
1

An Object-oriented Approach for Extending MySQL into NoSQL with Enhanced
Performance and Scalability

H. Shim, Y. Sohn, Y. Sung, Y. Kang, I. Kim, and O. Kwon
Samsung Electronics Co., Ltd

{hyunju67.shim, ycsohn, yw.sung, ygace.kang, ij00.kim, ohoon.kwon}@samsung.com

Abstract—This paper introduces an object-oriented approach for
extending MySQL into Not-only SQL (NoSQL) for enhanced
performance and scalability. Main goal of our system is to provide
a database management system that handles a huge amount of
data in a fast and reliable way. In designing database management
Application Programming Interface (API), we adopted an Object-
Relational Mapping (ORM) approach that provides a mapping
between objects in user code with tables in database. This
mapping allows developers to handle data in database tables
by manipulating the objects that are mapped to. To provide a
flexible and efficient distribution of large amount of data among
multiple database nodes, we designed a unique ID scheme which
is optimized for the primary key lookup operations by encoding
the shard key information into its data ID. In this way, queries
predicated with data ID can always go directly to the target node
no matter which key the data is distributed on. With our ORM
approach, query predicates are composed as a combination of
Java method calls and no query parsing is necessary at database
layer. Having no query to be parsed, we leveraged HandlerSocket,
a MySQL plugin, which bypasses the upper layer of MySQL
hence improving overall performance. To evaluate our system,
we performed a set of tests and proved that our system provides
improved performance and linear scalability compared to the
traditional MySQL approach.

Keywords-performance, robustness, scalability, object-relational
mapping, distributed query processing

I. INTRODUCTION

Recently, due to the huge success in social networking
services such as Facebook and Twitter, the amount of user
data to be handled by a single service has exponentially grown.
To support a service where a huge number of users generate
tons of data at every second, its database management system
must not only be fast and robust but also be highly scalable
and available. In database system, scalability is defined as an
ability to increase the total throughputs linearly as database
storages are added. With highly scalable database system,
simply adding more database nodes to the system will handle
ever increasing user data without performance degradation. For
highly available system, its database solution must eliminate
any single-point-of-failure in system and guarantee its service
level agreement.

Traditional database management systems (DBMS) de-
signed to serve complex queries with Atomicity, Consistency,
Isolation, and Durability (ACID) properties have demonstrated
its architectural limitations in handling the large amount of data
that recent social services generate. To remedy this situation,

researchers investigated in alternative database management
systems that can handle large amount of data with high
performance and scalability. As a result of those efforts, a
new type of database management systems called NoSQL (Not
only SQL) were introduced including Amazon’s Dynamo [1]
and Google’s Bigtable [2]. Unlike data in traditional database
systems were modeled and handled as relational tables, data
models in NoSQL are characterized into several categories
such as document-based [3], column-oriented [4], key-value
pairs [5], graph-based [6], and etcetera.

Although NoSQL provides a fast access to vast amount of
data with variety of data models, being recent technology,
they are not robust enough compared to the traditional DBMS
such as Oracle [7] and MySQL [8]. Also, being distributed
database system, NoSQL has an innate trade-off between high-
availability and data consistency [9] and recent trend is
that developers choose NoSQL or RDBMS for specific needs
depending upon the nature of their data and services [10]. In
this paper, we introduce a data access framework we developed
on top of MySQL to provide a fast and robust data access with
high scalability and availability.

Section II describes about the overall architecture of our sys-
tem. Section III and Section introduce our approach to database
sharding and programming model. Section V describes our
experimental results and, finally, Section VI concludes this
paper and explains about our future works.

II. OVERALL ARCHITECTURE

Main goal of our system is to provide a fast and robust
data access framework with high scalability and availability as
followings:
• For high scalability, we horizontally partitioned tables

into multiple database nodes.
• For high availability, we automated the procedures for

master failover and provided an online tool for shard
rebalancing that redistributes data from one shard to
another.

• For robust data management, we leveraged the MySQL
storage engine, which has been used for many commer-
cial services for a long time.

• For fast data access among multiple data nodes, we
designed a unique ID scheme which is optimized for
the ID lookup operation no matter which key the data
is distributed on. This is done by encoding the shard
key information into the data ID.

111Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

2

Figure 1: Overall Architecture of Our System.

• For fast data access in a single data node, we adopted
HandlerSocket plug-in [11] and made read requests be
routed to replica nodes.

As shown in Figure 1, our system is mainly composed of
four parts: Data Access Framework in client side, which builds
query conditions from user code and distributes queries among
multiple MySQL nodes, Zookeeper which coordinates shard
maps that resides in client nodes, MySQL database nodes
with Active-Standby replications, and Administration Tools
which provide command line interfaces for shard creation and
online rebalancing. Among many features of our system, data
distribution, programming API, performance, and scalability
aspects of our system are discussed in the following sections.

III. HORIZONTAL PARTITIONING OF DATA

A. Basic Concept of Database Sharding
In our system, we achieved database scalability by hori-

zontally partitioning a single table into multiple data nodes
where rows of a table are held separately based on the values
of a certain key. This vertical partitioning of tables is called
sharding and the key used to divide value range of data is called
shard key. Two famous approaches for sharding are hash-based
sharding and range-based sharding. In the hash-based sharding,
data is simply distributed based on the hash values of its
shard key hence data are evenly distributed among multiple
data nodes. However, since data are scattered among multiple
shards - data nodes, it is inefficient to perform queries with
range conditions e.g., smaller than, larger than, and etcetera.
For those range queries, every shard needs to be accessed to
check if the node has the data that meet the range conditions.
Also, with a simple hash, when a new data node is added into
the system to increase the total capacity of storage, data from
every node must be relocated based on the new hash function.

To remedy this data migration of every shard in a simple
hash-sharding, consistent hashing was introduced [12]. In

Figure 2: Concepts of Hash Sharding (left) and Rule
Sharding(right).

consistent hashing, hash key space is mapped to the points
on a ring representation and each point is mapped to a data
node. Thus, each data node covers a certain range of hash key
space represented on the ring. When the number of data nodes
changes due to crashing of any node or addition of a new node,
only K/N keys need to be reallocated on average where K is
the number of keys and N is the number of points or data
node on the ring. To reduce data migration in case of node
crash, data in the nodes are replicated in such a way that each
node in the ring keeps the master copy of its own key ranges
and replicas of adjacent nodes. In the left image of Figure 2,
data being replicated to its adjacent nodes, when the node A
crashes, requests made to A are then routed to node B hence
node B became the master for the data whose hash key space
is mapped to A and B. When a new node is added, a hash
key range owned by D is divided into two and half of them
are migrated to the newly added node letting the newly added
node become a new master node of the migrated half.

Unlike hash-based sharding, rule-based sharding groups
shard key ranges and maps the groups to a set of data nodes.
The file that keeps this mapping information is normally
referred to as a forwarding table. Advantages of rule-based
sharding are flexible data distribution and efficient support for
ranged-queries. With range-based sharding, database adminis-
trators can make sharding rules specific to their applications
and data with similar shard key values are stored in the
same data node hence supporting range queries efficiently.
One of main disadvantages of range-based sharding is uneven
distribution of data. If the sharding rule does not reflect the
actual distribution of data then some of data nodes might get
congested while others are sparse. To make data nodes evenly
distributed, frequent data migrations and shard rule updates
might be required. Right image of Figure 2 illustrates the main
concept of rule-based sharding. In our system, we designed a
modified rule-based sharding with doubly mapped forwarding
table and fixed length of ID. Following section explains details
about the sharding in our system.

112Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

3

Figure 3: How Sharding Works in Our System.

B. Doubly Mapped Range-based Sharding

When distributing data among multiple nodes, they must be
grouped based on the values of a certain key, which is called
a shard key. For efficient distribution of data, it is important
to select a shard key that is common for most of queries in
the system. Because, once data is distributed among multiple
shards based on their shard key values, queries predicated with
a shard key can be directly sent to the target shard by referring
to the forwarding tables while others must be sent to every
shards to see if the data to be queried reside in there.

For an efficient sharding of data where most of their queries
are ID lookup operations, we designed a 64 bits ID scheme
in such a way that the shard key values are encoded within
it. With this approach, data is distributed based on any key
while the ID lookup operations can always go directly to its
destination shard by referring to the shard rule files. In the ID
scheme we designed, the first 16 bits represent the virtual shard
ID (VSID), which is mapped to a physical database node, the
middle 16 bits represent a database table and the remaining 32
bits represent a local ID which is unique within the table.

For data read and write operations, our system maintains
two mapping files: ShardKey2VSID and VSID2Shard the
ShardKey2VSID file maps the shard key value ranges to 216

VSIDs and the VSID2Shard file maps the 216 VSIDs to the
physical database nodes in system. For data writing, a VSID
is first assigned based on its shard key value by referring to
the ShardKey2VSID rule file. Once a VSID is assigned, a
target database is determined by referring to the VSID2Shard
rule file. Once the physical shard determined, data is stored
in the data types table with the local ID provided by the
MySQLs auto-increment functionality. Figure 3 shows how ID
is generated for data and stored in our system. For data reading
with ID, our system looks at the first 16 bits of the ID, which
is the VSID part, and finds the target shard by referring to
the VSID2Shard file. For data queries including shard keys
values can also be directly sent to the destination shards by
comparing the shard key values with the ShardKey2VSID

and VSID2Shard files. Like other sharding systems, queries
without shardkeys must be sent to every shard.

One of the main design goals of our VSID is to support
flexible sharding of data with multiple shard keys while
encoding the shard key values into the fixed length of ID.
Using our system, a database administrator can set rules for
each 16 bits to distribute data according to the characteristics of
their applications. For example, sharding a user data according
to the birthday and zip code in such a way that the upper
8 bits of VSID are set based on the birthday and the lower
8 bits are set based on the zip code of users will result
that user data with similar birthday and zip code will be
stored in the same database. If related data are gathered in
a single shard, operations such as transactions and joins can
be performed locally using SQL in user code hence providing
better performance. Note that transaction and join operations
among distributed data are very complex and time consuming
tasks. Also note that, being Java API, users can use our API
and standard SQL statements together in their code for simple
data look up operations and transaction and join operations,
respectively.

IV. PROGRAMMING MODEL

In relational database systems, the Structured Query Lan-
guage (SQL) provides a standard way to access and manipulate
data in database tables. To access data in RDBM tables from
an application, developers normally compose SQL statements
in a string representation and request/execute the query using
the database client API. Figure 4 shows the example code for
creating a database table and inserting/querying data into/from
the table using SQL in Java.

Although SQL provides a standard and structured way to
store and retrieve data in tables, when used in Object-Oriented
(OO) programming languages where data to be manipulated is
represented as properties of object, there exists a gap between
the representations of data in the programming code side
and in the database side. That is, data in database tables
are represented as a set of columns with scalar values while
the data in OO programs are represented as properties with
associated get/set methods. While developers can manually
map the objects in their code into the rows of tables, some
Object-Relation Mapping (ORM) frameworks have been intro-
duced to free developers from this manual mapping [13][14].
Using ORM API developers can save and retrieve objects
into and from the relational database tables as if they are
manipulating their objects using standard OO methods. In our
system, we designed and developed a set of ORM API which is
highly optimized for building and requesting complex queries
to database tables which are physically distributed in a fast
way. Following sections describe details about accessing and
manipulating data in tables from Java code using our ORM
API set.

A. Data Definition
While relational database tables are normally created using

the Data Definition Language (DDL) statements of SQL as
shown in Figure 4, with the ORM approaches, tables can also

113Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

4

Figure 4: Example Code of SQL Statement in Java Code.

Figure 5: Data Definition and Query Condition in Our
System.

be created from the annotations in the source code or from
XML documents that specify mapping between the objects and
database tables [13][14]. In our system, for the definition of the
structure and schema of database tables across the distributed
database tables, we first designed a set of Java annotations and
then developed a tool that reads the annotations in a Java code
and creates the tables in the sharded databases according to

Figure 6: Composing a Query and Fetching Data.

the pre-defined sharding rules.
Using our system, developers can create tables with a

primary key, a foreign key, an auto-increment column using our
annotations such as @Entity, @ID, @RefTo, and @Counter
annotations, respectively. For every class with @Entity an-
notation, a corresponding table is created in database nodes.
Class variables with no annotations will be created as a simple
column with its data type defined in the code. For the class
variables with @Transient annotation, no matching column
will be created in the table. Figure 5 shows the example code
for the creation of a table in our system and basic concepts
about how the tables are created in multiple shards by the DDL
tool of our system. In Figure 5, the User table is created in
three shards according to the rules in VSID2Shard file.

We also provide a predicate annotation for methods where
developers can specify query predicates to be made for the
correspondent table. Middle part of the Figure 5 shows the
example @Predicate methods which compare the method
parameters with the values of the name and age of the entity
object and return the comparison results. This @Predicate
annotated method is a building block for complex queries to
the database table that corresponds to the current entity object.
In the application code, developers can compose a complex
query to a database table by calling the @Predicate annotated
methods of the corresponding entity object. Following section
explains how to build a complex query by leveraging this
@Predicate annotated methods in detail.

B. Data Manipulation
With our ORM approach, developers can manage data in

a table as they manage them with object. To insert data into
a table, developers simply create an object with values to its
member variables and provide the object as a parameter of
our save() API. To update data in a table, developers first
fetch the row of the table to be updated using our fetch() API

114Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

5

note that our fetch() API fetches data from database tables and
maps them to the object upon which the data request is made.
Once the row is fetched as an object, update can be made to
the object using the set() method and save the object into the
database table again using our save() API.

In our system, complex queries can be built by combining
the @Predicate annotated methods that were pre-defined in
the @Entity class. For example, using the predicate methods
in Figure 5, the named and olderThan methods, we can build
a query for selecting users whose name is John and whose
age is older than 19 as in the last example in Figure 6. Note
that composition of a query is achieved by sequentially calling
the @Predicate methods of the Entity class. Once the query
condition is built, developers can fetch data that meet the query
conditions by calling the fetch() or fetchlist() API at the end of
the query conditions built. For the fetch or fetchlist() methods,
our query engine takes the user-built query and fetches the
data that meet the conditions from the multiple shards.

Advantages of our ORM approach can be summarized in
two points. First one is that since class variables and methods
are mapped to a database tables and query predicates, appli-
cation developers can manage data in database transparently -
that is the application developers even do not need to aware the
database behind the application and manage data as if they are
managing objects in their application. This satisfies the goal
of ORM, which is eliminating the conceptual gap between
the objects in OO programs and the relational tables. Also,
since there is no string manipulation for composition SQL
statements, many typo errors can also be eliminated.

Second advantage of our approach is that since the query
conditions are defined as class methods, developers can specify
query conditions using the operators allowed in SQL WHERE
clause such as LIKE, IN, MAX, etc., along with the language
operators, such as bitwise operators and variety of string
operators. With SQL approach, developers apply additional
language operators to the SQL query results to meet the certain
requirements of the application. In our system, the query
condition defined using language operator is called a client
query and the query condition that can be mapped to the SQL
WHERE clause is called a DB query. Next section describes
details about the query engine of our system.

C. Query Engine Internals
Query engine in our system is responsible for constructing

a database query from the query predicates in application code
and making request to database tables in multiple shards and,
finally, returning the query results to the application as an
object. Figure 7 illustrates the internals of our query engine.
Once the build() API is called, our query engine starts building
an empty query object that correspondent to the query class
specified in its argument. In Figure 6, this correspondence
to s.build(UserQuery.class). Once an empty query object is
ready, the query engine adds the query conditions to the query
object as it is specified in the application. In Figure 6, this
correspondence to olderThan(19) and named(John).

Once the query object is built with the given query condi-
tions, our query engine separates the database query conditions

Figure 7: Internals of Query Engine.

from the client query conditions. Previously, it was mentioned
that, the query condition defined using language operator is
called a client query and the query condition that can be
mapped to the SQL WHERE clause is called a DB query. As
the database queries are filtered out, our query engine converts
the database queries into a format of HandlerSocket protocol.
Finally, the query engine refers to the sharding rule files to
identify the target shards where the query must be sent and
makes database request to them.

As the database query results are sent back from the target
shards, the query engine aggregates the results and applies the
previously filtered-out client query conditions to the results
and, finally, returns the result to the application as an object.
Note that, at the bottom of Figure 6, the result of fetchlist() is
directly assigned to the list of User objects.

V. PERFORMANCE AND SCALABILITY

A. Performance Enhancement

To process SQL statements in the server-side, MySQL upper
layer includes a parser and optimizer that builds a parse tree
and makes a plan for an optimized execution path for the
given query, respectively. Although this parser and optimizer
handles complex SQL queries in an efficient way, they can
also be a burden when the query is very simple so that there
is not much thing to do for parsing and optimizing. For fast
data access with simple query conditions such as ID lookups
and index searches, HandlerSocket [11] was introduced which
bypasses the upper layer of MySQL hence improving read
and write performances. In our system, we implemented our
ORM API using HandlerSocket protocols that communicate

115Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

6

with HandlerSocket plug-in in server-side and directly access
data in MySQL’s storage engine, InnoDB.

One more performance enhancement we made to our system
is leveraging replica nodes to serve for read requests. MySQL
provides a built-in master-slave replication where read/write
operations go to the master node while the data updates are
copied to the replica nodes asynchronously [15]. Although the
main purpose of this replication is keeping extra copies of
data for high availability, we can also achieve an improved
performance by routing read requests to one of replicas and
reducing bottleneck in the master node. In our system, we
designed our query engine to read data from replica nodes in a
round-robin fashion. If a certain replica node is not responding
then one of the other replica nodes in the same shard is read
and the failed replica node is tried after some time.

B. Scalability Enhancement
Earlier in this paper it was mentioned that, linear scalability

of database is defined as an ability to increase the total
throughput linearly as database nodes are added. Being a
range-based sharding solution, adding a new data node and
redistributing data in our system is achieved in following steps
by our shard rebalancing tool:

1) Data migration - migrate the data of a shard whose
volume reaches its threshold. This involves copying
data from a congested node to the newly added node
and deleting the copied data from the congested node.
This way, the congested node and the newly added
node shares data load.

2) Sharding rule update - Update the sharding rule files
accordingly and synchronize the updated rule files in
every WAS node so that the requests for the migrated
data go to the newly added node.

Figure 8 illustrates the concept of the shard rebalancing in
our system. In our system, Apache Zookeeper [16] is used for
the automatic synchronization of the mapping rule files reside
in every WAS nodes.

C. Evaluation Results
To measure the performance and scalability of our system,

we performed a set of tests. Firstly, to compare the perfor-
mance of our approach with the traditional MySQL approach,
we wrote two sets of test codes that access tables in database
- one using JDBC API and one using our ORM API. Then
we set up 1 database node and increased the total number
of application nodes to measure the saturated throughput per
second (TPS) and average latency for two different approaches.
Note that we made each application node spawn 100 threads
that run our test codes and to get the saturated throughput
for 1 database node we should increase the total number of
application nodes up to 28. The test results demonstrated that
our system outperforms the MySQL approach for 34 and 13
times in terms of throughput and saves 68% and 74% in terms
of latency for read and write operations, respectively. Detailed
test results are summarized in Table I and Figure 9.

To measure the scalability of our system, we increased the
total number of database nodes from 1 to 8 and measured

Figure 8: Shard Rebalancing.

TABLE I: Result of Performance Test

Throughput Latency (ms)
SQL-JDBC ORM-HS SQL-JDBC ORM-HS

Data Read 5365 179922 2.0 0.64
Data Write 3902 49627 2.9 0.74

Figure 9: Result Graphs for Throughput Test(Left) and
Latency Test(Right).

the aggregated TPS of all 28 application nodes. As a result
of this test, we proved that our system linearly scales out as
the number of database nodes gets increased. Table II and
Figure 10 show our test results in detail.

116Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

7

TABLE II: Result of Scalability Test

1 DB node 4 DB nodes 8 DB nodes
Data Read 179922 579368 843768
Data Write 49627 169031 303800

Figure 10: Result Graph for Scalability Test.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced our database sharding frame-
work with enhanced performance and scalability. For a flexible
and efficient distribution of data among multiple database
nodes, we designed a unique ID scheme which is optimized
for the primary key lookup operations by encoding the target
database node information as a part of ID. We also designed
a set of ORM API that maps the conditioned objects in
application codes to the database table and queries. For fast
data access, we implemented our API using MySQL Handler-
Socket plug-in which bypasses the upper layer of MySQL.
We also leveraged replica nodes to serve for read requests for
an enhanced performance by distributing requests to a master
node.

To evaluate performance and scalability of our system, we
performed a set of tests and proved that our system provides
improved performance and linear scalability compared to the
traditional MySQL solutions. As our future work, we firstly
plan to provide zero-downtime availability in case of a master
node failure by implementing an active-active replication with
the quorum based algorithm [17]. We also plan to support
transactions and map-reduce style queries such as order-by
and join in the distributed environment.

REFERENCES

[1] G. DeCandia et al., Dynamo: Amazons Highly Available Key-value
Store,” In Proceedings of twenty-first ACM SIGOPS symposium on
Operating systems principles, ACM New York, NY, USA, Oct. 2007,
pp. 205-220

[2] F. Chang et al., ”Bigtable: A distributed storage system for structured
data,” ACM Transactions on Computer Systems (TOCS), ACM New
York, NY, Jun. 2008, pp. 1-26.

[3] K. Banker, 2011, MongoDB in Action, Manning Publications
[4] E. Hewitt , Cassandra: The Definitive Guide, OReily Media Inc.
[5] T. Macedo and F. Oliveira, Redis Cookbook: Practical Techniques for

Fast Data Manipulation, O’Reilly Media, 2011.
[6] Neo4j, the Graph Database - Learn, Develop, Participate. [Online].

Available: http://www.neo4j.org/ [retrieved: 02, 2014]

[7] K. Loney, Oracle Database 11g The Complete Reference, Oracle Press,
2009.

[8] B. Schwartz, P. Zaitsev, and V. Tkachenko, High Performance MySQL:
Optimization, Backups, and Replication, O’Reilly Media, November
2011.

[9] W. Vogels, All Things Distributed: Eventually Consistent, [Online].
Available: http://www.allthingsdistributed.com/2007/12/eventually con
sistent.html/ [retrieved: 02, 2014]

[10] N. Leavitt, ”Will NoSQL Databases Live Up to Their Promise?,”
Computer, volume 43, number 2, Feb. 2010, pp. 12-14.

[11] HandlerSocket. [Online]. Available: http://yoshinorimatsunobu.blogspot
.kr/search/label/handlersocket/ [retrieved: 02 2014]

[12] D. Karger et al., ”Consistent Hashing and Random Trees: Distributed
Caching Protocols for Relieving Hot Spots on the World Wide Web,” In
ACM Symposium on Theory of Computing, Philadelphia, Pennsylvania,
USA, May. 1997. pp. 654-663.

[13] Hibernate JBoss Community. [Online]. Available: http://www.hibernat
e.org/ [retrieved: 02, 2014]

[14] Java Persistent API. [Online]. Available: http://www.oracle.com/technet
work/java/javaee/tech/persistence-jsp-140049.html/ [retrieved: 02,
2014]

[15] S. Pachev, Understanding MySQL Internals, O’Reilly Media, 2007.
[16] Apache Zookeeper. [Online]. Available: http://zookeeper.apache.org/

[retrieved: 02, 2014]
[17] D. Agrawal and A. E. Abbadi, The tree quorum protocol: an efficient

approach for managing replicated data, in Proceedings of the sixteenth
international conference on Very large databases, Brisbane, Australia,
Sep. 1990, pp.243-254.

117Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

