The average length of a sentence in one of the famous literature
books Moby Dick or The Adventures of Tom Sawyer was only
about 7 words.

Based on the finding of Zipf’s law, it can be postulated that
there are words that are more important to identify a document
than other words. For example, when we used the following
six keywords “the, of, and, in, to, for” in a google query, we
got about 11.5 billion results. When searching for the three
words “bitmap, index, encoding”, only 1.4 million results were
obtained. Because a lot of words are inflections or derived
from a base form, a stemming process in general reduces all
the words to their (morphological) stem. This process reduces
the number of different words, without losing the meaning
when used in an information retrieval process. The porter
stemmer [6] is the most well-known stemmer for the English
language.

B. Size of Vocabulary

The vocabulary of a native English speaker is about 10,000
to 12,000 words. This is quite small compared to the size of
the entire English vocabulary which is between 500,000 to
600,000 words (twice the size of the French vocabulary which
has only about 300,000 words). This does not include techni-
cal terminology. The chemical nomenclature terminology, for
example, contains at least 20 million words [7].

IV. CHOSEN APPROACH

A. Representation of Text

In this subsection, we examine how the basic units of a doc-
ument (word, n-gram, sentence, paragraph, whole document)
can be represented to support the work of a PDS. The task of
a PDS is to find overlapping sections between the suspicious
document and the candidate documents. In the trivial case of
a 1:1 copy & paste plagiarism, n-grams (a sequence of n
words) can be used, which slide over the document base to find
matching regions (technically, this is typically implemented
with an inverted index). This approach works very well if the
plagiarized extracts are not too obfuscated by changes in the
syntax or exchange of words (synonyms, hypernyms).

Another approach is to use the well-known vector space
model (VSM). In this model, the whole document or a part of it
is represented as an n-dimensional vector. The vector space is
defined by the used vocabulary (words) in the document base.
The similarity between two documents (or parts of it) is defined
by a similarity function based on the vector representation. A
typical similarity function, for example, is the cosine similarity
between two vectors. Often, VSM is combined with the td∗idf
weighting.
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A major difference between the n-grams representation and
the VSM approach is that in VSM the words are represented
as an unordered collection. This makes this approach more
robust against syntactic modifications of the text. A serious
drawback of this approach is that when using a single vector
for one document, small plagiarized fragments can easily be
overlooked [8]. This can be compensated by building vectors
from smaller fragments of the document, which, on the other
hand, makes the computation more expensive, because more
vectors have to be compared.

B. Compressed Bitmaps

In our approach, text fragments are represented as com-
pressed bitmaps. Every bit in the bitmap represents a fixed
word of our language (i.e., all words sorted alphabetically).
Setting the bit at position i to 1 means, that the ith word
appears in the given text fragment. As in the case of the VSM,
we maintain an unordered list of words (“Bag of Words”) for
each text fragment. But, in contrast to VSM, we do not keep
the information of how often a word appears in text fragment,
we only keep the information whether it appears or not. This
seems to be a substantial loss of information at first, but for
small units of text (like sentences) the difference is not so
big, because in general, most of the words (and especially
the relevant words) would not appear more than once anyway.
The advantage of our approach is the very fast computation
of similarity between two bitmaps using the Jaccard similarity
coefficient [3] (equation below).

J(A,B) = |A∩B|
|A∪B| .

In our case, the sets A and B represent the words in two
text fragments. The Jaccard measure is then defined as the
coefficient between the number of elements in the intersection
of the two sets and the number of elements in the union of
the sets. If both sets are equal (i.e., they contain the same
words), the value is 1, in the case of no common words
the coefficient is 0. In our implementation using bitmaps, the
operation consists of an and and an or operation between
two bitmaps and an integer division.

When the chunks of text are small (i.e., sentence or para-
graph size), the amount of 1-bits is quite small and the bitmap
can be compressed very effectively using Run Lengh Encoding
(RLE) [9]. The required operation, namely, the computation of
the Jaccard similarity coefficient can also be performed on the
compressed bitmaps, even with higher speed. One important
question is how many words the vocabularity should contain?
Our experiments with the DBKDA conference proceedings
suggest, that probably 10,000 words should be enough. But on
the other hand, the whole English vocabulary contains about
500,000 words and the technological terminology can be even
much bigger. So in a next experiment, we compare the memory
consumption between uncompressed and compressed bitmaps
and vector representations. In this experiment, we use different
vocabularity sizes starting from 10,000 words up to 5,000,000
words as well as different sizes of text fragments, ranging from
15 words (a typical sentence) to 200 words (a paragraph) up to
5000 words (average paper size). The size of the vector (sparse
vector implementation) was calculated by the number of used
dimensions in the vector, multiplied by the size of two integers
(2 ∗ 16 bit). Figure 2 shows the results of this experiment.
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Figure 2. Memory consumption for different representation forms

The most relevant findings of this experiment are:

• The memory consumption for the uncompressed
bitmap grows linearly with the size of the vocabulary.

• The memory consumption for the compressed bitmaps
and the sparse vector are independent of the vocabu-
lary.

• The size of the compressed bitmaps and the vector
depends on the length of the text fragment.

• For the sentence case (15 words), vector and com-
pressed bitmap have nearly the same memory con-
sumption (vector 6% less). For the 200-word para-
graph, the bitmap only needs 53% of the memory
of the vector representation. For the full paper (5000
words) case, the compressed bitmap memory con-
sumption is only about 6% of the vector represen-
tation.

C. Influence of Word Ordering in Bitmap

The position of the words in the bitmap has an influence
on the size of the compressed bitmaps. Figure 3 shows two
different ordering schemes. In the first (sentence with about
15 words) and third bitmaps (paragraph with 100 words), the
words are ordered alphabetically, which results in a nearly
equal distribution (the vertical lines represent 1-bits). In the
second and fourth bitmaps, by contrast, the order is based on
the Zipf distribution shown in Figure 1. Words with a very
high frequency appear at the beginning of the bitmap and the
words with low frequency appear at the end of the bitmap.

The ordering based on the Zipf distribution has two advan-
tages:

1) The gaps between two 1-bits are very small at the
beginning of the bitmap, but grow towards the right.
Based on the characteristics of the Word Aligned
Hybrid (WAH) algorithm, which needs at least a gap
size of a multiple of 31 (or 63), this leads to a number
of fill words at the beginning of the bitmap, followed
by 0-fills with growing capacity, interrupted by single
literals. This results in a better compression ratio as
when the set bits are more evenly distributed over
the whole bitmap. Figure 4 compares the memory
consumption for the different sorting orders. On the
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sentence (15 words) and paragraph (200 words) level,
the amount of memory for the Zipf-based sorting is
about 75% compared to alphabetic ordering. The gain
of memory for the 5000 words case is smaller (about
2%).

2) As discussed before, words with high frequency are
not very usable to identify documents. As these words
are now grouped together at the beginning of the
bitmap, they can simply be ignored by skipping the
first n bits.
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D. Comparison of Execution Time for Measuring Similarity

In a last experiment, we compare the time for the com-
putation of the similarity measure using different measure
functions and text representations. Figure 5 shows the differ-
ence in execution time between the cosine measure based on
the vector representation and the Jaccard measure based on
compressed and uncompressed bitmaps. The main findings of
this experiment are:

• The computation of the similarity measure using com-
pressed bitmaps and the Jaccard coefficient is much
more independent of the chunk size (sentence, para-
graph, whole paper) compared to the cosine similarity
measure. The time difference using the bitmaps is in
a range of a factor of 2 compared to three orders

of magnitude for using the vectors with the cosine
similarity measure.

• The performance of the cosine similarity is slightly
better (max. factor of 2) for the sentence case. In the
case of considering a whole paragraph or paper, the
bitmaps solution is at least superior by a factor of 4,
growing up to a factor of 50.
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Figure 5. Comparison of execution time for similarity measure based on
compressed bitmaps (Jaccard) and vector (cosine measure)

Based on the findings of the last two experiments, the
usage of bitmaps seems an appropriate choice for the source
retrieval step, to find the “candidate set”. In contrast to the
much more expensive cosine measure which typically only
allows to use one vector per document, it is possible to sub-
divide a document into a number of smaller parts which can
be examined separately and, hence, to minimize the chance to
overlook smaller parts, which have been plagiarized.

But also for the text alignment step, compressed bitmaps
seem to be suitable. The reason for this is, that compared to
the search for n-grams which require that the order of the
words is the same in the suspicious document as well as in the
candidate documents, the order of the word is irrelevant. This
makes this approach insensitive to obfuscation approaches like
paraphrasing single sentences. Additionally, the obfuscation
approach by replacing single words by synonyms or hyper-
nyms can be handled easily. In this case, not only the bit for
a concrete word has to be set, but also for possible synonyms
and hypernyms. These words can be provided automatically
using Wordnet [10].

V. ALGORITHM

The algorithm for the identification of the candidate set
is as follows: In a preprocessing step, all documents which
form the comparison document set are fragmented into a
small number of chunks. For each of these text-fragments the
bitmap representation is built. Additionally, the amount of 1-
bits (the number of words) is stored. To handle obfuscations,
taxonomies from Wordnet are used and for every word where
Wordnet offers a synonym or one or more hypernyms, the bits
for these words are also set (the number of words determined
previously is not incremented). After this enrichment step, the
bitmaps are compressed using the WAH algorithm [11]). Paral-
lel to the fragmentation of the document into a small number
of text fragments for the candidate search, a sentence-wise
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fragmentation and transformation into compressed bitmaps is
performed for the later text alignment step. In the same way,
but without the enrichment of the Wordnet taxonomies, the
suspicious document is preprocessed.

In the next step, every compressed bitmap of the suspicious
document is compared with every bitmap of the document
base using the Jaccard measure coefficient. As we are only
interested in finding the candidate set, the most leftmost bits
(which represent the most irrelevant words) can be ignored. If
the Jaccard measure is above a threshold value, the fragment
the bitmap belongs to is included into the candidate set.

In the text alignment step, the bitmaps representing the
sentences are considered. Every compressed bitmap represent-
ing a sentence in the suspicious document is compared using
the Jaccard measure with all sentences from the fragments
identified in the first step. As a result, we get a matrix, where
each row represents a sentence in the suspicous document
and each column represents a sentence from the qualified
fragments. Every cell in the matrix has a value between zero
and one, representing the similarity between two sentences.
This matrix can easily be represented graphically using a
heatmap, as it is shown in Figure 6. Using a color gradient
for the values in the interval [0, 1] from white to red, we can
easily identify fragments with similar or alike content. The
lines originate from a number of consecutive sentences with
high similarity and, therefore, are probably plagiarisms. The
representation of plagiarized fragments as lines is also shown
in [12].

VI. CONCLUSION

We presented a new approach to plagiarism detection using
compressed bitmaps. As we have shown, the bitmap approach
can be used for the candidate retrieval as well as for the text
alignment process. At the beginning of the paper, we show that
from the memory consumption aspect and the performance
aspect, a compressed bitmap with the Jaccard measure is
superior to the vector representation using cosine similarity
measure. To cover both steps, we build compressed bitmaps
based on different aggregation levels. An additional enrich-
ment step using semantic taxonomies from Wordnet allows
us to also cover obfuscation techniques like renaming words.
Obfuscation by paraphrasing is also covered by our approach,
based on the set characteristic (no order of words). The final

visual representation using heatmaps shows plagiarized text
fragments as lines.

As a next step, we have to finely tune our process, find
appropriate threshold values, and compare our results with
others (see PAN competition mentioned in Section II). Another
interesting aspect for our future research is the parallelization
of the whole process using a framework like Hadoop [13].
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