
Efficient Aggregate Cache Revalidation in an In-Memory Column Store

Stephan Müller, Lars Butzmann, Hasso Plattner
Hasso Plattner Institute

University of Potsdam, Germany
Email: {stephan.mueller, lars.butzmann, hasso.plattner}@hpi.uni-potsdam.de

Abstract—Modern enterprise applications do not separate be-
tween online transactional processing and online analytical pro-
cessing anymore. To ensure fast response times for expen-
sive analytical queries, we implemented an aggregate cache in
an columnar in-memory database. The separation into read-
optimized main and write-optimized delta storage is exploited
to cache only the aggregates based on the main storage and
aggregate all records in the delta storage on-the-fly. This works
with insert-only workloads, but not with deletes and updates that
invalidate records in the main storage and consequently invalidate
a cached aggregate. In this paper, we introduce an approach to
revalidate a cached aggregate using efficient bit vector operations.
A revalidation is superior to an invalidation since the old cached
aggregate is reused. A further contribution is an evaluation of
the influence factors that determine whether to invalidate or
revalidate a cached aggregate. Our implementation shows that an
aggregate cache revalidation outperforms an invalidation when
less than 50% of the relevant records are invalidated.

Keywords-Aggregation, Materialized View Maintenance, In-
Memory Data Base, Bit Vector

I. INTRODUCTION

Several decades ago, database vendors decided to separate
online transactional processing (OLTP) and online analytical
processing (OLAP) systems due to performance issues. They
created systems that were only optimized for a specific work-
load, either OLTP or OLAP. With improving hardware, e.g.,
multi-core CPUs and terabytes of main memory, database man-
agement systems (DBMS) are changing [1]. Further, today’s
enterprise applications have mixed workloads running both,
transactional and analytical, workloads [2]. An example is
the available-to-promise check (ATP). Stock movements in
a warehouse represent transactional queries whereas the ATP
check itself is an analytical query aggregating over the product
movements to determine the earliest possible delivery date
for a customer [3]. Other applications that require a DBMS
to handle mixed workloads are the dunning process where
the application determines which customers have outstanding
payments and accounting applications that calculate the profit
and loss statement based on the aggregated records.

One technique to speed up the execution of expensive
analytical queries is the use of materialized views [4]. A view
defines a function from a set of base tables to a derived
table and is recomputed every time the view is referenced. A
materialized view stores the result of a view in the database and
therefore does not require a recomputation. All materialized
views that contain an aggregation [5] in its definition are called

aggregates in this paper. Such pre-calculated results provide
fast access to the data and reduce the overall load on the
system. However, the benefit of speed comes with one tradeoff
called materialized view maintenance.

Each time the underlying base tables are modified, a
materialized view gets stale meaning the returned result is
not up-to-date. The process of updating the materialized view
in case of changes to the underlying base tables is called
materialized view maintenance. This process was discussed
in academia [6]–[8] and industry [9], [10]. However, the
research is focused on data warehousing [8], [11], [12] and not
on modern database architectures running mixed workloads.
Compared to data warehouses, where maintenance downtimes
may be feasible, transactional applications in mixed workload
environments require high availability and throughput at any
time.

In this paper, we introduce a mechanism to cache and
revalidate analytical queries in the context of columnar in-
memory databases (IMDBs). Columnar IMDBs got increased
attention in the recent years since they are able to handle mixed
workloads in a single system [1], [13]–[15]. Our work is based
on [16] that introduced an aggregate cache for a columnar
IMDB. The aggregate cache is a non-persistent caching engine
inside the database. Like a materialized view, the aggregate
cache consists of query results that are stored to speed up the
access times. It leverages the main-delta architecture which
separates a table into a read-optimized main storage and a
write-optimized delta storage (cf. Figure 1). The idea of the
aggregate cache is to cache only the main storage and unite
the cached aggregate with the newly added records in the delta
storage. This process is more efficient in many cases compared
to calculating the complete result again. From the aggregate
cache perspective, delete and update operations are equal and
therefore called invalidations throughout this paper.

The aggregate cache guarantees that all results are up-
to-date and it will never return a stale result. The aggregate
cache consists of cache entries, each representing one unique
aggregate query. A cache entry is created upon request and can
be deleted upon request. Further, the cache entries are deleted
in case the database shuts down or lacks main memory. For
the future, we plan to include a mechanism into the cache that
decides which queries are worth to cache and which are not.

For our evaluation, we have chosen a scenario of an ATP
application. In our implementation, the application relies on a
single, denormalized database table called Facts that contains
all stock movements in a warehouse. Every movement consists

66Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

of an unique transaction identifier, the id of the product being
moved, the date and the amount. The amount is positive if
goods are put in the warehouse and negative if goods are
removed from the warehouse. The aggregate that is based on
the table Facts groups the stock movements by product and
date and sums up the total amount per date and product. A
detailed description of the ATP application can be found in
our earlier work in [3]. We manually define the queries that
will be cached and do not address the view selection problem
[17] in the scope of this paper. We focus on the SUM and
COUNT aggregation function as this is the dominant aggregate
function in our introduced application. The aggregate cache
also supports the standard SQL aggregate functions AVG,
MIN, and MAX.

The paper is structured as follows: Section II gives a brief
overview of related work in the area of materialized view
maintenance. Section III explains the aggregate cache in detail
including the algorithm and architecture. Section IV introduces
the revalidation mechanism using the transaction manager
and the incremental maintenance of a cached aggregate. In
Section V, we analyze the cost factors of a revalidation.
Section VI shows our experimental evaluation and Section VII
concludes the paper with our main findings.

II. RELATED WORK

Materialized view maintenance has been analyzed in
academia [6]–[8] and industry [9], [10]. Blakely et al. were
one of the first to propose a concept of incremental view
maintenance [6] and Zhou et al. introduced a lazy view main-
tenance approach using delta tables [10]. These approaches
are the foundation of our work. However, all work was done
using traditional relational databases or even data warehouses
with fewer restrictions [8], [11], [12]. In the context of this
paper, we focus on enterprise applications consisting of OLTP
and OLAP queries that require high availability and high
throughput. The aggregate cache leverages the main-delta
architecture that has not been evaluated before. To the best
of our knowledge, an efficient maintenance strategy that is
able to handle mixed workloads by leveraging available data
structures of a columnar IMDB does not exists so far.

III. AGGREGATE CACHE

The aggregate cache leverages the concept of the main-
delta architecture as introduced in [16]. Separating a table
into a main and delta storage has one main benefit. The
separation allows to have a read-optimized main storage for
faster scans and a write-optimized delta storage for high insert
throughput. All inserts are inserted into the delta storage
and are periodically propagated into the main storage in an
operation called merge [18]. The fact that the main storage
is only growing with a merge operation is leveraged by the
aggregate cache so that only the results of the main storage
are cached. All records from the delta storage are aggregated
on-the-fly and united with the corresponding cached aggregate.

A. Architecture

The aggregate cache is located inside the column store en-
gine of SanssouciDB (cf. Figure 1). There is a single aggregate
cache manager instance that manages all cache entries. A cache

SanssouciDB

Storage

Query Processor

Delta

Aggregate Cache Manager
SQL

Main

Transaction Manager

Cache Metrics
K 1 M 1
K 2 M 2

K n M n

Cache Entries
K 1

● ● ●

A 1
K 4 A 4

K n A n

Bit Vectors
B
V
1

B
V
2

B
V
n

● ● ●

● ● ●

Figure 1. The internal architecture of SanssouciDB [2] with the main and
delta storage, the aggregate cache manager and the transaction manager.

AggregateCacheKey,

Product,

1,

2,

3,

4,

Groups,

CacheEntry+

DirtyCounter+
Bitvector+

SUM(AMOUNT),
,

20,

40,

10,

50,

,

Aggregates,

COUNT(*),
,

20,

40,

10,

50,

,

Month,

January,

January,

February,

March,

ATP:FACTS_219_PRODUCT0_MONTH0_"YEAR",=,2013,

Figure 2. The structure of a cache entry for the ATP scenario.

entry consists of a key and a value. The key is composed of
the table name, the group by columns, the where condition and
the aggregates. The value is a complex structure consisting
of the group by values and the corresponding aggregates.
Additionally, relevant meta information about a cache entry,
e.g. its creation time and its size, are stored in a structure called
cache metrics. A detailed illustration is shown in Figure 2.

B. Insert-only Scenario

Insert-only scenarios, where the application does not
change any previously inserted data, are beneficial for the
aggregate cache because of a non-changing main storage.
There, deletes and updates are replaced by logical updates
using differential values. This restriction can be a result of
legal requirements or the business logic behind an applica-
tion. An insert-only scenario never invalidates the cache and
therefore uses its full potential. With each merge operation,
the cache entries can either be incrementally maintained using
the records from the delta storage or invalidated in case they
are not used anymore. The decision whether to maintain or
invalidate a cache entry can be made based on a combination
of known cache replacement algorithms, e.g. LRU or LRFU,
and the benefit and resource requirements of a cache entry.

C. Cache Invalidation

Only a subset of applications have insert-only workloads.
Most enterprise applications need to make changes to their

67Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

TABLE I. CONSOLIDATED BIT VECTORS OF TWO TRANSACTIONS
RUNNING WITH TRANSACTION LEVEL SNAPSHOT ISOLATION. T1 HAS

DELETED THE RECORD WITH ID 2.

Facts Bit Vector
Id Product Date Amount T1 T2

1 Tire 3/1/2013 10 1 1
2 Tire 3/7/2013 20 0 1
3 Brakes 3/3/2013 5 1 1
4 Tires 3/12/2013 30 1 1

data which affect the cache entries. According to an analysis of
Krueger et al. [18], their analyzed customer workload consisted
of 8% delete and update queries. In contrast, the TPC-C
benchmark [19] consists of 35% delete and update queries.
Even a minor change in the main storage where only a single
record is updated or deleted invalidates the cache entries that
are based on that record. An invalidation equals a complete
recalculation of the result which is the least efficient way to
handle such behavior. In this paper, we present a solution that
is able to reuse the stale cache entries by extracting information
from the transaction manager.

1) Transaction Manager: Transactions are a main function-
ality of a RDBMS. The transaction manager is responsible that
the database has a consistent state after each transaction and
ensures the ACID properties. One mechanism to implement
concurrent transaction handling is multi version concurrency
control (MVCC) [20]. Using MVCC, multiple transactions
can run simultaneously and each have their own visibility on
the database. In SanssouciDB (cf. Figure 1), the transaction
manager creates a bit vector representing the visibility of a
table for an incoming query based on its transaction token.

2) Visibility Bit Vector: Each table has four bit vectors,
two for the main storage and two for the delta storage. For
the aggregate cache, only the main storage bit vectors are
relevant since a cache entry is only based on them. One bit
vector contains the information about visible records (create
bit vector) and the other bit vector the information about
invalidated records (delete bit vector). The combination of
both (using an exclusive OR) creates a bit vector which is
called consolidated bit vector. It contains the actual visibility
for a specific transaction. An example for two consolidated
bit vectors is shown in Table I. Two transactions are running
concurrently and query the table Facts with four records. In
the beginning, all four records are visible to both transactions
(consolidated bit vector 1111). Transaction T1 deletes the
record with Id 2. Consequently, the bit at index 2 changes
from visible to not visible for all further operations inside T1
(invalidated bit vector 0100 and consolidated bit vector 1011).
Transaction T2 started at the same time as T1. Depending
on the isolation level, T2 can read the record with Id 2
(consolidated bit vector 1111 with transaction level snapshot
isolation) or cannot read it after the delete (consolidated bit
vector 1011 with statement level snapshot isolation).

IV. CACHE REVALIDATION

To prevent an invalidation of cached aggregates in case
of invalidations in the main storage, the aggregate cache has
to provide the functionality to calculate the modifications
between the cache entry creation and its usage. Since the
previously introduced transaction manager is responsible for

the visibility of records in a table, the aggregate cache can
leverage that information to extract the invalidations.

A. Bit Vector Comparison

With each cache entry creation, a consolidated bit vector
is stored as a snapshot of the database (cf. Figure 2). To
further optimize the usage of a bit vector, only the bits after
applying the WHERE clause of a query are used. We call
theses bits relevant bits. Additionally, a version counter called
dirty counter is stored. The dirty counter is an integer value
from the transaction manager that is incremented with each
invalidation.

In Figure 3, the enhanced aggregate cache algorithm is
displayed in detail. Compared to first version (without the
grey colored boxes), the steps until the AggCache Lookup
step are the same. In the next step, in case a cache entry
was found, the dirty counter of the cache entry is compared
with the current dirty counter of the table to determine if
there has been an invalidation or not. In case the dirty counter
has changed, the consolidated bit vector of the cache entry is
compared to the current delete bit vector (retrieved from the
transaction manager) using a bitwise AND to determine the
relevant invalidations. The result is a bit vector containing all
changes since the cache entry creation. If that bit vector has no
bits set, e.g., the invalidated records did not affect the cache
entry due to the filters in the WHERE clause, the cache entry is
still up-to-date and nothing has to be done. If at least one bit is
set, the aggregate query has to be executed on the main storage
using only the bit vector containing the relevant invalidations.
The output is a query result containing all the information that
has to be subtracted from the cached aggregate to provide an
up-to-date result. In IV-C, we explain how this information can
be used for the incremental maintenance of cached aggregates
and maintenance timings.

B. Bit Vector Compression

Storing a bit vector for each cache entry requires additional
memory. To reduce the required amount, the aggregate cache
can use different compression techniques. The characteristic of
a bit vector is beneficial for compression due to its limitation
of only two distinct values (0 and 1). If the characteristic of
the application that is using the table is known, the aggregate
cache can leverage that knowledge to choose the optimal com-
pression techniques. Based on Abadi et al. [21], we propose
three compression techniques that are most suitable for bit
vectors. All techniques require to provide direct comparisons
of two bit vectors without additional decompression overhead.

1) Prefix/Suffix Encoding: Prefix or suffix encoding is a
simple compression technique where the first or last sequence
of the same value is replaced by two single values, the value
itself and its number of occurrences. For bit vectors, this
technique is useful if the deleted values are at the beginning or
end of the bit vector. Depending on the location of the deleted
values, prefix or suffix encoding is applied.

2) Run-length Encoding: Like prefix encoding, run-length
encoding replaces a sequence of the same value by two
single values, the values itself and its number of occurrences.
Unlike prefix encoding, this can be done for any sequence
in the bit vector. This possibility makes run-length encoding

68Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

[AggCache == ON][AggCache == OFF]

Run Query w/o
Aggregate Cache

Create
AggregationCacheKey

AggCache Lookup

[found == true][found == false]
Create Cache

Entry

Fill Cache Entry

Use Cache Entry

Aggregate Delta
Storage on-the-fly

Combine
Results

Check Preconditions

[fullfilled == false]

[fullfilled == true]

Check Dirty Counter

[changed == false]

[changed == true]
Get Delete
Bit Vector

Transaction
Manager

Compare the
Bit Vectors

Query Main Storage
using the Result

Get Delete
Bit Vector

Incrementally Maintain
Cache Entry,

Update Bit Vector

[maintain == true]

[maintain == false]

[result == 0]

[result != 0]

Figure 3. Activity diagram that visualizes the algorithm of the aggregate
cache with the revalidation. The enhancements are colored in grey.

superior compared to prefix encoding. However, in case the
number of deleted values is high and the bit vector shows
the characteristic of an alternating pattern, the benefit of this
technique decreases.

3) Cluster Encoding: Cluster encoding divides a bit vector
into clusters of fixed size. Clusters that only contain equal
values (only 0 or only 1) can be compressed and replaced by
a single value. Clusters with mixed values (containing 0 and
1) are not replaced. The result is a new smaller vector. To
remember which clusters have been compressed, an additional
bit vector is created. Since the size of the cluster is not fix,
it can be chosen based on the table size and the application
characteristic.

The resulting compression ratio of each technique depends
on the characteristic of the bit vector. A bit vector is influenced
by the filter conditions in the WHERE clause that determines
the ratio of relevant bits compared to the table size. Second, the
application characteristic, e.g., are there bulk deletes or single
deletes randomly distributed over the table. The automatic
determination of the optimal compression technique based on
the bit distribution is part of our future work.

C. Incremental Maintenance Timing

The maintenance of a cache is always a challenge. One
crucial requirement for cache maintenance is to know what has
changed. Using the introduced mechanism from Section IV-A,
the aggregate cache is able to determine the modification that
occurred between the cache entry creation and the current point

in time. Having that information enables the aggregate cache
to incrementally maintain a cache entry. In the following, we
introduce four different maintenance timings.

1) Immediate Maintenance: Immediate maintenance, also
known as eager maintenance, maintains all cache entries with
each invalidation in the main storage. A maintenance is done
even if the cache entry is not accessed in the meantime. The
benefit is that the cache entries are always up-to-date and
do not require any additional calculation when the cache is
accessed. The disadvantage is a significant overhead for work-
loads with higher insert ratios since more time for maintenance
is required than a cache access can save. Additionally, the
maintenance has to be done for all cache entries that are
based on the modified table which increases the amount of
maintenance with an increasing number of cache entries. If n
cache entries are based on a table and one record is invalidated,
n cache entries have to be maintained. In our previous work,
we have evaluated this timing in the context of materialized
views and showed that it is inferior to other maintenance
timings [22].

2) Deferred Maintenance: Deferred maintenance, also
known as lazy maintenance, maintains a cache entry with each
cache access. As a result, a cache entry is up-to-date after
each cache access. With this maintenance timing, the cost of a
maintenance is with the actual cache access, and not with the
delete or update. In their work, Zhou et al. [10] introduced lazy
maintenance in the context of materialized views for Microsoft
SQL Server, with the same motivation of shifting the costs
towards the the view access. They also proposed to perform
the maintenance in periods of lower loads to reduce the actual
overhead during the view access.

3) Periodical Maintenance: Periodical maintenance is a
lazy form of deferred maintenance. The maintenance can be
based on different criteria. One criteria is a certain number
of cache accesses. In that case, a cache entry is maintained
every N cache accesses. N can be chosen depending on the
workload characteristic. A second criteria is a certain threshold
of the invalidation ratio. If that ratio is reached, a maintenance
is performed. With a periodical maintenance, the cache entry
is not up-to-date at all times, as shown in the scenario where
an execution on the main storage is required with each cache
access.

4) Merge Operation Maintenance: This strategy does not
maintain the cache entry between two merge operations. After
a cache entry creation, it always revalidates the cache entry
using the additional execution on the main storage to return
the correct query result. Due to the missing maintenance,
this strategy should only be used for cache entries where the
base data never gets invalidated. In that case, the additional
main storage run is not required. A second use case for this
strategy can be a less strict freshness of the cache entry. If an
application only requires a rough estimation that can be based
on ’older’ data, this approach is sufficient. So far, we have not
implemented a functionality to return old cache entries.

D. Merge Operation

The aggregate cache relies on the main-delta architecture.
With the periodical merge operation, the delta storage is
merged into the main storage and all deleted values in the main

69Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

storage are removed. The aggregate cache has to react to that
change. There are three possibilities how the aggregate cache
can react. Each cache entry can have its own strategy based on
the decision of the aggregate cache. First, a cache entry can be
invalidated and is removed from the aggregate cache. Second,
a cache entry can be incrementally maintained. In that case,
the delta storage has to be added to the cache entry and the
invalidated records from the main storage have to be subtracted
from the cache entry. Third, the old value of the cache entry is
ignored and the aggregate query recalculates the cache entry
after the merge operation has completed.

E. Aggregate Functions

Aggregate functions can be divided into two categories,
functions that are self-maintainable and functions that are not
self-maintainable [23]. Looking at the standard aggregation
function, SUM, COUNT, AVG (using SUM and COUNT) are
self-maintainable with regards to inserts, deletes and updates.
MIN and MAX are only self-maintainable with regards to
inserts, but not with regards to deletes and updates because
the information about the second highest/lowest value is not
available. However, to overcome this issue, the database can
store the n highest/lowest values, also known as MaxN/MinN.
Using a data structure to store additional values enables an
incremental maintenance until the data structure is empty and
has to be refilled.

F. Joins

Joins are a concept that combines records of multiple
tables into one result. The combination is based on a common
field, the join condition, among the tables. Even though the
aggregate cache implementation does not support joins yet,
we suggest a concept how the handling of joins can be done.
Equally to the algorithm for a single table, a cache entry of a
join query consists only of the result on the main storages. To
return the complete result, three joins are required which are
combined with the cache entry. First, both delta storages of the
two tables have to be joined. Second, the delta storage of table
A has to be joined with the main storage of table B. Third,
the delta storage of table B has to be joined with the main
storage of table A. The join between the two main storages is
the most expensive join because most records are in the main
storage (a ratio of >100:1 [24]). The three other joins involve
the smaller delta storages and therefore are cheaper.

Teorey et al. [25] introduced three types of relationships
for relational databases: one-to-one, one-to-many, and many-
to-many. The most frequently used type is the one-to-many
relationship which is used to normalized database tables. For
invalidations, the location of the invalidations is important. In
case the invalidations only happen in one table, a single join
is required to perform a maintenance. In case the invalidations
happen in both tables (in a two table scenario) three joins are
required. The third join makes sure that no values are removed
twice, e.g., if records with the same join key from both tables
are invalidated. In summary, a maintenance can vary between
one join and three joins depending on the location of the
invalidation. However, further knowledge about the application
can reduce the complexity. An further implementation and
evaluation has to verify this assumption and are part of the
future work.

V. COST ANALYSIS INVALIDATION VS. REVALIDATION

In most cases, a cache revalidation is beneficial compared
to a complete recalculation because less data has to be ac-
cessed. However, a revalidation is not always the best solution,
especially after large bulk deletes. Comparing the revalidation
process with the recalculation process shows that the only
difference is the input bit vector used for the aggregate query.
The aggregate query itself, the query processing steps and the
used data structures are the same. As a result, the only cost
factor is the number of accessed records in the main storage.
For a revalidation, it is the number of relevant invalidations
in the main storage. For a recalculation, it is the number of
relevant visible records in the main storage. For a decision in
favor of an invalidation or revalidation, the aggregate cache
has to determine the InvalidationRatio respectively Benefit.
The InvalidationRatio describes the relation of relevant invali-
dated records to relevant visible records at cache creation (cf.
Equation 1). If less than half of the records are invalidated,
it is beneficial to revalidate the cache entry. If more than
half of the records are invalidated, an invalidation performs
better (cf. Equation 3). The parameter α represents a factor
which is required to combine the changes with the groups
the cached result. Combining the two lists of results has
a linear complexity. The factor will be further analyzed in
Section VI-A.

InvalidationRatio =
numSetBits(Bvvisible ∧Bvdelete)

numSetBits(Bvvisible)
(1)

Benefit =
1

2
− InvalidationRatio− α (2)

Strategy(Benefit) =

{
Revalidation Benefit ≥ 0

Recalculation Benefit < 0
(3)

The function numSetBits returns the number of set bits
for a given bit vector. Bvvisible is the bit vector for relevant
visible records at cache creation time, e.g. 00111011. Bvdelete
is the current delete bit vector, e.g. 11100101. The bitwise
AND would be 00100001 with 2 bits set. The resulting
InvalidationRatio is 0.4 and consequently a revalidation is
more beneficial.

VI. EXPERIMENTAL EVALUATION

We implemented the aggregate cache in SanssouciDB but
believe that the implementation in other columnar IMDBs
with a main-delta architecture such as SAP HANA [26] will
lead to similar results. Figure 1 illustrates the architecture
of our implementation. The data and workloads we used are
based on customer data and are parametrized to simulate
different scenarios and patterns. The basic schema from our
ATP scenario is shown in Table I with four columns.

All experiments and benchmarks have been conducted on
a server featuring 8 CPUs (Intel Xeon E5450) with 3GHz and
12MB cache each. The entire machine was comprised of 64GB
of main memory. Every benchmark in this section is run at
least three times and the displayed results are the median of
all runs.

70Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 1

 10

 100

 1000

0 Invalidations 10 Invalidations 100 Invalidations 1,000 Invalidations

W
or

kl
oa

d
Ex

ec
ut

io
n

Ti
m

e
in

 s

Number of Invalidations

1,000 Aggregate Queries - 10M Main, 0M Delta
No Cache Recalculation Revalidation

Figure 4. A revalidation outperforms an invalidation. The benefit of a
revalidation increases which an increasing number of deletes.

A. Invalidation vs. Revalidation

To show the benefit of a revalidation, we use four work-
loads with different invalidation behavior. A single OLAP
query is executed 1,000 times. The different workloads vary in
their number of invalidations. To have comparable execution
times, the time for the delete operations will not be included
into the measurement. The deferred maintenance timing is the
default for all benchmarks. As seen in Figure 4, we compare
the recalculation and revalidation strategy with the non-caching
strategy to make the results more plausible. The non-caching
strategy has equal query execution times since no caching is
done and the OLAP query has to run 1,000 times. For the other
two strategies, the query execution times vary depending on the
invalidation behavior. With an increasing number of deletes,
the difference between a revalidation and an recalculation
increases, in favor for a revalidation. If a delete operation is
always between two cache accesses (1,000 invalidations), a
recalculation looses all its benefits compared to a non-caching
strategy.

B. Run-Time Analysis

The runtime of accessing a cached aggregate can be divided
into four steps: a) Bit vector comparison b) Main storage
access and aggregate calculation c) Maintenance d) Cache
entry retrieval All four steps are required for the revalidation
strategy using a deferred maintenance timing. Steps 2 and
4 are used for the cache entry creation as well as cache
entry recalculation (both are identical operations). The goal of
this experiment is to measure the detailed costs for a cache
entry creation respectively recalculation, and a cache entry
revalidation. We also measure the costs for a cache access
without a revalidation. A revalidation is measured using two
scenarios with invalidation ratios of 1% and 10%.

Figure 5 shows the absolute results of the experiment with
a logarithmic y-axis. The time to retrieve the cache entry
is nearly the same for all. The maintenance costs for the
revalidation strategy is also equal and not influenced by the
invalidation ratio. Surprisingly, the comparison of bit vectors is
so fast that the logarithmic y-axis cannot display it (the actual
value 1ns). The main cost factor is the main storage access. For

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

Cache Creation

Cache Access (no invalidation)

Cache Revalidation 1% invalidated

Cache Revalidation 10% invalidated

To
ta

l E
xe

cu
tio

n
Ti

m
e

in
 s

1 Aggregate Query - 10M Main, 0M Delta

Cache Retrival
Maintenance

Main Storage Access
Bit Vector Comparison

Figure 5. A benchmark that visualizes the run-time analysis of the different
cache operations.

the revalidation, the time for accessing the main storage is the
only time which increases with an increasing invalidation ratio.
Comparing all four operations, the cache creation respectively
recalculation is by far the most expensive operation.

C. Invalidation Ratio

Figure 5 indicated that the performance of the revalidation
depends on the number of invalidated records. This experiment
measures the execution time of a revalidation for invalidations
ratios ranging from 0% to 70%. The results are compared to a
recalculation. Based on the introduced InvalidationRatio from
Section V, we assume that both approaches are break-even
(have the same performance) when the invalidation ratio is
approximately 0.5. Further, we measure the influence of the
result size using aggregate queries with 100 and 10k groups.

The experiment in Figure 6 confirms that the performance
increases linearly with an increasing number of invalidations.
The results also confirm the Benefit we have introduced with
Equation 3. For small group size of 100, the ratio is approxi-
mately 0.5. At a ratio of 0.5 respectively 50%, a revalidation
has the same performance as a recalculation. This point is
also known as the break-even point. For the query with the
larger group of 10k, the break-even point has shifted towards a
smaller ratio. The performance of the revalidation is influenced
by the size of groups since the revalidation has to match the
groups of a cache entry to the groups of a revalidation. This
process has linear complexity because each item of the group
is accessed once (using a hash-based approach).

D. Non-Relevant Invalidations

As explained in Section IV-A, the consolidated bit vector
includes the information about relevant visible records. Fig-
ure 7 shows the benefit of that information in case non-relevant
records are invalidated. Having this optimized bit vector, the
aggregate cache is able to skip the main storage access in case
the bit vector comparison produces a result containing only 0
(Figure 3). In contrast, the standard bit vector is not aware of
that information and has to access the main storage until the
query processor finds out that the result is empty. However,

71Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

0 1 5 10 15 20 25 30 35 40 45 50 55 60 65 70

Si
ng

le
 Q

ue
ry

 E
xe

cu
tio

n
Ti

m
e

in
 s

Percentage of Invalidated Records in Main Storage

1 Aggregate Query - 10M Main, 0k Delta

No Cache 100 Groups
Aggregate Cache 100 Groups

No Cache 10k Groups
Aggregate Cache 10k Groups

Figure 6. An experiment analyzing the influence of the number of invalidated
records and the number of aggregate groupings on a revalidation.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

0 10 20 30 40 50 60

Q
ue

ry
 E

xe
cu

tio
n

Ti
m

e
in

 s

Percentage of Invalidated Records in Main Storage

1 Aggregate Query - 10M Main, 0M Delta

Cache Entry-based
Transaction Manager-based

Figure 7. An experiment using on-relevant delete operations.

the experiment shows that despite an increasing number of
invalidations on the main storage, the query execution time
using the standard bit vector is constant.

E. Maintenance Timing

In this paper, four maintenance timings for the aggregate
cache are proposed (Section IV-C). Each timing has different
maintenance costs that are influenced by three cost factors. In
the following experiment, we focus on one cost factor. Based
on the analysis of workloads we had access to, the ratio of
invalidations to aggregate queries is the driving factor for the
maintenance costs.

The experiment (cf. Figure 8) has five different aggregate
queries which are executed 200 times each. The invalidations
are distributed uniformly and always invalidate records that are
part of the cache entries. The periodic timing has an n of 20
that revalidates a cache entry every 50 accesses.

As expected, all four timings have the same execution
time in case no invalidations happen. For 10 invalidations,
which occur every 100 aggregate queries, all timings create
maintenance costs. The merge timing always has to access the
main storage after the first invalidation, but does not maintain
the cache entry. As a result, the costs are high, even though the

 1

 10

 100

 1000

 10000

0 Invalidations 10 Invalidations 100 Invalidations 1,000 Invalidations

W
or

kl
oa

d
Ex

ec
ut

io
n

Ti
m

e
in

 s

Number of Invalidations

1,000 Aggregate Queries - 10M Main, 0M Delta

Immediate
Deferred
Periodic

Merge

Figure 8. A comparison of the four proposed maintenance timings.

number of invalidations is low. The eager timing has to main-
tain five cache entries with every invalidation. This results in
50 revalidations. The deferred and periodic timing have lowest
maintenance costs since they both require 10 revalidations. For
the periodic timing, it is the best case since the revalidation of a
cache entry is actually done right after the invalidation. With
100 invalidations (every 10 aggregate queries), the costs of
the merge timing increase further. The costs for the eager and
deferred time increase linearly. The periodic timing has a more
than linear increase because the timing of the maintenance
is not optimal. With 1,000 invalidations (one every aggregate
query), the costs for the deferred, periodic and merge timing
are the same. The eager timing has five times the maintenance
costs of the other timings caused by the five cache entries.
With only a single entry, the costs would be equally to the
others.

In conclusion, the deferred maintenance timing is superior
over the other timings. The costs of maintenance using an eager
timing increase with an increasing number of cache entries. A
periodic or merge timing might be applicable for workloads
with a high number of invalidations, but the performance does
never beat the deferred timing.

F. Mixed Workload Benchmark

The CH-benCHmark created by Cole et al. [27] is a
mixed workload benchmark combing the TPC-C and TPC-
H benchmark. Based on their work and the available data
generator, we created scenarios using three different scale
factors (1, 10, 50), Since the aggregate cache does not support
joins yet, we are only able to use five of the OLAP queries.

In Figure 9, the revalidation algorithm is compared with
the recalculation and a non-caching strategy (for better com-
parability). A scale factor of 50 creates 60M records in the
order line table. The number of queries was fix for all three
scale factors. The workload contains 3561 inserts, 230 updates,
and a total of 380 aggregate queries. Each of the five aggregate
queries was executed 76 times. The revalidation algorithm uses
the lazy maintenance timing as this is the best performing
timing (cf. Figure 8).

The results show that a revalidation outperforms a re-
calculation for all scale factors. A revalidation is up to 5

72Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 1

 10

 100

 1000

1 10 50

W
or

kl
oa

d
Ex

ec
ut

io
n

Ti
m

e
in

 s

Scale Factor

380 Aggregate Queries, 230 Updates, 3561 Inserts

No Cache
Recalculation
Revalidation

Figure 9. The CH-benCHmark [27] results.

times faster (scale factor 50). The results indicate that the
performance advantage increases with an increasing scale
factor. This validates the efficiency of the proposed revalidation
algorithm.

VII. CONCLUSION

In this paper, we have introduced an efficient strategy to
revalidate cached aggregates in an in-memory column store.
Based on the existing insert-only implementation, we have
explained the idea of the aggregate cache and motivated the
necessity of a cache revalidation strategy for mixed workloads
with updates and deletes. Using the available information from
the transaction manager, the aggregate cache is able extract
the information of invalidated records. A bit vector containing
snapshot information of the database is added to the cache
entry. To keep the cache entry size as small as possible, we
have proposed three compression techniques that reduce the
required amount of memory for a bit vector. We have compared
the process of a recalculation with a revalidation and created
a cost function to determine the optimal decision between the
two. In our evaluation using an ATP scenario consisting of
transactional as well as analytical queries, the experiments
reveal that a revalidation outperforms an recalculation up to
an invalidation ratio of 50%. The influencing factor of the
revalidation is the number of relevant invalidated records. Our
optimization to include the filter conditions into the bit vector
reduce the amount of maintenance significantly.

In our future work, we plan to include the support for joins
into the aggregate cache. Existing admission and evictions
strategies can be extended by run-time information of the
aggregate cache manager, for example the execution time or
the result size. Also, an evaluation of our algorithm using
other database architectures without a main-delta architecture
is subject to further research.

REFERENCES

[1] H. Plattner, “A common database approach for oltp and olap using an
in-memory column database,” in SIGMOD, 2009, pp. 1–2.

[2] ——, “Sanssoucidb: An in-memory database for processing enterprise
workloads,” in BTW, 2011, pp. 2–21.

[3] C. Tinnefeld, S. Müller, H. Kaltegärtner, S. Hillig, L. Butzmann,
D. Eickhoff, S. Klauck, D. Taschik, B. Wagner, O. Xylander, A. Zeier,
H. Plattner, and C. Tosun, “Available-to-promise on an in-memory
column store,” in BTW, 2011, pp. 667–686.

[4] D. Srivastava, S. Dar, H. Jagadish, and A. Levy, “Answering queries
with aggregation using views,” in VLDB, 1996.

[5] J. M. Smith and D. C. P. Smith, “Database abstractions: Aggregation,”
Commun. ACM 1977.

[6] J. A. Blakeley, P.-A. Larson, and F. W. Tompa, “Efficiently updating
materialized views,” in SIGMOD, 1986, pp. 61–71.

[7] A. Gupta and I. S. Mumick, “Maintenance of materialized views:
Problems, techniques, and applications,” IEEE Data Eng. Bull. 1995.

[8] D. Agrawal, A. El Abbadi, A. Singh, and T. Yurek, “Efficient view
maintenance at data warehouses,” in SIGMOD, 1997.

[9] R. G. Bello, K. Dias, A. Downing, J. J. F. Jr., J. L. Finnerty, W. D.
Norcott, H. Sun, A. Witkowski, and M. Ziauddin, “Materialized views
in oracle,” in VLDB, 1998, pp. 659–664.

[10] J. Zhou, P.-A. Larson, and H. G. Elmongui, “Lazy maintenance of
materialized views,” in VLDB, 2007, pp. 231–242.

[11] Y. Zhuge, H. Garcı́a-Molina, J. Hammer, and J. Widom, “View mainte-
nance in a warehousing environment,” in SIGMOD, 1995, pp. 316–327.

[12] H. Jain and A. Gosain, “A comprehensive study of view maintenance
approaches in data warehousing evolution,” SIGSOFT Softw. Eng.
Notes 2012.

[13] M. Grund, J. Krüger, H. Plattner, A. Zeier, P. Cudre-Mauroux, and
S. Madden, “Hyrise: a main memory hybrid storage engine,” in VLDB,
2010, pp. 105–116.

[14] A. Kemper, T. Neumann, F. F. Informatik, T. U. Mnchen, and D-
Garching, “Hyper: A hybrid oltp&olap main memory database system
based on virtual memory snapshots,” in ICDE, 2011.

[15] S. Idreos, F. Groffen, N. Nes, S. Manegold, K. S. Mullender, and
M. L. Kersten, “Monetdb: Two decades of research in column-oriented
database architectures,” IEEE Data Eng. Bull. 2012.

[16] S. Müller and H. Plattner, “Aggregates caching in columnar in-memory
databases,” in 1st International Workshop on In-Memory Data Manage-
ment and Analytics (IMDM), in conjunction with VLDB 2013, Riva del
Garda, Trento, Italy, 2013.

[17] H. Gupta, “Selection of views to materialize in a data warehouse,” in
ICDT, 1997.

[18] J. Krueger, C. Kim, M. Grund, N. Satish, D. Schwalb, J. Chhugani,
H. Plattner, P. Dubey, and A. Zeier, “Fast Updates on Read-Optimized
Databases Using Multi-Core CPUs,” in VLDB, 2012.

[19] F. Raab, “TPC-C - the standard benchmark for online transaction
processing (OLTP),” in The Benchmark Handbook, 1993.

[20] P. A. Bernstein and N. Goodman, “Concurrency control in distributed
database systems,” ACM Comput. Surv., vol. 13, no. 2, Jun. 1981, pp.
185–221.

[21] D. Abadi, S. Madden, and M. Ferreira, “Integrating compression and
execution in column-oriented database systems,” in Proceedings of the
2006 ACM SIGMOD International Conference on Management of Data,
ser. SIGMOD ’06. New York, NY, USA: ACM, 2006, pp. 671–682.

[22] S. Müller, L. Butzmann, K. Howelmeyer, S. Klauck, and H. Plattner,
“Efficient view maintenance for enterprise applications in columnar in-
memory databases,” in EDOC, 2013, pp. 249–258.

[23] I. S. Mumick, D. Quass, and B. S. Mumick, “Maintenance of data cubes
and summary tables in a warehouse,” in SIGMOD, 1997.

[24] H. Plattner and A. Zeier, In-memory data management: an inflection
point for enterprise applications. Springerverlag Berlin Heidelberg,
2011.

[25] T. J. Teorey, D. Yang, and J. P. Fry, “A logical design methodology
for relational databases using the extended entity-relationship model,”
ACM Comput. Surv., vol. 18, no. 2, Jun. 1986, pp. 197–222.

[26] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd, S. Sigg, and W. Lehner,
“SAP HANA database: data management for modern business applica-
tions,” SIGMOD, 2011.

[27] R. Cole, F. Funke, L. Giakoumakis, W. Guy, A. Kemper, S. Krompass,
H. Kuno, R. Nambiar, T. Neumann, M. Poess, K.-U. Sattler, M. Seibold,
E. Simon, and F. Waas, “The mixed workload ch-benchmark,” in
Proceedings of the Fourth International Workshop on Testing Database
Systems, ser. DBTest ’11. New York, NY, USA: ACM, 2011, pp.
8:1–8:6.

73Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

