
Toward a New Approach of Distributed Databases Design and Implementation

Hassen Fadoua

LIPAH

FST, University of Tunis El Manar

Tunis, Tunisia

hassen.fadoua@gmail.com

Grissa Touzi Amel

LIPAH

FST, University of Tunis El Manar

Tunis, Tunisia

amel.touzi@enit.rnu.tn

Abstract—Nowadays, with the development of data and storage

of large volumes of distributed and heterogeneous data,

Distributed Database Management System (DDBMS) have

become essential to most Information Systems (IS).

Unfortunately, the designer of Distributed Databases (DDB)

has been so far facing several problems, namely, 1) the DDB

design is not a simple task and should take into account several

constraints and choose accordingly best strategy of

fragmentation, allocation and replication of data and 2) DDB

implementation should allow the final user to work within a

centralized DB, which is not provided directly by the existing

DDBMS. To sort out this problem, we suggest in this paper a

new approach to help in the DDB design and implementation,

which focuses on setting up a layer in the existing DDBMS

which will provide 1) Graphical interface to define different

sites geographically distributed and 2) Creation of different

types of fragmentation, allocation and duplication while

validating each step of the process. The system will

automatically generate SQL scripts of each site regarding its

initial configuration. The so implemented approach reduces

the designer's duty by taking in charge the complex

distribution validation and heavy manual scripts writing.

Keywords-distributed databases; fragmentation; fragment

allocation; replication.

I. INTRODUCTION

The end of the last century was marked by a significant
change in information technology. This evolution is mainly
characterized by large volumes of data increasingly
important, distributed and heterogeneous information, and
more exacting users toward system vendors and solutions.
Design and use of distributed database has risen
significantly.

Unfortunately, the existing DDBMS have several
constraints: 1) they do not have an integrated component
which ensures the automatic distribution of the initial
centralized database, and 2) Fragmentation, replication and
allocation are manual operations delegated to administrators.
The designer is required to ensure the compliance of the
distribution with the validation rules.

 Consequently, the implementation of a DDB has never
been an easy task especially when dealing with huge models
and while trying to meet the high user’s expectations. While
looking into the constraint’s causes by these systems, the
most important requirements are to preserve data integrity
and their continuous availability, even though the central site

has been removed, in addition to their transparency for the
final user.

In this context, we can refer to the works of Rim [11] and
Hassen [7] who suggested an expert system to help the DDB
design. These tools are rather restricted to suggesting data
distribution on each site, regardless of the heavy task left to
the designer to implement this DDB on different sites or the
validation process of fragmentation if the user decides to
change its design in response to new needs.

In this paper, we propose a new approach to assist DDB
design and implementation. This approach is validated
through designing and implementing an assistance tool
which provides a graphical interface for different types of
fragmentation, allocation and replication along with
validation at each step of the process. Then, the system will
automatically generate SQL [3] scripts of each site regarding
its initial configuration. We have proved that the proposed
tool can be implemented as a layer to any existing DDBMS.

This paper includes five sections. Section 2 presents an
example of DDB design, illustrating the design problems.
Section 3 presents our motivation for this work. Section 4
presents our new approach to assist the DDB design and
implementation. Section 5 presents the validation of our
approach by providing the platform called DDB-Helper.
Section 6 provides an evaluation of this work against
existing approaches. We finish this paper with a conclusion
and a presentation of some future works.

II. PROBLEM OF DDB DESIGN

We define a distributed database (DDB) as a collection of
multiple, logically interrelated databases distributed over a
computer network [2].

A distributed database management system (distributed
DBMS) is then defined as the software system that permits
the management of the distributed database and makes the
distribution transparent to the users [9]. As examples of
DDBMS, we can mention: Oracle [5], MySQL [12], Ingres
[10], Cassandra [4] and F1 [8].

The design stage of a distributed database must take into
consideration a number of constraints, usually quite difficult
to balance. This approach should be based on the description
of the real world, the needs of the user and his frequent
queries. The purpose of this section is to show through an
example the difficulties that can meet the user in the design
of its DDB.

104Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

A. Distributed Database Design

To set the local conceptual schema for each site, the
designer should follow the steps:

(i) Fragmentation of the different relations: a relation can
be divided into a number of sub-Relations, called fragments,
allocated to one or more sites. There are two types of
fragmentation: horizontal and vertical. The horizontal
fragments are subsets of tuples and vertical fragments are
subsets of attributes of relations

(ii) Correctness Rules of Fragmentation: The designer
must check the three Correctness rules of fragmentation;
Completeness, Reconstruction and Disjointness.

(iii) Definition of the allocation of fragment: This
definition is carried out strategically, to ensure the locality of
references, an enhanced reliability and availability,
acceptable performance, a balance of storage capacity and
costs, and communication costs reduced. Four allocation
strategies exist, depending on the available data: centralized
(single centralized database), fragmented (fragments are
assigned to a site), full replication (a full copy of the
database is maintained at each site) and selective replication
(a combination of the other three).

B. DDB Design Example

In this section, we present an example of a DDB design.
Three institutions of the University of Tunis El Manar:
National Engineering School of Tunis (ENIT), Faculty of
Mathematical, Physical and Biology Sciences of Tunis (FST)
and Faculty of Economics and Management of Tunis
(FSEGT) have decided to pool their libraries and service
loans, to enable all students to borrow books in all the
libraries of the participating institutions. Joint management
of libraries and borrowing is done by a database distributed
over 3 sites (Site1 = ENIT, Site2 = FST and Site3 = FSEGT).
The global schema is described in Table II.

Managing this application is based on the following
assumptions:

i. An employee is assigned to a single site.
ii. A student is enrolled in a single institution, but can

borrow from all libraries.
iii. A book borrowed from a library is returned to the

same library.
iv. The nb_borrow field of STUDENT relation is used to

limit the number of books borrowed by a student
simultaneously in all libraries. It is updated at each
loan and each return, regardless of the lending library.

v. Each institution manages its own students.
vi. Each library manages its staff and works it holds.

TABLE I. CENTRALIZED DATABASE SCHEMA

EMPLOYEE (NSS, FName, LName, Address, Status, Assignment)

STUDENT (NCE, FName, LName, Address, Institution, Class,

nb_borrow)
BOOK (Id_book, Title, Editor, Year, Area, Stock, Website)

AUTHOR (Id_book, Au_lname, Au_fname)

LOAN (Id_book, NCE, date_borrowing, return_date)

An uninitiated designer in the concept of DDB can ask
the following questions:

i. How to determine the relationships that must be
broken and the ones which will be duplicated?

ii. In case of fragmentation, how to choose the attribute
of fragmentation?

iii. How to choose the allocation of fragments of a
relationship and according to which strategy?

In this section, we merely describe design steps of our
initial database. The aim of our approach is to provide a tool
to help in the design of a DDB.

1) First Step: Relations Fragmentation

Relation EMPLOYEE:
EMPLOYEE_ENIT = ΠNSS, ,fname, ,lname, Address, Status(σ Assignment =
‘ENIT’ (EMPLOYE))
EMPLOYEE_FST = Π NSS,fname, lname, Address, Status (σ Assignment =
‘FST’ (EMPLOYE))
EMPLOYEE_FSEGT = Π NSS, fname, lname, Address, Status (σ Assignment =
‘FSEGT’(EMPLOYE))
Relation STUDENT

1) Vertical Fragmentation is applied to the STUDENT table
STUDENT_Biblio = Π NCE, lname, fname,Nb_borrow(STUDENT)
STUDENT_Inst = Π NCE, lname, fname,Adress,Institution,Class(STUDENT)
2) Then we applied a horizontal fragmentation on the table STUDENT
STUDENT_ENIT = Π NCE, lname, fname, Adress, Class (σ Institution =
‘ENIT’(STUDENT))
STUDENT_FST = Π NCE, lname, fname, Adress, Class (σ Institution =
‘FST’(STUDENT))
STUDENT_FSEGT = Π NCE, lname, fname, Adress, Class (σ Institution =
‘FSEGT’(STUDENT))
 Relation BOOK
BOOK_ENIT = Π Id_book, Title, Publisher, Year, Domain, Stock (σSite=
‘ENIT’(BOOK))
BOOK_FST = Π Id_book, Title, Publisher, Year, Domain, Stock (σSite= ‘FST’(BOOK))
BOOK_FSEGT=Π Id_book, Title, Publisher, Year, Domain, Stock(σSite= ‘FSEGT’
(BOOK))
 Relation AUTHORS

 AUTHOR_ENIT = AUTHORS ⋈ BOOKENIT
 AUTHOR_FST = AUTHORS ⋈ BOOKFST
 AUTHOR_FSEGT = AUTHORS ⋈ BOOKFSEGT
 Relation LOAN
LOAN_ENIT = LOANS ⋈ BOOKENIT
LOAN_FST = LOANS ⋈ BOOKFST
LOAN_FSEGT = LOANS ⋈ BOOKFSEGT

2) Second Step: Checking the correctness of the

fragmentation
For each fragmentation, we must check: The

completeness aspect, reconstruction and disjoint. We present
the following reconstruction aspect that seems to be the most
important and most critical.

i. EMPLOYEE relation’s reconstruction
Ti is a relationship with a single attribute, the attribute
assignment. The value of this attribute is i. The
reconstruction of the starting relation EMPLOYEE can be
done by a union (U) of all the EMPLOYEE fragments on
each site and the selection (x) of the assignment attribute of
Ti (column Assignement).
EMPLOYEE = Ui(EMPLOYEEi x Ti)

ii. STUDENT’s relation reconstruction is done in
several steps:

Ri is a relation with a single attribute, the Institution. The

value of this attribute is i.

105Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 STUDENTInst = U(STUDENTi x Ri)

After STUDENTInst reconstruction, the initial relation can be

obtained by a join (⋈) of STUDENTInst and

STUDENT_BIBLIO duplicate fragment.

 STUDENT = STUDENT_BIBLIO ⋈ STUDENTInst
iii. BOOK’s relation reconstruction

Si is a relation having a single attribute, the attribute site.

The value of this attribute is i.

 BOOK = Ui(BOOKi x Si)
iv. AUTHORS’ relation reconstruction

 AUTHORS = Ui(AUTHORSi)
v. LOAN’s relation reconstruction

 LOAN = Ui(LOANi)
3) Step Three: Defining an allocation scheme for each

site
Considering the hypotheses provided by the user, we

decided to duplicate the STUDENT_BIB table with a
synchronous update. The resulting local schema is as
described in Table III, Table IV, and Table V.

TABLE II. SITE 1 LOCAL SCHEMA: ENIT

EMPLOYE_ENIT (NSS, FName, LName, Address, Status)

STUDENT_ENIT (NCE, FName, LName, Address, Class)

STUDENT_BIB (NCE, FNAME, LNAME, Nb_borrow)
BOOK_ENIT (Id_book, Title, Editor, Year, Field, Stock)

AUTHOR_ENIT (Id_book, FNAME_author, LNAME_author)

LOAN_ENIT (Id_book, NCE, borrow_gdate, return_date)

TABLE III. SITE 2 LOCAL SCHEMA: FST

EMPLOYE_FST (NSS, FName, LName, Address, Status)
STUDENT_FST (NCE, FName, LName, Address, Class)

STUDENT_BIB (NCE, FNAME, LNAME, Nb_borrow)

LOANS _FST (Id_book, Title, Editor, Year, Field, Stock)
AUTHOR_FST (Id_book, FNAME_author, LNAME_author)

LOAN_FST (Id_book, NCE, borrow_gdate, return_date)

TABLE IV. SITE 3 LOCAL SCHEMA: FSEGT

EMPLOYE_FSEGT (NSS, FName, LName, Address, Status)

STUDENT_FSEGT (NCE, FName, LName, Address, Class)
STUDENT_BIB (NCE, FNAME, LNAME, Nb_borrow)

BOOK_FSEGT (Id_book, Title, Editor, Year, Field, Stock)

AUTHOR_FSEGT (Id_book, FNAME_author, LNAME_author)
LOAN _FSEGT (Id_book, NCE, borrow_gdate, return_date)

The local schema of the sites ENIT, FST and FSEGT are

almost the same. Distribution column in horizontal fragment
are removed as in EMPLOYE_ENIT table for example. This
is not considered as data loss because data location replaces
each row qualification (assignment column), but storage
optimization.

C. Distribution performance evaluation

To evaluate distribution strategies, we focus on one DDB
performance parameter: Execution time. We define an
operation as a book subsequent borrowing and back
operation. This procedure takes in charge additional
checking operation as book availability and student ability to
borrow (< N books at a time).

First calculation plan, the reference, considers
execution time on a remote call to centralized database.

Second evaluation scenario is to fragment “STUDENT”
table horizontally and it derived “LOAN” table. “BOOK”
will also be split horizontally based on “UNIVERSITY”
column.

Third scenario is built by splitting “Student” table
vertically to get the “STUDENT_BIB” fragment and then
duplicate this fragment on each site.

Once implemented, we stress-test database on each
scenario with 100 concurrent users for 100 borrow-return
operation. The results are described in Figure 1.

Figure 1. Load test result on each scenario

Native interpretation of the above diagram shows that
first distributed scenario gives a similar or less efficient
performance than centralized database. This may be
explained by rising inter-sites update operations on stretched
horizontal fragments. Trying to fix this issue through a
nested fragmentation on “STUDENT” table made significant
improvement but it is still penalizes write operations (lock
acquisition duration between concurrent processes). It is
worth to remembering that this evaluation omit erroneous
transactions assuming that the application layer handles such
constraints. Moreover, performance criteria are not the only
dimension to consider in DDB evaluation [2]. Data storage
optimization and transaction errors rate in the distributed
context have a major impact on DDB strategy rating.

Even if all distribution scenarios seem to be valid at first
sight, evaluation against worst scenario can favor some
distribution scenario over others.

D. DDB Implementation principle

DDB implementation is carried out manually. DBA must
make a centralized DBMS as distributed one by granting
multiple transparencies as described in [6][9]:

i. Distribution Transparency making users ignore data
replication and fragmentation. As a direct
consequence, the system handles updates of all copies
of a fragment.

106Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

ii. Transaction transparency ensures global database
transparency in user’s concurrent access and on
system breakdown.

iii. Performance transparency grants that the system
manages efficiently queries referencing data related to
multiple sites.

iv. Queries transparency referencing data of more than
one site.

DBMS transparency allows using different DBMS in the
global system, without making the user aware of it.

III. MOTIVATION

As described previously, DDBs are still facing the
following issues:

i. DDB design is not an easy task. Multiple criteria
must be considered in this sensitive operation: Sites
number, user needs and frequent queries.

ii. Designer must establish a compromise between data
duplication and performances cost of update and
select queries. He must find out relationship to
fragment, to replicate and update type to consider on
each synchronous or asynchronous relationship.

iii. Existing DDBMS have several do not have an
integrated component which ensures the automatic
distribution of the initial centralized database as
confirmed Table V.

TABLE V. OVERVIEW OF SOME DDBMS

Prop.
RDBMS

ORACLE

[5]
F1[8]

Cassandra

[4]

Actian

[10]

MySql

[12]

Partioning

API

Oracle

Partitioning

Spanne

r

RP &

OPPa

Ingres
XOpen

DTP

MySql
Cluster

GCE

GUI No No No No No

Auto.

Impl.
No No No No No

a. Random Partitioner & Order Preserving Partitioner

The summarized Table V shows that main market of
DDBMS have partitioning APIs; but, it always in command
line which request a lot of effort from designers to
implement a DDB.

In the following section, we propose a new approach of
DDB design and implementation assistance. This outlined
approach was validated by the design and the
implementation of an assistance providing designer with a
graphical interface for carrying different types of database
fragmentation, allocation and replication, ensuring validation
on each step of the process. Once the schema has been
described graphically, the system generates SQL scripts for
each site of the initial described configuration (site
properties). The proposed tool can be added as a layer for all
existing DDBMS.

IV. NEWAPPROACH PROPOSAL

In the section, we propose our new approach of DDB
design and implementation assistance.

A. New Approach aims

Ideally, the new layer must satisfy the following objectives:
i. Design help for distributed schema: The layer must

provide the designer a friendly and productive
interface that allows him to represent the draft of the
design in to a comprehensive and accessible script to
review and collaboration. Fields, tables, sites
suggestion lists and work tools (fragmentation and
replication) must be provided to designer to ease
schema graphical description and avoid additional
task complication.

ii. Automated implementation of design schema: Once
distribution schema has been established and
validated by the designer along with the wizard
assistance, the component “Script generator” must
afford the ability to translate accurately the described
distribution policy to valid SQL scripts. Generated
scripts can be directly run in sites from the layer if
access has already been prepared, or given deliverable
files to transmit to each site administrator.

B. Suggested layer architecture

Figure 2 illustrates the architecture of the proposed layer.

Figure 2. Layer Architecture

The implemented layer offers:
i. Access to centralized database to distribute

ii. DB link creation
iii. Horizontal, vertical and nested fragmentation
iv. Fragmentation result validation
v. Data replication
At the end of the process, two options are afforded to

carry out scripts, depending on afforded preconditions:
i. Automatically: If the design environment has valid

access to remote sites, the layer carries out scripts in
each remote site.

ii. Manually: User transfer files using an external tool
and handles then implementation in remote sites.

C. Work Results Description

Oracle Database distribution wizard is intended to help
users graphically distribute a centralized database, supports
the creation of DB links, horizontal, vertical and hybrid
derived fragmentation, validation of different types of
fragmentation and replication. The end result is a set of SQL

107Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

scripts to run on each site. The given algorithm in Table VI
summarizes the general functional process.

TABLE VI. SUMMARY ALGORITHM OF THE ASSISTANT

BEGIN
 accessible := FALSE; sites_count := 0;sites_list := NULL;
 start_tables_list :=NULL; fragments_list := NULL;
 scripts_set := NULL;
 WHILE (accessible = FALSE){
 read (ip, username, password);
 accessible:=check_access_to_site(ip,username,password);}
 WHILE (sites_count <= 0) { read(sites_count); }
 FOR (i:=0; i < sites_count; i++){
 valid_site := FALSE; a_site := NULL;
 WHILE(valid_site = FALSE){
 a_site := create_site(read(site_info));
 IF(a_site != NULL) {valid_site := TRUE;}
 add_site(sites_list,a_site);}
 start_tables_list := load_start_tables_list(ip, username, password);
 IF(start_tables_list != NULL){
 finished_fragmentation := FALSE;
 WHILE(finished_fragmentation = FALSE){
 read(table_to_process); read(fragmentation_type);
 temp_fragments_list =fragment(table_to_process, fragmentation_type)
 valid_fragmentation := validate(temp_fragments_list, table_to_process,
 fragmentation_type);
 IF(valid_fragmentation.result = TRUE){
 merge_list(temp_fragments_list, fragments_list); }
 show_validation_report(valid_fragmentation.report);
 read(finished_fragmentation);} }
 FOR EACH(FRAGMENT f in fragments_list)
 { write("Duplicate fragment "+ f.fragment_name);
 read(duplicate);
 IF(duplicate = TRUE){
 FOR EACH (Site s in sites_list){
 write(s.ip + " holds a copy of "+f.fragment_name+"?");
 read(hold_copy)
 IF(hold_copy){
 temp_frag = copy_fragment(f);
 temp_frag.site = s.ip;
 temp_frag.duplicat = TRUE;
 fragment_list.add(temp_frag);
 }}} }
 read(save_repository);
 IF(fragments_list != NULL){
 FOR EACH (Site s IN sites_list){
 script_file_name = save_repository +
 SEPARATOR + "script_" + site+".sql";
 exists := find_file(script_file_name, scripts_set);
 if(exists = FALSE){
 creer_fichier(script_file_name);
 ecrire_lien(script_file_name,s);
 add_script(scripts_set, script_file_name);
 } FOR EACH(Fragment f IN fragments_list){
 IF(f.site = s OU f.replicat){
 transcript(f,script_file_name);
 }} }}
 IF(scripts_set != NULL){
 FOR EACH(FILE fc IN scripts_set){
 add_synonyms(fc);
 add_stored_proc(fc);
 add_materialized_views(fc); }
 read(auto_execute);
 IF(auto_execute){
 FOR EACH(FILE fc IN scripts_set){
 can_run:=check_access_to_site(fc);
 if(can_run){run(fc);} }}}
 END

V. DDB HELPER

Distribution wizard "DDB Helper" is intended to help
users graphically distribute a centralized DB, supports the
creation of DB links, horizontal, vertical, hybrid and derived
fragmentation and replication. The final result is a set of
SQL scripts to run on each site.

 To implement our tool, we used Microsoft Windows
Seven software environment. Simulation nodes in network,
was made by installing two virtual machines (Oracle Virtual
Box) on the chosen host. The development environment is
apprehended DotNet framework 4.5 [1].

DDB Helper provides designers with multiple screens.
After welcome screen and tool introduction and interactive
help access, user access the connection panel to identify
target centralised database.

On successful connection test, next screen is just a popup
asking for the number of sites on the distribution. Then, a
visual map is displayed with raw nodes. Designer must
identify each site with network adress (either a name or an
ip), a logical name and the DB link name.

Figure 3. DDB Visual Sites Map

Next step after sites definition is the fragmentation

screen. The list of accessible tables for the previously
defined user is added as an auto complete on the first
combobox. The second combobox suggests fragmentation
types (horizontal, vertical and nested). Derived
fragmentation is transparent to user. As example, vertical
fragmentation interface provides user with the list of
columns of chosen table. User enters fragment name and
chooses hosting site and then checks columns related to this
fragment. By default, the tool keeps the last selection of
columns so that the designer can affect the same fragment to
multiple sites without redefining then fragment columns. If
the designer needs to flush selection, a shortcut on F5 key is
linked and functional.

Once finished the fragmentation for a table, the wizard
starts an automated validation for the described
configuration. Adding a fragment without a primary key is
already controlled while creating the fragment (on “Add
Fragment” button click). Validation screen is displayed then:
The left canvas holds a fragment tree with first level nodes as

108Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

sites, second level nodes as fragment names and leaves are
the columns. Primary key is highlighted (orange color). In
the right container, the validation report is displayed for the
three validation criteria: Reconstruction, completeness then
disjointness.

Those criteria are examined respectively with details of
failure or invalid result. In the current trace we did in
purpose correct fragmentation on ENIT site, then a
completeness non-compliant fragmentation for site FST, and
finally we forgot-in purpose- the NB_BORROW column in
two fragments to make fragmentation disjointness non-
compliant. A validation trace sample is described in Table
VII.

TABLE VII. SAMPLE EXECUTION TRACE OF VALIDATION

PROCESS

Fragmentation result validation for table STUDENT:
Reconstruction aspect test:

-Fragment STUD_BIB_ENIT on ENIT has primary key.

-Fragment STUD_BIB_FST on FST has primary key.
-Fragment STUD_BIB_FSEG on FSEG has primary key.

-Fragment STUD_ADMIN_ENIT on ENIT has primary key.

-Fragment STUD_ADMIN_FST on FST has primary key.
-Fragment STUD_ADMIN_FSEG on FSEG has primary key.

->Reconstruction aspect is valid on all sites.

Completeness check for vertical split FST:
-Completeness aspect test for site FST:

->There is no relation that can reconstruct the original table on the active

distribution in site FST;
Not all columns of the original table are distributed over vertical

fragments.
Original columns count: 8

Distinct columns count after distribution: 7

Skipping disjointness aspect test...

Completeness check for vertical split ENIT:

-Completeness aspect test for site ENIT:

->Completeness aspect is valid on site ENIT
-Disjointness Aspect test for site ENIT

->Disjointness aspect is valid on site ENIT

Completeness check for vertical split FSEG:
-Completeness aspect test for site FSEG:

->Completeness aspect is valid on site FSEG

-Disjointness Aspect test for site FSEG
-> Detected duplicate columns(different from PK) in fragments of site

FSEG:

This configuration does not fill disjointness requirement.
Duplicate Columns are: NB_BORROW

The trace shows the validation process result.

Reconstruction aspect is checked first. Then, completeness
aspect is checked out. In this sample, the completeness
aspect is altered in site FST. When the validation wizard
component tries to rebuild the parent table from its child
fragments, it fails because one column is missing from all
vertical fragments. Finally, disjointness check reports a
broken distribution against this correctness rule because of a
duplicate column different from primary key between two
fragments in site FSEG. The detailed report is very helpful
while steeping back to correct distribution strategy.

By the end of the whole process, if the policy is validated
by the wizard and designer, the tool takes in charge the
transcription of visual design into SQL scripts to run on
remote sites. The only necessary parameter for this operation

is scripts location. Script files naming convention is as
follows: [SITE_NAME]_DDB_SCRIPT.sql.

The generation process goes through all sites and
generates the script to create symbolic links, then transforms
into a standard fragments and commented SQL script. The
field names and types are consistent with the starting table
(same name and same type). Procedures, views, triggers, and
the various components are then written accordingly.

VI. COMPARISON WITH EXISTING APPROACHES

In parallel with the work of DDBMS vendors and
developers, the design of distributed Database has been
investigated in many research papers. In this section, we
focus on the works of Rim [11] and Hassen [7]. The first,
DDB Expert: A Recommender for Distributed Databases
Design proposes an open source expert system for database
partitioning. The author has implemented a recommender for
DB fragmentation, which infers solutions for table
fragmentation using a knowledge base populated with DB
schema, DB workload facts, and DB statistics.

The second is “A New Data Re-Allocation Model for
Distributed Database Systems” [7]. Abdalla presents a new
data re-allocation model for replicated and non-replicated
constrained DDBSs by bringing about a change to data
access pattern. This approach assumes that the distribution of
fragments over network sites was initially performed
according to a properly forecasted set of query frequency
values that could be employed over sites

In our work, we help the designer to validate its
fragmentation; User who chooses attribute frag. Our layer
enables:

i. Checking whether the described fragmentation is
valid or not against reconstruction and completeness
criteria. Disjointness is checked twice while creating
fragments and on global validation. But this is a non-
blocking condition because of design issues
sometimes where we opt for non-empty intersection
to keep inter-site relational integrity.

ii. Automatically generate SQL scripts Materialized
views definition is based on reconstitution rules of
pre-established relations.

iii. As the previous works in this field published by Rim
are focused on design assistance, this work can lead
to a complete distribution layer if associated with the
open source work of Rim [11].

VII. CONCLUSION AND FUTURE WORK

In this work, we have highlighted the constraints and
challenges faced by designers for carrying out a DDB
scheme. We have explained some concepts of DDBs and
methods of design and implementation of such a database.
Lack of a smart assistant that allows the automatic
implementation of a database distribution policy was our
starting point for the design and implementation of an
assistance layer to design and implement a DDB.

The result of current work is a friendly visual wizard,
which allows the translation of schemes of distributed
directly on all the nodes of the topology.

109Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

Further work to improve the DDB-helper layer: 1) Full
support of hard and software heterogeneity (Different
DBMS, Different OS, and Network topology) and 2)
integrate performance simulator (Enable designers to
anticipate bottlenecks even before implementing distribution
policy, predict performance interpolation graphs based on
user predefined queries).

REFERENCES

[1] A.P. Rajshekhar, .Net Framework 4.5 Expert Programming

Cookbook, Packt Publishing, 2013, pp. 45-101, ISBN: 978-1-84968-
742-3.

[2] A. Silberschatz, Distributed databases. In Database System Concepts,
fifth edition, Connecticut: McGraw-Hill, pp. 705-749, 2006.

[3] B. Pribyl and S. Feuerstein, Learning Oracle PL/SQL, O'Reilly
Media, 2001, pp. 21-269, ISBN: 978-0-596-00180-3.

[4] E. Hewitt, Cassandra: The definitive guide. O’Reilly Media, Inc.,
November 2010.

[5] F. Bouzaiene, Oracle Golden Gate. In: Conférence "Oracle
Technologie Day Tunis", Oradist, 27 Mars 2013, Hotêl Sheraton,
Tunis.

[6] G. QIAN, B. LIU, and J. CHEN, “Design and Implementation of
Distributed Database System,” Modern Surveying and Mapping, June
2010, ISSN: 1672-4097.

[7] H.I. Abdalla, A New Data Re-Allocation Model for Distributed
Database. Systems International Journal of Database Theory and
Application, vol. 5, June 2012.

[8] J. Shute and M. Oancea , S. Ellner, B. Handy, E. Rollins, S. Bart, R
Vingralek, C. Whipkey, , B. Jegerlehner, K. Littlefield, T. Phoenix,
F1 -The Fault-Tolerant Distributed RDBMS Supporting Google’s Ad
Business, 16 Mai 2012, Arizona..

[9] M.T. Özsu and P. Valduriez, Principles of distributed database
systems.New York, Springer, 2011.

[10] M. Stonebraker, The INGRES Papers,.Addison-Wesley Publishing
Compay,1986.

[11] R. Moussa, DDB Expert: A Recommender for Distributed Databases
Design.Database and Expert Systems Applications (DEXA), pp. 534-
538, 2011.

[12] Y. Bassil, A Comparative Study on the Performance of the Top
DBMS Systems. Journal of Computer Science & Research, vol. 1,
No. 1, pp. 20-31, February 2012.

110Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

