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Abstract—Equipping a three-dimensional (3D) simulation system
with database technology provides many advantages: Simulation
models can be managed more efficiently than with files, temporal
databases can be used to log simulation runs, and active databases
provide a means for communication. Thus, we use a central
database to share simulation models from different fields of
application from space missions to forestry. To enable real-
time access, each simulation client caches the model to its local
runtime simulation database. For that purpose, each pair of
databases must be synchronized. After a synchronization on
schema level, each client replicates data on-demand. In this
publication, we present an approach that uses both databases’
notification services to keep master copies in sync with their
replicate copies. State machines are used to model the approach.

Keywords–Database Synchronization; 3D Simulation; Dis-
tributed Database.

I. INTRODUCTION

Simulation applications in general and 3D simulation appli-
cations in particular all follow the basic principle of applying
simulation techniques to a corresponding model. Hence, the
field is called modeling and simulation. A simulation model
however needs some kind of data management. Up to now,
files are still common for this task. In [1], we present a
database-driven approach to overcome the associated disadvan-
tages. Here, a central database is used to manage the shared
simulation model, while simulation clients perform an on-
demand replication of the model to their respective local, real-
time capable runtime database. The central database is even
used as a communication hub to drive and log distributed 3D
simulations.

In this paper, we add a detailed description of the
notification-based synchronization approach used in this sce-
nario. Its specification however should be preferably universal
to allow for its adoption with different database systems. For
that purpose, general requirements towards the two involved
database systems – generically referred to as ExtDB (the
central database) and SimDB (the runtime simulation database)
– were compiled [2]. They incorporate methods adopted from
Model-Driven Engineering (MDE) [3] and allow to use the
concepts of the Unified Modeling Language (UML) to give
generalized method specifications for the different components
of the overall approach [4]. Thus in this paper, the synchroniza-
tion approach will also be presented using UML metaclasses.

The synchronization approach relies on change notifica-
tions. Hence, ExtDB and SimDB need an according service.

Using the notifications, the state of synchronization between
both databases is monitored and modeled in a state machine for
each pair of master and replicate copy. For resynchronization,
transactions are scheduled and either executed or canceled
out. Furthermore, notifications are used to confirm transactions
and to detect change conflicts. A particular challenge in this
scenario is to keep the state machine models stable, i.e., not
to miss or misinterpret notifications.

The rest of this paper is organized as follows: In Sec-
tion II, the foundations of the database-driven approach for
3D simulation are recapitulated. Section III summarizes the
system requirements and the applied approach for method
specifications using the UML metamodel. Both sections pave
the way for the main Section IV where we present the
notification-based synchronization approach. In Section V,
exemplary applications are shown and Section VI presents
some work related to our own. Finally, in Section VII, we
conclude our work and present some future work.

II. DATABASE-DRIVEN 3D SIMULATION

Using a central database (ExtDB) to manage a shared sim-
ulation model has several advantages. In contrast to a classical
file based approach, databases provide a very efficient data
management, well-defined access points, e.g., using a query
language or an Application Programming Interface (API), a
consistent data schema for structured data, and concurrent
access for multiple users. This allows to persist the current state
of a 3D simulation model comprising its static (e.g., building,
tree, work cell) as well as dynamic (e.g., vehicle, robot) parts.
During a simulation run, the state of its model’s dynamic parts
changes. This is an inherent property of simulation. To capture
this process over time, a temporal database [5] can be used.
Here, any change to the simulation model causes the previous
state’s conservation as a version. Altogether, this also allows to
persist the course of the simulation itself. Besides these more
or less passive activities, a database can also be used as an
active part of the simulation. One approach is to use it as an
active communication hub. An active database [5] is needed
that can provide the necessary change notifications to inform
clients of changes to the shared simulation model.

However, a steady, direct data exchange with ExtDB is
not advisable for 3D simulation. This would lack real-time
capabilities and impose a strong coupling on each and every
component of the simulation system with the utilized database
system. Instead, we use an approach that combines ExtDB with
a local runtime database (SimDB) for each simulation client.
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The lower part of Figure 1 shows the principle structure of
this approach for a single pair of ExtDB and SimDB instance.
By replicating required contents from ExtDB to SimDB, the
simulation system can use the cached copies and the nature of
ExtDB can be hidden away.
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Figure 1. Principle structure of the approach for database-driven 3D
simulation.

The two databases are synchronized on schema and data
level. During the former, the schema description is transfered
from ExtDB to SimDB so both systems ”speak the same
language.” This builds up a schema mapping between the
databases and is done once during system startup. Note how-
ever that this does not imply a semantic mapping like mapping
an address represented by a single string to a fielded address
representation (name, street, etc.). Instead, only the different
modeling concepts (i.e., the utilized metaclasses) are mapped.

During runtime, data is loaded, i.e., replicated, from ExtDB
to SimDB. Here, based on the schema mapping, the appropri-
ate schema components are instantiated, values are copied, and
an instance mapping is stored to keep the relationship between
master and replicate copy. Copies no longer required can also
be unloaded, i.e., removed from SimDB provided they have
not been changed. Changes are tracked and resynchronized to
keep both master and replicate in sync. This is realized using
notification services of ExtDB and SimDB. The approach is
presented in detail in Section IV.

III. SYSTEM REQUIREMENTS

To generalize the approach system requirements were iden-
tified [2]. The aim is to make it universally available for
different implementations of ExtDB and SimDB. A general
compatibility of the two databases’ modeling concepts is stip-
ulated using both their metamodels. A database’s metamodel
represents its abstract syntax (modeling concepts). Their com-
patibility can then be expressed with a model transformation,
e.g., using the ATL Transformation Language (ATL) [6].

To provide a common basis for arbitrary database meta-
models, a pivotal metamodel with transformations from and to
both databases’ metamodels is stipulated as well. The pivot’s
metaclasses can be used to indirectly refer to SimDB’s or

ExtDB’s metaclasses using the demanded mapping. In the
context of 3D simulation, Geographic Information Systems
(GIS), Computer-Aided Design (CAD), or other 3D software,
an object-oriented modeling is advisable, as such data usually
consists of a huge number of hierarchically structured parts
with interdependencies [5]. Thus, the UML (language unit
classes) is a reasonable choice for a pivot. Figure 1 gives
an overview. It also comprises the mainly utilized UML
metaclasses. Altogether, this allows to generically refer to
the structure of SimDB and ExtDB using UML concepts.
Therefore, the method specification in the next section uses
concepts like object, link, class, or property although including
any database metamodel that can be mapped to the UML meta-
model. Note, however, that this mapping to UML structures is
conceptually needed to show the databases’ compatibility and
to obtain a means for generalized method specifications. The
actual implementation of the synchronization approach is done
on API or query language level – in particular to ensure real-
time capabilities.

IV. NOTIFICATION-BASED DATABASE SYNCHRONIZATION

Following the definition in [5], the presented scenario, i.e.,
the combination of SimDB and ExtDB, would be a distributed
database (DDB). Similar to a distributed database management
system (DDBMS), our approach aims at transparency of the
distribution. However, it is a special case in which SimDB is a
cache for ExtDB. Simulation clients access the shared simula-
tion model only via SimDB. The nature and (for the most part)
the existence of ExtDB are hidden away. The master copy of
the simulation model is stored in ExtDB. In contrast, a classical
DDB is accessed as a whole from the outside and the DDBMS
hides away its distributive nature. Important DDB concepts are
fragmentation, allocation and replication, as well as autonomy
and heterogeneity. We use horizontal fragmentation splitting
up object sets (but not objects themselves) between the central
ExtDB and the connected SimDBs. All fragments are allocated
to ExtDB. Further allocation, i.e., replication, to the different
SimDBs is realized on-demand as shown in [4]. While ExtDB
is fully autonomous SimDB is limited to the schema adopted
from ExtDB. As both databases usually are different systems
– e.g., SimDB is a runtime database – the assumed DDB is
heterogeneous.

One ore more instances of SimDB have a star-shaped
connection to one instance of ExtDB. Changes are syn-
chronized independently between each pair of SimDB and
ExtDB. Differences in between such a pair are resynchro-
nized periodically but not synchronously. Thus, we have a
similar scenario as described in [7] for replication servers
with asynchronous replication. However, in contrast to mobile
databases, the connection is always kept alive and resynchro-
nization is typically short-term. Furthermore, there is no global
transaction or recovery manager. Changes to ExtDB by any
client or to SimDB by any client component are committed
without control of the synchronization component, which can
merely monitor such changes. Thus, following durability (as
in Atomicity, Consistency, Isolation, Durability (ACID)) they
cannot be undone. Durability is important as an online (i.e.,
live) 3D simulation cannot be reset in the middle of a run.

One way to treat concurrent changes is an active concur-
rency control using locks. For distributed concurrency control,
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one approach is to choose a so called distinguished copy which
holds a representative lock for all its replicate copies [5]. In
our case, the master copies in ExtDB could be adopted for
this purpose as they are shared among all clients. However,
locking is not recommendable here as acquiring locks would
be time-consuming (as an ExtDB access would be necessary
each time) and possible deadlocks may interrupt a running
simulation.

We therefore developed a lock-free approach using noti-
fications. For each pair of SimDB and ExtDB, the mecha-
nism monitors changes by listening to the notifications. For
resynchronization, it schedules transactions of the respective
database. Due to the monitoring approach, they can only
comprise a single data operation. The approach is similar to op-
timistic concurrency control (OCC) [7]. However, transactions
cannot be rolled back when changes are conflicting. Instead,
conflicts are only implicitly resolved: The last client changing
a value is given precedence. Altogether, it is crucial that the
synchronization component always knows about the state of
synchronization for each copy. However, besides resynchro-
nization and passive monitoring, the mechanism cannot and
must not intervene, e.g., by rejecting changes as mentioned
above.

A. Change Tracking

For each pair of SimDB and ExtDB, a change tracking
component connects to the notification services of SimDB
for so-called internal notifications and of ExtDB for so-
called external notifications. Notifications include insertions
and removals of objects and links, as well as updates of object
properties. A link between objects can only be removed or
inserted but not updated, as its identity is only derived from
the connected objects (and the corresponding association on
schema level).

For the sake of simplicity, external notifications from
ExtDB are abbreviated as extInsert, extUpdate, and ex-
tRemove, internal notifications from SimDB as simInsert,
simUpdate, and simRemove, accordingly. During runtime,
these notifications are evaluated. Depending on the current
state of the corresponding pair of master and replicate copy
represented by an instance mapping entry, a transaction may be
scheduled that can later be used to resynchronize the detected
change from the one to the other database. A scheduled
transaction comprises one data operation with its kind (insert,
remove, or update), the affected instance (object or link) or
its id, and for updates the affected property. A transaction
for transferring a change from SimDB to ExtDB is called
an out-bound transaction and will be abbreviated with the
prefix sim2ext. For example, when detecting an object insertion
within SimDB by a simInsert notification, a new sim2extInsert
out-bound transaction may be scheduled. Its (future) execution
will insert an equivalent object of the corresponding ExtDB-
Classifier (using the schema mapping) into ExtDB. Here, the
current property values are retrieved from the SimDB object’s
slots and are replicated for the new ExtDB object. Finally, the
new object complements the corresponding instance mapping
entry with its identifier. This can be seen as the comple-
menting operation to the loading of objects. Links are treated
accordingly but without the need for property value replication.
An instance’s removal (object or link) from SimDB, notified

by a simRemove notification, may lead to a sim2extRemove
transaction whose (future) execution will remove the asso-
ciated ExtDB instance. A simUpdate notification signals the
change of a SimDB object’s property and may be scheduled
as a sim2extUpdate transaction to transmit the value change
from SimDB to ExtDB. Similar to sim2extInsert transactions,
a sim2extUpdate transaction’s execution retrieves the current
value of its corresponding property from SimDB and replicates
it to ExtDB.

Accordingly, external notifications may lead to the schedul-
ing of in-bound transactions for resynchronizing global
changes from ExtDB to SimDB. They are prefixed by ext2sim:
ext2simInsert, ext2simRemove, and ext2simUpdate. Responses
to external notifications are mostly identical to their internal
counterparts. However, due to the nature of SimDB being a
cache for ExtDB, a variation applies when treating external
insertions. New objects or links within ExtDB may be handled
by different strategies. They may be ignored or subsequently
taken into account by a loading transaction (ext2simInsert).
In this paper, the latter approach is chosen. Alternatively, one
could consider to reevaluate previously executed queries to
determine the “interest” in the new instance.

Altogether, instance mapping entries (i.e., pairs of master
and replicate copy) can be seen as to reside in a certain state
of synchronization. This can be modeled as a state machine
in statechart notation [8] for each object’s or link’s instance
mapping entry. For objects, this state machine is given in Fig-
ure 2 (it is similar for links). It may be in a synchronous state
(Synced), a Loading or Unloading state, a state representing its
absence or non-management (NonManaged), or a transaction
state (ext2simInsertPending, ext2simRemovePending, etc.). For
update transactions, the synchronization states of an object’s
properties are concurrently modeled in the sub states of state
UpdatesPending shown in Figure 5.
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extInsert
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simInsert
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Figure 2. Synchronization states of an object’s instance mapping.

An exemplary chain of events depicted in Figure 3 would
be the insertion of a new door object into SimDB leading
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to a transition guarded by simInsert from the initial state
NonManaged to state sim2extInsertPending shown in Figure 4.
Here, a sim2extInsert transaction is scheduled for the new
object. When the transaction is executed (see Subsection IV-C),
an equivalent object is inserted into ExtDB eventually causing
the database to issue an extInsert notification. In turn, this
event triggers a transition from the sim2extInsertPending to
the Synced state. Thus, the extInsert event confirms the in-
sertion into ExtDB and is used as a receipt to acknowledge
a transaction’s successful execution. This is especially useful
for handling concurrent changes within SimDB and ExtDB
occurring during other transaction’s execution.

ExtDB	  

a	  :	  Door	   a	  :	  Door	  

SimDB	  
simInsert 

 sim2extInsert	  

extInsert 

open = false open = false 
2	  1	  

Figure 3. Exemplary insertion of a door object into SimDB and subsequent
synchronization to ExtDB using a sim2extInsert transaction.

simInsert 

extInsert 

NonManaged	   sim2ext-‐
InsertPending	  

Synced	  

Figure 4. Excerpt from Figure 2 for the state transitions accompanying the
exemplary insertion depicted in Figure 3.

The receipt handling mechanism is also used to handle mu-
tual changes that cancel each other out. An example are mutual
removals: An instance is, e.g., first removed from ExtDB and
subsequently from SimDB by independent processes. Thus, a
previously scheduled ext2simRemove transaction with pending
execution (in state ext2simRemovePending) is canceled out by
the incoming simRemove notification for the same instance.
The event causes a transition to the NonManaged state.

Property changes are modeled in Figure 5. The Update-
sPending state encapsulates a sub state structure for managing
property updates. Primarily, it contains a super state UpdatesPr
with concurrent regions for each of the object’s properties,
e.g., region UpdatesPri for the object’s ith property. A re-
gion for Property Pri has three states representing an un-
changed property value (SyncedPri), a property value changed
within SimDB (sim2extUpdatePendingPri), and a property
value changed within ExtDB (ext2simUpdatePendingPri). Fur-
ther updates to the object’s value for Pri can be ignored
when they stem from the same database (i.e., both SimDB
or both ExtDB), as the new value has to be transferred to
SimDB, anyway. However, a subsequent update to the same
property from within SimDB causes a change conflict (see
Subsection IV-B). The modeled strategy is to give precedence
to the more recently notified change. Thus, a transition to
sim2extUpdatePendingPri is triggered. When the transaction
implicitly scheduled on entering one of the update states
is executed, a notification is needed as a receipt. However,
in contrast to insert or remove transactions, there is no
“natural” counterpart for update transactions. An executed

ext2simUpdate transaction causes a simUpdate notification that
is indistinguishable from any other third party changes. Thus,
before execution, an “inExec” flag is set. For ext2simUpdate,
the next simUpdate notification for Pri will trigger a transition
back to the synced state of this property (the inExec flag will
be reset). When all concurrent regions are in their respective
synced state, a synchronized (in terms of concurrency) transi-
tion to the Done state is triggered (modeled by the vertical bar).
On entering this state, the allUpdatesSynced event is raised
triggering a transition from the super state UpdatesPending to
the Synced state (see Figure 2).

UpdatesPending

UpdatesPr

extUpdate

[Pr=Pri & inExec]

simUpdate [Pr=Pri] extUpdate [Pr=Pri]

simUpdate

[Pr=Pri & inExec]

extUpdate [Pr=Pri]simUpdate [Pr=Pri]

simUpdate [Pr=Pri]

extUpdate [Pr=Pri]

UpdatesPri

UpdatesPrj

...

sim2ext-
UpdatePendingPri

ext2sim-
UpdatePendingPri Done

entry/raise
allUpdatesSynced

... ...

SyncedPri

SyncedPrj

/repeat incoming event

Figure 5. Sub structure of state UpdatesPending from Figure 2 for property
updates.

In some situations, events may also be ignored. Within the
state machines, this may be modeled as self-transitions. For
example, in sim2extRemovePending, further extUpdate events
from ExtDB can be ignored as the corresponding object will
be removed from ExtDB, anyway.

B. Change Conflict Handling

As mentioned above, changes (insertions, removals, and
updates) from ExtDB and SimDB may conflict when they
occur to the same instance (and property) before executing
the corresponding transaction. For example, in a city scenario,
a building’s street number is locally changed within SimDB
causing a sim2extUpdate transaction. Before this change is
made persistent and globally available within ExtDB by exe-
cuting the transaction in a resynchronization run, the very same
number is changed within ExtDB (e.g., by another simulation
client). Following the strategy modeled above, the previous
change is omitted and instead a new ext2simUpdate transaction
is stored.

In general, different strategies to handle such situations
could be thought of. First of all, conflicts can be avoided
beforehand by giving only mutual exclusive write access to
instances. This approach could be used in distributed simula-
tion scenarios where separate objects are simulated by different
clients without interaction. This can be managed by a superor-
dinate simulation control. Avoiding the occurrence of conflicts
could also be realized by explicitly locking changed instances
or their property value in the respective other database. How-
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ever, this may stall or even reset a simulation run as mentioned
above.

Thus, a monitoring, i.e., reactive handling of change con-
flicts as mentioned above is inevitable. The presented methods’
strategy is embedded in the given state machines. For change
conflicts, two scenarios can be distinguished: A conflict may
either occur before or during a transaction’s execution. Before
executing a transaction, conflict handling can be realized
straightforward. It is modeled with simple transitions within
the state machines. One example is the precedence for more
recently notified updates as shown above. Another strategy is
that object removals are final and thus “always win”. Id est, a
pending remove transaction for an object precedes all update
events for the object. For pending object insertions, conflicts
cannot occur as the corresponding object does not exist in the
respective other database.

As long as a transaction is still pending, incoming events
can always be processed by state transitions to reflect the rela-
tion between SimDB and ExtDB. In a resynchronization run,
the current state of each state machine is evaluated (compare
Subsection IV-C). If a state with pending transaction T1 is
determined T1 is executed. However, this decision is made
independently at each client. A notification from a previously
committed, conflicting transaction T2 may arrive just after
T1’s execution is started. In some cases, T1 may still be
abortable. But the notification may just as well arrive when T1
commits. So, while native transactions of the utilized database
management systems (DBMSs) themselves are usually isolated
the decision to start a pending transaction is not. This limits
transaction isolation (i.e., ACID properties) in the distributed
system.

The same applies to the reading of property values. Objects
can be removed, and links can be removed and inserted based
only on the information from the corresponding notification.
For object insertions and property updates however, the current
state of the respective source database has to be retrieved
as notifications themselves do not contain the corresponding
values. Thus, when such a transaction is executed the source
values may have already been changed by subsequent trans-
actions whose notifications may either have not yet arrived or
transaction execution may already have started as described
above. This also limits transaction isolation.

Thus, a strategy had to be found for dealing with such sit-
uations. Otherwise, scenarios where a change in one database
is neither reflected within the other database nor within the
instance mapping’s state machine may occur. For example, a
property value is changed in ExtDB, but its instance mapping’s
state machine is in state Synced although SimDB still holds
the previous value.

The primary instrument to handle such interfering changes
is the aforementioned usage of notifications as receipts. For
that purpose they must have the following features:

1) A notification’s arrival guarantees the corresponding
operation to be executed.

2) The order of arrival of a single database’s notifi-
cations is identical to the execution order of the
corresponding operations.

3) Between one running instance of SimDB and ExtDB

there is at most one transaction being executed at a
time (see Subsection IV-C).

Based only on these assumptions, a conflict management
can be stable. However, one should keep in mind:

1) A notification not yet received does not imply that
the corresponding operation is not yet executed (no-
tifications may be delayed).

2) On arrival of a notification, the current state within
the database must not be consulted for further state
transitions. By time of arrival it may already have
been changed several times.

3) The order of arrival between notifications from
ExtDB and notifications from SimDB is arbitrary.

Based on these considerations, a special event handling
can be implemented to process the queued events after a
transaction’s execution. As stated above, the main problem are
notifications arriving between the start of a transaction’s exe-
cution and the arrival of the corresponding receipt notification.
For a proper event handling, these events must sometimes be
reordered. To be precise, they are captured and reinserted into
the event queue just after the receipt event. This ensures their
correct processing in terms of state transitions. The procedure
is necessary for object or link insertions, link removals, object
updates, and object or link loading. In the state machines,
transitions with italic text particularly model this case. In the
sub states of UpdatesPending, this highlighting is omitted as
the same transitions are needed for standard and for this special
event handling.

One example are updates (Figure 5). A property’s update
transaction can be examined separately as updates of different
properties are independent from each other. Table I lists an
exemplary sequence of events for some integer property and
the associated actions, statemachine states, values in SimDB
and ExtDB, and emitted notifications. In the example, the
local property’s slot value in SimDB is updated several times
even while changes are replicated to ExtDB. Notifications
are used to ensure that all updates are reflected within the
statemachine’s current state.

Initially (step #1), SimDB and ExtDB are in sync at value
10. The value in SimDB is changed to 20 (#2) and the cor-
responding simUpdate notification (a) triggers a statemachine
transition (#3). At some point in time, the client starts the
resynchronization process (#4). Then, a first interfering update
(#5) changes the value to 30. As property update notifications
do not contain a value it must be retrieved from the respective
database at transaction execution time (#6). Afterwards, a
second interfering update (#7) changes the value to 40. In #8,
the read value 30 is replicated to ExtDB. As mentioned above,
the order, in which notifications from SimDB and ExtDB are
received, is arbitrary. Thus, notifications simUpdate (a) and
(b) may be processed first (#9, #10). As the ”inExec” flag
is set, all notifications are stored (instead of ignored without
the ”inExec” flag being set) until the corresponding receipt
notification extUpdate is processed in #11. Subsequently, the
flag is reset and both stored notifications are reinserted into
the event queue. While the receipt notification eventually
yields a transition back to the Synced state (#12), notification
reinsertion causes the necessary transition back to the state
of pending updates (#13) to replicate the value of 40 from
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TABLE I. EXAMPLE OF A LOCAL INTERFERING UPDATE OF SOME INTEGER PROPERTY WITHIN A SINGLE SIMDB.

# action statemachine SimDB val. ExtDB val. notification
1 (initial state) Synced 10 10

2 update 10 → 20 in SimDB 20 simUpdate (a)

3 process event simUpdate (a) → UpdatesPending / sim2extUpdatePendingPri
4 start resync inExec := true

5 update 20 → 30 in SimDB (1st interference) 30 simUpdate (b)

6 read current value from SimDB

7 update 30 → 40 in SimDB (2nd interference) 40 simUpdate (c)

8 execute transaction sim2extUpdate 30 extUpdate

9 process event simUpdate (b) [inExec=true] ⇒ store simUpdate (b)

10 process event simUpdate (c) [inExec=true] ⇒ store simUpdate (c)

11 process event extUpdate → UpdatesPending / SyncedPri → Done allUpdatesSynced

inExec := false

reinsert simUpdate (b) and simUpdate (c) in event queue

12 process event allUpdatesSynced → Synced

13 process event simUpdate (b) → UpdatesPending / ext2simUpdatePendingPri
14 process event simUpdate (c) (self-transition)

15 start resync ... ...

SimDB to ExtDB. The additional simUpdate notification (c)
only yields a self-transition (#14) as an update is already
pending. Another resynchronization run would replicate the
value to ExtDB starting at #15.

This approach to capture and reinsert notifications is
needed as it is unknown whether an interfering update was
done before (#5) or after (#7) reading the current value from
SimDB in #6 to execute the sim2extUpdate transaction in #8.
Note that when only interfering updates of the first type occur,
the additional simUpdate notifications are in fact redundant.
However, this is acceptable to guarantee that no updates are
lost between SimDB and ExtDB. In case of interfering updates
from other clients to ExtDB, additional extUpdate (instead of
simUpdate) notifications are emitted. Here, notifications need
not be stored as the first extUpdate notification is simply
interpreted as the expected receipt and subsequent extUpdates
yield normal state transitions. Finally, the same store-and-
reinsert strategy is used similarly in the other use cases
mentioned above (object insertions, link removals, and object
or link loading).

Altogether, as mentioned above, this approach cannot avoid
or fix conflicts but only detect them and react on them.
However, the utilized SimDB and ExtDB themselves are
not corrupted as they provide safe standard database access
methods. Thus, only the distributed synchronization state must
be kept free of corruptions. This is ensured by the presented
approach.

C. Resynchronization

In resynchronization, all scheduled transactions are exe-
cuted to bring the two databases back in sync. This process
can be triggered in several ways. When the approach is applied
in a collaborative scenario, it can be initiated manually. For
immediate response from and to other users, it can also be
automatically triggered after each transition to a state with
pending transaction. In distributed simulation, typical access
patterns include constantly repeated changes of the same few
property values, e.g., a moving car and a moving helicopter.
In such scenarios, transactions can be aggregated within short

but arbitrary periods to lower the impact on traffic. However,
this includes a trade-off between traffic and update rate.

V. APPLICATIONS

Using the presented approach, different kinds of applica-
tions have already been realized as shown in Figure 6.

In a city scenario, a central database (ExtDB) manages
a shared simulation model with a city, a helicopter, and a
car. Two simulation clients are connected with their respective
synchronized SimDB and each control a vehicle. Changes
(e.g., the movement of the car or the helicopter) are distributed
using the methods presented in this paper. Furthermore, all
changes are automatically archived using a temporal ExtDB.
This provides an integrated log for the development of the
simulation model’s dynamic properties over time and allows
for subsequent replay, analysis, debriefing, and archiving.
Usually, such applications use amounts of files for data
management combined with a decentralized communication
infrastructure, e.g., based on the High Level Architecture
(HLA) [9], and separate logging components are needed to
archive a simulation. In contrast, we provide a more integrated
approach. This avoids divergence between data management
and the corresponding change distribution mechanism, no
separate mechanism is needed to access logged data, and a
consistent data schema provided by the central database is used
throughout the distributed system.

In another scenario, a planetary landing mission is simu-
lated. During descent, a database-managed, shared model of
the planet’s surface (i.e., an object-oriented map) is created by
different components in a distributed approach. Subsequently,
the same map can be used for (simulated) navigation. All
system components benefit from using and building up the
same shared model with a consistent schema, standardized
interfaces, and an integrated communication infrastructure
using the presented approach.

As a last example, a forest model is extracted from remote
sensing data and other geo data sources. Here, the approach
is used by the various stakeholders in the forest sector to
collaboratively generate, update, refine, analyze, simulate, and
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Figure 6. Different applications realized using the presented approach.

simply use the highly detailed forest model managed by an
ExtDB component. Instead of directly accessing this central
database, the presented approach decouples clients from the
utilized technology of ExtDB by only accessing data from
their local SimDB database. Furthermore, the very same data
schema can be used throughout the applications reducing
”friction losses” due to (offline) data conversions.

VI. RELATED WORK

Regarding database synchronization for 3D simulation sys-
tems and similar software only few approaches can be found.
In [10], a combination of scene-graph-based 3D clients with
a federation of databases connected by the Common Object
Request Broker Architecture (CORBA) is proposed. On client-
side, a local object-oriented DBMS (OODBMS) provides an
in-memory scene object cache connected to the federation
using an Object Request Broker (ORB). Cached objects are
bidirectionally replicated to the scene graph. Concurrency
control among the federated databases and the local object
caches allows multi user interaction between the clients.

A mobile Augmented Reality (AR) system combining
distributed object management with object instantiation from
databases is described in [11]. Objects are distributed shallowly
by creating ”ghost” copies retaining a master copy only at
one site. Such a ghost is a non-fully replicated copy of its
master allowing simplified object versions to be transmitted
(e.g., with sufficient parameters for rendering). Changes to the
master copy are pushed to all its ghosts. Remote systems can
change a master copy by sending it a change request.

In [12], [13], a Virtual Reality (VR) system is combined
with an OODBMS to provide VR as a multi-modal database
interface. In [14], a revised version adds collaborative work
support. For update propagation, VR clients issue changes to
the shared virtual environment as transactions to the back-end
they are connected to. After an interference check they are
commited to the database and distributed by a separate notifi-
cation service. The system uses transactions with regular ACID
properties (e.g., for ”Create box B”) committed as a whole as
well as special continuous transactions for object movements.
For the latter, atomicity does not apply as movements are
committed incrementally to frequently propagate updates.

The ”Collaborative Urban Planner” described in [15] is
based on the multi-user Virtual Environment system DeepMa-
trix [16], extended by a relational DBMS back-end providing
persistency. Clients allow for so-called shared operations like
”rotate object” that are send to the server for distribution and
persistency. A server application provides concurrency control,
message distribution and data management. It represents the
single point of access to the database ensuring consistency
among the clients’ shared operations. The database primarily
contains meta information on shared objects (position, texture).

In [17], a ”Virtual Office Environment” contains 3D data
and semantics managed by a DBMS to allow semantic-based
queries and collaboration. Clients’ actions are issued as queries
to the shared database. Changes are distributed to all other
clients, which adopt them locally.

A ”shared mode” for database-driven collaboration is pre-
sented in [18]. In a chess application example with two players
a shared database with the game’s setting is alternately updated
by the one client while being polled for changes by the other,
which subsequently reflects the changes in his own virtual
scene instance.

Compared to our approach, [10] comes close but lacks
details and is only a proposal without known implementations.
The ghosts in [11] may suffice for rendering but are to
restricted for sophisticated simulation applications. Further-
more, not all objects are managed by the database. In [12],
[13], [14], [17], only VR-specific data and operations are
supported. [15] does not manage the model data itself using
the database. Finally, the approach in [18] is similar to our
own but only demonstrates a very limited type of change
distribution. Altogether, no other approach offers a comparably
tight integration of database technology into 3D software or
simulation systems.

Similarities to our MDE-based approach for the general
assessment of database compatibility can be found in generic
model management. [19] introduces different generic schema
operations like match, merge, translate, diff, and mapping
composition. The work gives an overview but concentrates on
tool support for semi-automatic mappings. Our own approach
can be seen as an implementation of the “ModelGen” operator
that automatically translates a schema from one metamodel
into another, including mapping creation. However, in contrast,
we provide an automatic mapping of schemata and a runtime
approach instead of a static mapping.

Another implementation is provided in [20]. A pivotal
supermodel is used to transform schema as well as data.
In [21], the same system is extended to provide runtime
transformations with read-only access. A similar approach is
taken in [22] using a proprietary pivotal graph-based repre-
sentation. [23] presents an approach for transforming schema
and data between the Extensible Markup Language (XML)
and the Structured Query Language (SQL). However, none of
these approaches use standardized metamodeling and model
transformation languages as used in our approach.

VII. CONCLUSION AND FUTURE WORK

We presented an approach for synchronizing a central
database (ExtDB) with simulation databases (SimDB) as a
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basis for database-driven 3D simulation. After recapitulating
our previously published background of the approach, the
main contribution of this work is presented in detail: The
core method for synchronization. For each pair of master
and replicate copy it manages the state of synchronization
– modeled as a state machine. It is based on notifications
provided by both databases. On the one hand they are used
to track the changes and schedule transactions for subsequent
resynchronization. On the other hand, they are used as receipts
to acknowledge transaction execution and to detect change
conflicts. Compared to other methods for collaboration in 3D
software systems, this approach provides a tight integration of
advantages from the database field into simulation technology.
Different applications already prove its practicability.

In future, we will examine further applications, e.g., from
the field of industrial automation. Moreover, a porting of the
approach to other database systems than the current prototypes
will be reviewed. Finally, the integration of temporal databases
will be examined in further detail, especially for valid time,
bitemporal, or multi-temporal databases.
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