
Efficient Data Integrity Checking for Untrusted Database Systems

Anderson Luiz Silvério
and Ricardo Felipe Custódio

Laboratório de Segurança em Computação
Universidade Federal de Santa Catarina

Florianópolis, Brazil
Email: anderson.luiz@inf.ufsc.br

custodio@inf.ufsc.br

Marcelo Carlomagno Carlos

Information Security Group
Royal Holloway University of London

Egham, Surrey, TW20 0EX, UK
Email: marcelo.carlos.2009

@rhul.ac.uk

Ronaldo dos Santos Mello

Grupo de Banco de Dados
Universidade Federal de Santa Catarina

Florianópolis, Brazil
Email: ronaldo@inf.ufsc.br

Abstract—Unauthorized changes on database contents can
result in significant losses for organizations and individuals. This
brings the need for mechanisms capable of assuring the integrity
of stored data. Existing solutions either make use of costly
cryptographic functions, with great impact on performance, or
require the modification of the database engine. Modifying the
database engine may be infeasible in real world environments,
especially for systems already deployed. In this paper, we propose
a technique that uses low cost cryptographic functions and is
independent of the database engine. Our approach allows for
the detection of malicious data update, insertion and deletion
operations. This is achieved by the insertion of a small amount of
protection data in the database. The protection data is calculated
by the data owner using Message Authentication Codes. In
addition, our experiments have shown that the overhead of
calculating and storing the protection data is lower than previous
work.

Keywords–Data Integrity; Outsourced Data; Untrusted Database;
Data Security.

I. INTRODUCTION

Database security has been studied extensively by both
the database and cryptographic communities. In recent years,
some schemes have been proposed to check the integrity of
the data, that is, to check if the data has not been modified,
inserted or deleted by an unauthorised user or process. These
schemas often try to solve one of the following aspects of the
data [1], [2]:

• Correctness: From the viewpoint of data integrity, cor-
rectness means that the data has not been tampered with.

• Completeness: When a client poses a query to the
database server it is returned a set of tuples that satisfies
the query. The completeness aspect of the integrity means
that all tuples that satisfy the posed query are returned
by the server.

Trying to assure data integrity, many techniques have been
proposed [3], [4], [5], [6]. However, most of them rely on
techniques that require modification of the database kernel
or the development of new database management systems.
Such requirements make the utilization of the integrity assur-
ance mechanisms in real-world scenarios difficult. This effort
becomes more evident when we consider adding integrity
protection to already deployed database systems.

Most of the remaining work uses authenticated structures
[7], [8], [9], based on Merkle Hash Trees (MHT) [10] or Skip-
Lists [11]. These works are most simpler to put in practice,
since they don’t require modifications to the kernel of the
Database Management System (DBMS). However, the use
of authenticated structures limits its use to static databases.
Authenticated structures are not efficient in dynamic databases
because for each update the structure must be recalculated.

In this paper, we address the problem of ensuring data
integrity and authenticity in outsourced database scenarios.
Moreover, we provide efficient and secure means of ensur-
ing data integrity and authenticity while incurring minimal
computational overhead. We provide techniques based on
Message Authentication Codes (MACs) to detect malicious
and/or unauthorized insertions, updates and deletions of data.
Is this paper, we extend the work of [12], by enhancing
the experimental evaluation, providing the algorithms for the
proposed techniques and presenting a technique to provide
completeness assurance of queries.

The remainder of this paper is divided into five sections.
In Section II , we discuss related work. In Section III, we
present techniques for providing data integrity and authenticity
assurance. In Section IV, we analyse the performance impact
of our proposed method and Section V presents our final
considerations and future works.

II. RELATED WORK

The major part of integrity verification found in literature is
based on authenticated structures. Namely, Merkle Hash Trees
MHT [10] and Skip-Lists [11].

Li et al. [4] present the Merkle B-Tree (MB-Tree), where
the B+-tree of a relational table is extended with digest
information as in an MHT. The MB-Tree is then used to
provide proofs of correctness and completeness for posed
queries to the server. Despite presenting an interesting idea
and showing good results in their experiments, their approach
suffers from a major drawback. To deploy this approach, the
database server needs to be adapted as the B+-tree needs to
be extended to support an MHT. Such modifications may not

118Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

be feasible in real world environments, especially those that
are already in use.

Di Battista and Palazzi [7] propose to implement an au-
thenticated skip list into a relational table. They create a new
table, called security table, which stores an authenticated skip
list. The new table is then used to provide assurance of the
authenticity and completeness of posed queries. This approach
overcomes the requirement of a new DBMS, present in the
previous approach. While only a new table is necessary within
this approach, its implementation can be done as a plug-in to
the DBMS. However, the experimental results are superficial.
It is not clear what is the actual overhead in terms of each SQL
operation. Moreover, their experiments show that the overhead
increase as the database increases, while in our approach the
overhead is constant in terms of the database size.

Miklau and Suciu [9] implement a hash tree into a relational
table, providing integrity checks for the data owner. The
data owner needs to securely store the root node of the
tree. To verify the integrity, the clients need to rebuild the
tree and compare the root node calculated and stored. If
they match, the data was not tampered with. Despite using
simple cryptographic functions, such as hash, the use of trees
compromises the efficiency of their method. A tuple insert
using their method is 10 times slower than a normal insert,
while a query is executed 6 times slower. In our experiments,
presented in section IV, we show that the naive implementation
of our method is as good as their method.

E. Mykletun et al. [13] study the problem of providing
correctness assurance of the data. Their work is most closely
related to what we present in this paper. They present an ap-
proach for verifying data integrity, based on digital signatures.
The client has a key pair and uses its private key to sign each
tuple he/she sends to the server. When retrieving a tuple, the
client uses the correspondent public key to verify the integrity
of the retrieved tuple. This work was extended by Narasimha
and Tsudik [14] to also provide proof of completeness.

The motivation of the authors to use digital signature is
to allow integrity checking in multi-querier and multi-owner
models. Therefore, for multi-querier and multi-owner models,
their work is preferable. On the other hand, if the querier
and the data owner are the same, our work can provide
integrity assurance more efficiently. Moreover, our method can
provide the same security level while consuming less of the
servers resources. This is possible because to achieve the same
security level, asymmetric keys are larger than symmetric keys.
For example, for achieving the security level of a 2048 bit
long asymmetric key, we need a 112 bit long symmetric key
[15]. This reduces the amount of data required to control the
integrity by a factor of 18, meaning that the data owner will
be able to outsource more data.

Additionally, following a different approach, Xie et al. [16]
proposes a probabilistic method to audit queries of outsourced
databases. They insert a small quantity of fake tuples along
with the real tuples of the database to control and audit the
integrity of the system. Their method shows to be efficient,
since it doesn’t require any complex functions. However, their

focus is on query integrity while in our work we are focused
on the integrity of the data itself.

III. PROVIDING INTEGRITY ASSURANCE FOR DATABASE
CONTENT

To achieve a low cost method to provide integrity and
authenticity, we propose to perform the cryptographic op-
erations on the client side (application), using of Message
Authentication Codes (MAC) [17], [18]. The implementation
consists of adding a new column to each table. This new
column stores the output of the MAC function applied to the
concatenation (||) of the attributes (all columns, or a subset
of them) of a row n, as shown in (1). The function also
utilises a key k, which is only known by the application. The
value of the MAC column is later used to verify integrity and
authenticity.

MACn =MAC(k,Column1||...||Columni) (1)

The use of a MAC function ensures the integrity of the
INSERT and UPDATE operations. However, the table is still
vulnerable to the unauthorized deletion of rows. To overcome
this issue, we propose a new algorithm for linking sequential
rows, called “Chained-MAC (CMAC)”. The result of the
CMAC is then stored into a new column. The value of this
column, given a row n, a key k, and MACn as the MAC
value of the row n, is calculated as shown in (2), where ⊕
denotes the exclusive OR operation (XOR).

CMACn =MAC(k, (MACn−1 ⊕MACn)) (2)

The use of CMAC provides an interesting property to the
data stored in the table where it is used. When used, the
CMAC links the rows in a way that an attacker cannot delete
a row without being detected, since he does not have access to
the secret key to produce a valid value to update the CMAC
column of adjacent rows. Moreover, calculating the CMAC is
very efficient, since we calculate only two MACs and a ⊕.
Updating rows is also efficient. The CMAC is not a cascading
operation, that is, it only needs to be updated when the MAC
of a given row is updated. Figure 1 shown an example of a
table with the MAC and CMAC columns. The circles represent
the value of the MAC/CMAC and the arrows shows the MACs
used to calculate a specific CMAC.

Despite linking adjacent rows, any subset of the first and last
rows can be deleted without being detected. This is possible
because the first row has no previous row and the last row does
not have a subsequent row to be linked with. To overcome this
issue, we propose changing the CMAC to a circular method.
That is, for the first row, the n−1-th row to be considered will
be the n-th row (i.e. the last row). With this change, if the last
row is deleted, the integrity check will fail for the first row.
Similarly, since the first row now has a predecessor, integrity
checks can start at the first row (in the regular mode it would
always start in the second row).

It is important to notice that the introduction of the CMAC
brings a new requirement: the table must be ordered by some

119Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

MAC CMAC...Id

0

1

...

n-1

n

...

...

...

...

...

Fig. 1. Graphical representation of a table with the CMAC column

attribute. However, in real world scenarios, all tables have a
primary key, and all the main DBMS orders the tables in
terms of the primary key. Therefore, the requirement for a
ordered table of the CMAC does not have a big impact to the
deployment of our technique in real world scenarios.

A. Adding rows

The insertion of a new row into the database is straight-
forward. The client must calculate the MAC as shown in (1).
The value of the CMAC column must be calculated using the
MAC value of the previous row and the MAC value of the row
being added, as shown in (2). Figure 2 shows the algorithm
for the insertion of both MAC and CMAC values.

Input: A set T of values t0, . . . , ti, following the schema of
a table R and a key k, used to calculate the MAC.
Step 1: Calculate MACn+1 =MAC(k, t0|| . . . ||ti)
Step 2: Calculate the CMAC
Step 2.1: Retrieve the MAC of the last row of R, denoted by
MACn

Step 2.2: Calculate CMACn+1 = MAC(k, (MACn ⊕
MACn+1))
Step 3: Recalculate the CMAC of the first row (for the circular
CMAC)
Step 3.1: Retrieve the MAC of the first row of R, denoted by
MAC1

Step 3.2: Calculate CMAC1 = MAC(k, (MACn+1 ⊕
MAC1))
Step 4: Insert the set T along with the calculated MACn+1

, CMACn+1 and CMAC1

Fig. 2. Algorithm for inserting a new row with the MAC and CMAC values

B. Updating rows

Updating rows is similar to the INSERT operation. The
MAC and CMAC columns must be recalculated with the
updated values. However, an extra step is necessary, which
is to update the CMAC value of the next row, since the MAC
of its previous row has been updated. Figure 3 shows the
algorithm for updating a row.

Input: A set T of values t0, . . . , ti, following the schema of
a table R and a key k, used to calculate the MAC.
Step 1: Calculate MACn =MAC(k, t0|| . . . ||ti)
Step 2: Calculate the CMAC
Step 2.1: Retrieve the MAC of the previous row of R, denoted
by MACn−1

Step 2.2: Calculate CMACn = MAC(k, (MACn−1 ⊕
MACn))
Step 3: Update the set T along with the calculated MACn

and CMACn

Step 4: Calculate the CMAC of the n + 1th-row. If the nth-
row is the last row in the table, then the n + 1th-row to be
considered will be the first row of the table.
Step 4.1: Retrieve the MAC of the n + 1th-row row of R,
denoted by MACn+1

Step 4.2: Calculate CMACn+1 = MAC(k, (MACn ⊕
MACn+1))
Step 4.3: Update the calculated CMACn+1

Fig. 3. Algorithm for updating a row with the MAC and CMAC values

C. Deleting rows

To delete a row of a table that uses only the MAC column,
no additional actions are needed. The reason for this is that, by
using only MAC, it is not possible to check the integrity of a
table against unauthorised row deletion. When using a CMAC
column, the application needs to recalculate the value of the
next row by referencing the previous row. Figure 4 shows the
algorithm for deleting a row.

Input: A set T of values t0, . . . , ti, following the schema of
a table R and a key k, used to calculate the MAC.
Step 1: Delete T
Step 2: Calculate the CMAC of the n+ 1-th row. If the n-th
row is the last row, then the n+ 1-th row to be considered is
the first row of R.
Step 2.1: Retrieve the MAC of the n + 1-rh row of R,
MACn+1 and the MAC of the previous row, MACn−1

Step 2.2: Calculate CMACn+1 = MAC(k, (MACn−1 ⊕
MACn+1))
Step 2.3: Update the calculated MAC, CMACn+1

Fig. 4. Algorithm for deleting a row with the MAC and CMAC values

D. Verifying the integrity of a table

Data integrity can be provided in different levels of gran-
ularity. We can perform integrity checks of a table (entire

120Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

relation), a row (a record or a tuple of the table) or a column
(an attribute of the relation). Providing integrity checks at the
table level, implies that every row of the table must have the
MAC column filled and its value must be calculated based
on every attribute of the row. Providing integrity checks of a
single row implies that that specific row must have the MAC
column filled with the result of the MAC function applied on
the concatenation of all attributes. Finally, providing integrity
checks at the attribute level implies that the MAC function
must be applied to a specific set of attributes only.

To verify the integrity of a row with the MAC column,
the application must calculate the MAC of that row and
compare it with the value of the MAC column. The row can be
considered as not modified if the calculated MAC is equal to
the stored MAC. Applying this comparison to each row of a
table will ensure the integrity of this table against insertion
and modification attacks. As stated earlier, the use of the
MAC does not provide a means to verify the integrity of a
table against unauthorized deletions. In this case, the CMAC
column should be used. To verify the integrity of a table with
the CMAC column, the application must check the integrity of
each pair of sequential registries of the table. That is, a Table
T has not been (unauthorized) modified if:

∀tn−1, tn ∈ T : tn.CMAC = CMAC(k, tn−1, tn) (3)

E. Verifying the completeness of queries

The CMAC mechanism can also be used for verifying the
completeness of simple range queries. This is possible due to
the catenation of adjacent rows. If the data owner does not
trust the DMBS software on the server and therefore needs a
guarantee that the server is not omitting valid results for posed
queries, the client should proceed as shown in Figure 5.

Input: A query Q
Step 1: Pose Q to the server, which will return a set T of
values ti, . . . , tj , where i <= j
Step 2: Retrieve the rows ti−1 and tj+1

Step 3: Verify the integrity of the values ti−1, ti, . . . , tj , tj+1,
as described in section III-D

Fig. 5. Algorithm for verifying the completeness of a query

If the result of the integrity check is positive, then we know
that no intermediate result has been omitted by the server.
However, just verifying the integrity does not guarantee that a
value has not been omitted at all. If the server omits the values
in the edge, the integrity check will still pass. To guarantee
that the values in the edge have not been omitted, the client
needs to check whether the edge tuples are the same tuples
retrieved in step 2 or not. If these tuples are the same and
the integrity check passed, then all values satisfying the query
have been returned by the server.

IV. PERFORMANCE ANALYSIS

To assess the efficiency of our techniques we implemented
a tool to evaluate the performance of using a Keyed-Hash

Message Authentication Code (HMAC), as the MAC function,
and CMAC. The prototype was implemented using the C pro-
gramming language and the OpenSSL library. The DBMS used
was MySQL database and the experiments were performed in
a machine running both MySQL server and client application.
The machine had Intel Core 2 Quad CPU Q8400 with 4Mb
cache, at 2.66GHz, 4GB RAM 800Mz, and 320Gb disk,
SATAII, 16Mb cache, 7200RPM, running an Ubuntu 11.04 32-
bit operating system with OpenSSL 0.9.8d and MySQL 5.1.
Additionally, we used the SHA-1 hash function to calculate
the HMAC with a 256-bit long key and disabled the cache of
the MySQL.

We considered different scenarios to evaluate the perfor-
mance of the proposed techniques. For each scenario, we
executed the workload a thousand times over a table with 10
thousand tuples of random values. All the results shown below
are the average of these executions. In all scenarios, we focus
on evaluating the amount of time spent on the operations of
INSERT, UPDATE, DELETE and SELECT, performed under
four distinct conditions:

1) Without security mechanisms;
2) Using HMAC only;
3) Using both HMAC and CMAC;
4) Using both HMAC and CMAC in the circular mode.

Insert

In the first scenario, we focused on measuring and compar-
ing the execution times for the INSERT operation under each
specified condition. The results (as we can see in Figure 6)
show that the baseline took 42,3µs, while the HMAC took
47µs, 90% of which is spent on the server side and 10% on
the client side. The scenario with the use of CMAC executed
in 118,3µs, with 91% of the time spent on the server and 9%
on the client. The CMAC in the circular mode executed in
331,7µs, where 72% is executed by the server and 28% by
the client.

0

50

100

150

200

250

300

350

Baseline HMAC CMAC Circular CMAC Circular CMAC
Optimized

R
u

n
ti

m
e

 (
u

s)

Database Client

Fig. 6. Comparison of execution time of the INSERT operation

The CMAC in the circular mode can be optimized if the
client store a small amount of data. The major reason for the
difference between the the regular mode and the circular mode
of the CMAC is that in the circular mode we need to retrieve
and update additional rows. If the client stores the first row

121Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

locally, we eliminate one query, reducing the execution time
from 331,7µs to 236,5µs.

Update
In the second scenario, we focused on measuring and

comparing the execution times for the UPDATE operation
under each specified condition. The results (shown in Figure
7) show that the baseline took 127,6µs, while the HMAC took
134µs, 95% of which is spent on the server side and 5% on
the client side. The CMAC (both in regular and circular mode)
executed in 381,9µs, with 80% of the time spent on the server
and 20% on the client. The reason that the execution time for
the CMAC in the regular and circular mode are the same is
because they execute the exact same operations.

0

50

100

150

200

250

300

350

400

450

Baseline HMAC CMAC Circular CMAC Circular CMAC
Optimized

R
u

n
ti

m
e

 (
u

s)

Database Client

Fig. 7. Comparison of execution time of the UPDATE operation

We can also optimize the CMAC for the UPDATE operation
if we consider that some values are available on the client side
in the moment of the operation. In this case, when updating
a row n, we need the MAC and CMAC of the n + 1-th and
the n− 1-th rows (for example, these values could have been
retrieved when the client retrieved the n-th row). If these rows
are available on the client side in the moment of the update,
the execution time is 204,5µs.

Delete
In the third scenario, we focused on measuring and compar-

ing the execution times for the DELETE operation under each
specified condition. The baseline executed in 51µs and when
using the HMAC to delete a row, there is no additional cost
since there is no extra operations to be performed (as shown in
Tables I and II). On the other hand, the CMAC (both in regular
and circular mode) executed in 186,5µs, with 96% of the time
spent on the server and 4% on the client, as we can see in
Figure 8. As we have shown for the UPDATE operation, the
CMAC in the regular and circular mode have the exact same
operations and therefore the overhead is the same.

We can use the same idea presented for the UPDATE
operation to improve the efficiency of the CMAC. In the naive
implementation, before deleting a row n, we execute a select
query to retrieve the n+1-th and the n−1-th rows. Considering
that these rows are available on the client side in the moment
of the delete, the execution time is reduced from 186,5µs to
105,2µs.

0

20

40

60

80

100

120

140

160

180

200

Baseline HMAC CMAC Circular CMAC Circular CMAC
Optimized

R
u

n
ti

m
e

 (
u

s)

Database Client

Fig. 8. Comparison of execution time of the DELETE operation

Select

Finally, in the last scenario, we focused on measuring and
comparing the execution times to check the integrity during
the SELECT operation under each specified condition. A
SELECT query, without verifying the integrity (the baseline)
took 18,4µs. To verify the integrity of the HMAC the client
needs to recalculate the HMAC and compare it to the one
retrieved from the server. This operation executed in 22,5µs,
due to the calculation of the HMAC. When using the CMAC,
the client needs to retrieve the HMAC of the previous row
and recalculate both the HMAC and CMAC. These extra
operations increase the execution time to 54µs, as we can see
in Figure 9. However, if we consider that the previous row is
available on the client side, the execution time is reduced to
27,6µs (for example, the client retrieved the n-th and n− 1th
rows in a single query).

0

10

20

30

40

50

60

Baseline HMAC CMAC Circular CMAC Circular CMAC
Optimized

R
u

n
ti

m
e

 (
u

s)

Database Client

Fig. 9. Comparison of execution time of the SELECT operation

Summarizing

As we could see in the results, the impact of using each
method is affected by two main factors: i) the number of
sql operations; ii) the number of cryptographic functions
performed. The number of sql operations performed by every
type of action (ex: an update when using CHMAC requires
two SQL operations) clearly has a bigger impact on the
performance. The cryptographic-only operation have shown
very low impacts. The table I shows the number of SQL

122Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

operations each method requires. The table II shows the
number of cryptographic functions each method requires.

Although the cost of the SQL operations are 2-7 times
greater with our method, it is more efficient than previous
work. E. Mykletun et al. [13] and Narasimha and Tsudik [14]
uses asymmetric cryptography, which is 1,000-10,000 times
slower than simple MAC functions. In terms of the storage,
our method generates less data to be stored in the database.
For example, considering an RSA 2048-bit long key and the
SHA-1 function, which are the values recommended by NIST
[15] for 2014, our method generates approximately 13 times
less data to control the integrity of the database.

Additionally, when comparing to the approaches based on
authenticated structures [7], [8], [9], [4], our method has a
lower complexity. That is, the cost of our method is constant
to the database size (O(1)) while the approaches based on
authenticated structures are usually logarithmic (O(log n)).
Therefore, for larger databases our method is more efficient.

Is is important to notice that the DBMS cache was disabled
while running the tests. In a real environment, with the cache
enabled, the retrieval of previous row necessary to calculate
the CMAC will be cached with a high probability, reducing
the total cost of each SQL operation.

V. FINAL REMARKS

This paper proposes secure and efficient methods for provid-
ing integrity and authenticity for relational database systems.
Our methods focus on strategies for detecting unauthorised
actions (insertions, deletions and updates) from a vulnerable
database server.

Prior work either requires modifications in the database
implementation or uses inefficient cryptographic techniques
(for example, public key cryptographic). The requirement of
modifying the core of a database system makes the deployment
of these methods difficult in real world scenarios. Thus, one
significant advantage of our method is that it is DBMS-
independent and can be easily deployed in existing environ-
ments. Another advantage of our method is that we focused
on using a more simple and efficient cryptographic algorithm
to provide the integrity checks.

The performance requirements for each of our methods
were presented and alternatives to minimise their costs and
its consequences were discussed. Finally, we believe that the
transparency and independency of our method makes it easily
deployable and compatible with real world demands.

As a future work, we would like to address the roll-back
attack. A roll-back attack is characterized when the attacker
restores the database to a previous valid state. With this
attack, the attacker can delete rows without being noticed,
for example. Prior work, as well as this paper, are vulnerable
to such attacks. Another interesting matter of research is to
address the actions to be taken in case of a detected attack.
We consider that the ideal solution is to restore the database
to a valid state before the attack.

REFERENCES

[1] P. Samarati and S. D. C. di Vimercati, “Data protection in outsourcing
scenarios: Issues and directions,” in Proceedings of the 5th ACM
Symposium on Information, Computer and Communications Security,
ser. ASIACCS ’10. New York, NY, USA: ACM, 2010, pp. 1–14.
[Online]. Available: http://doi.acm.org/10.1145/1755688.1755690

[2] T. K. Dang, “Ensuring correctness, completeness, and freshness for
outsourced tree-indexed data,” Inf. Resour. Manage. J., vol. 21, no. 1,
Jan. 2008, pp. 59–76. [Online]. Available: http://dx.doi.org/10.4018/
irmj.2008010104

[3] I. Kamel, “A schema for protecting the integrity of databases,” Comput-
ers & Security, vol. 28, no. 7, 2009, pp. 698–709.

[4] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin, “Dynamic
authenticated index structures for outsourced databases,” in Proceedings
of the 2006 ACM SIGMOD international conference on Management of
data, ser. SIGMOD ’06. New York, NY, USA: ACM, 2006, pp. 121–
132. [Online]. Available: http://doi.acm.org/10.1145/1142473.1142488

[5] T. Aditya, P. Baruah, and R. Mukkamala, “Employing bloom
filters for enforcing integrity of outsourced databases in cloud
environments,” in Advances in Computing and Communications, ser.
Communications in Computer and Information Science, A. Abraham,
J. Lloret Mauri, J. Buford, J. Suzuki, and S. Thampi, Eds. Springer
Berlin Heidelberg, 2011, vol. 190, pp. 446–460. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-22709-7 44

[6] T. Aditya, P. K. Baruah, and R. Mukkamala, “Space-efficient bloom
filters for enforcing integrity of outsourced data in cloud environments,”
in Proceedings of the 2011 IEEE 4th International Conference
on Cloud Computing, ser. CLOUD ’11. Washington, DC, USA:
IEEE Computer Society, 2011, pp. 292–299. [Online]. Available:
http://dx.doi.org/10.1109/CLOUD.2011.40

[7] G. Di Battista and B. Palazzi, “Authenticated relational tables and
authenticated skip lists,” in Proceedings of the 21st annual IFIP WG
11.3 working conference on Data and applications security. Berlin,
Heidelberg: Springer-Verlag, 2007, pp. 31–46. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1770560.1770564

[8] A. Heitzmann, B. Palazzi, C. Papamanthou, and R. Tamassia, “Efficient
integrity checking of untrusted network storage,” in Proceedings of the
4th ACM international workshop on Storage security and survivability,
ser. StorageSS ’08. New York, NY, USA: ACM, 2008, pp. 43–54.
[Online]. Available: http://doi.acm.org/10.1145/1456469.1456479

[9] G. Miklau and D. Suciu, “Implementing a tamper-evident database
system,” in Proceedings of the 10th Asian Computing Science
conference on Advances in computer science: data management on the
web, ser. ASIAN’05. Berlin, Heidelberg: Springer-Verlag, 2005, pp.
28–48. [Online]. Available: http://dl.acm.org/citation.cfm?id=2074944.
2074951

[10] R. C. Merkle, “A certified digital signature,” in CRYPTO, ser. Lecture
Notes in Computer Science, G. Brassard, Ed., vol. 435. Springer, 1989,
pp. 218–238.

[11] W. Pugh, “Skip lists: a probabilistic alternative to balanced trees,”
Commun. ACM, vol. 33, no. 6, Jun. 1990, pp. 668–676. [Online].
Available: http://doi.acm.org/10.1145/78973.78977

[12] R. d. S. M. Anderson Luiz Silvério and R. F. Custódio, “Efficient
integrity checking for untrusted database systems,” in Proceedings of the
28th Brazilian Symposium on Databases, ser. WTDBD’13. Sociedade
Brasileira de Computação, 2013, pp. 36–42.

[13] E. Mykletun, M. Narasimha, and G. Tsudik, “Authentication and
integrity in outsourced databases,” ACM Transactions on Storage,
vol. 2, no. 2, May 2006, pp. 107–138. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1149976.1149977

[14] M. Narasimha and G. Tsudik, “Dsac: integrity for outsourced databases
with signature aggregation and chaining,” in Proceedings of the
14th ACM international conference on Information and knowledge
management, ser. CIKM ’05. New York, NY, USA: ACM, 2005,
pp. 235–236. [Online]. Available: http://doi.acm.org/10.1145/1099554.
1099604

[15] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid, “Recommendation
for key management - pat1: General (revision 3),” National Institute
of Standards and Technology, NIST Special Publication 800-57,
Jul 2012. [Online]. Available: http://csrc.nist.gov/publications/nistpubs/
800-57/sp800-57 part1 rev3 general.pdf

123Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

http://doi.acm.org/10.1145/1755688.1755690
http://dx.doi.org/10.4018/irmj.2008010104
http://dx.doi.org/10.4018/irmj.2008010104
http://doi.acm.org/10.1145/1142473.1142488
http://dx.doi.org/10.1007/978-3-642-22709-7_44
http://dx.doi.org/10.1109/CLOUD.2011.40
http://dl.acm.org/citation.cfm?id=1770560.1770564
http://doi.acm.org/10.1145/1456469.1456479
http://dl.acm.org/citation.cfm?id=2074944.2074951
http://dl.acm.org/citation.cfm?id=2074944.2074951
http://doi.acm.org/10.1145/78973.78977
http://portal.acm.org/citation.cfm?doid=1149976.1149977
http://doi.acm.org/10.1145/1099554.1099604
http://doi.acm.org/10.1145/1099554.1099604
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf

TABLE I
NUMBER OF SQL OPERATIONS PERFORMED IN EACH METHOD

No protection MAC CMAC Circular CMAC CMAC Optimized
Insert 1 1 2 3 2

Update 2 2 4 5 2
Delete 1 1 3 3 2
Select 1 1 2 2 1

TABLE II
NUMBER OF CRYPTOGRAPHIC OPERATIONS PERFORMED IN EACH METHOD

No protection MAC CMAC Circular CMAC CMAC Optimized
Insert 0 1 2 3 3

Update 0 1 3 3 3
Delete 0 1 1 1 1
Select 0 1 2 2 2

[16] M. Xie, H. Wang, and J. Yin, “Integrity auditing of outsourced
data,” Very large data bases, 2007, pp. 782–793. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1325940

[17] M. Bellare, R. Canetti, and H. Krawczyk, “Keying hash functions
for message authentication,” in Proceedings of the 16th Annual
International Cryptology Conference on Advances in Cryptology, ser.
CRYPTO ’96. London, UK, UK: Springer-Verlag, 1996, pp. 1–15.
[Online]. Available: http://dl.acm.org/citation.cfm?id=646761.706031

[18] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-Hashing
for Message Authentication,” RFC 2104 (Informational), Internet
Engineering Task Force, Feb. 1997, updated by RFC 6151. [Online].
Available: http://www.ietf.org/rfc/rfc2104.txt

124Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

http://dl.acm.org/citation.cfm?id=1325940
http://dl.acm.org/citation.cfm?id=646761.706031
http://www.ietf.org/rfc/rfc2104.txt

	Introduction
	Related work
	Providing integrity assurance for database content
	Adding rows
	Updating rows
	Deleting rows
	Verifying the integrity of a table
	Verifying the completeness of queries

	Performance analysis
	Final remarks
	References

