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Abstract—There exist different and well-established ap-
proaches for quantifying the performance of a database
management system. With the advent of provisioning in-
formation technology infrastructure over the Internet, the
aspect of elasticity became more important as it defines
how well a system adapts to a changing workload. For a
database management system there is no commonly agreed
approach or model how to quantify its elasticity. In contrast,
the cloud storage system (NoSQL) community developed
several approaches how to measure elasticity. In this paper we
contribute by I) presenting an extensive review of the existing
approaches for measuring the elasticity of NoSQL systems,
II) compare their parameters and used metrics, III) transfer
the lessons learned and introduce a model for quantifying
the elasticity of a database management system.
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I. Introduction

Minhas et al. say that elasticity is the “ability to grow
and shrink processing capacity on demand, with varying
load” [1]. Another definition is given by Agrawal et al.
which state that elasticity is “the ability to deal with
load variations by adding more resources during high
load or consolidating the tenants to fewer nodes when
the load decreases, all in a live system without service
disruption” [2]. A more general definition has been given
by the National Institute of Standards and Technology:
“Capabilities can be rapidly and elastically provisioned,
in some cases automatically, to quickly scale out, and
rapidly released to quickly scale in. To the consumer, the
capabilities available for provisioning often appear to be
unlimited and can be purchased in any quantity at any
time” [3]. Figure 1 illustrates frequently used terminol-
ogy in conjunction with elasticity. After this introduction
follows Section 2 which reviews state-of-the-art elasticity
benchmark for NoSQL systems and compares the used

metrics, how a scale-out is triggered, how data migration
is done, how the operational costs are quantified, which
query and workload characteristics are applied and how
the scale-out is managed. Section 3 then continues with a
model that allows to quantify the elasticity of a relational
database management system. The model is based on
measuring the query processing latency in combination
with a breakdown of the utilized hardware resources.
Section 4 close with the conclusions and presents the
future work.
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Figure 1: Terminology used in conjunction with elasticity

II. Elasticity Benchmarks for NoSQL Systems

A catalogue of metrics for evaluating cloud services
is presented in the work of Li et al. [4]. The metrics
presented for elasticity are split up in three groups. (1)
Resource acquisition time, (2) resource release time and
(3) cost and time effectiveness. The first group describes
the time a resource takes to be available for the system
from the moment it has been requested until the moment
of availability to the system. The second group describes
the time to release an unnecessary cloud resource. It can
be split into the time to remove the existing deployment
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and the time to stop the cloud resource and finally re-
lease it. The third group of metrics describes the relation
between the costs and the runtime of provisioned cloud
resources. Especially the third group has been recognized
in our framework considerations by measuring the run-
time costs from the moment of provisioning a resource
to the moment of de-provisioning.

Weinman [5] suggests a model for calculating elasticity.
He states that almost every business tries to match de-
mand and supply. By defining a function D(t) represent-
ing a mapping from demand to a resource in time and
a second function R(t) representing allocated resources
over time, he proposes that a perfect capacity strategy
is given, when D(t) = R(t). In this case, the resources
for matching an existing demand are available in the
right amount. Too little resources do not create loss in
revenue neither excess resources create needless costs.
He introduces a function describing the financial loss
an unmet demand can cause. That costs unnecessarily
accrue in situation of excess resources. He also evaluates
how monitoring interval and provisioning time for a
resource influences the negative impact.

Weinman’s paper had a great influence on the work
of Islam et al. [6]. After the definition of elasticity in
the context of cloud platforms, the authors propose a
concept on how a consumer can quantify the elasticity
of these platforms. The concept is build on the idea
of Weinman and extends its calculation model with
a penalty for over- and under-provisioning. Hereby, a
differentiation between allocated and charged resources
takes place. By normalizing the calculated value, the
authors propose a single metric of elasticity for a cloud-
based platform. They showcase their approach for an
elasticity measurement environment and make use of it
for different consumer specific workloads scenarios. The
work presented in the above mentioned paper, served as
inspiration for the elasticity benchmark framework for
relational database management systems in this thesis.
The provisioning based calculation model is taken from
Islam et al. and has been slightly modified to fit the needs
for a relational database management system (DBMS).

One of the most known and famous NoSQL benchmark
is the Yahoo! Cloud Serving Benchmark (YCSB) [7]. It has
been developed at Yahoo to help developers to choose
which cloud based data storage might be the best for
their workload. It provides a two-tier structure. The first
one concentrates on performance whereas the second
and more interesting one looks at scalability. Elastic

speed-up is measured by monitoring the performance of
a system as the number of machines is increased while
running a constant workload. A good elastic system
must show an improvement in performance. A short
disruption in service is accepted while the system is
reconfiguring itself. Elasticity itself is not quantified and
only the impact of read latency is considered.

Konstantinou et al. [8] conducted a study on the costs
and efficiency of adaptive expansion and contraction of
NoSQL databases over a cloud platform. The authors
took three popular NoSQL representatives (HBase, Cas-
sandra and Riak) and performed experiments with four
YCSB workloads. They analyzed how the cloud data stor-
ages performed by measuring query throughput, mean
query latency as well as CPU and memory consumption
during a stress test. Costs for the initialization and recon-
figuration of nodes as well as rebalancing of data within
the cluster are ascertained in terms of time and data
volume. Finally, Konstantinou et al. present a framework
for monitoring and automating cluster resize operations.
The authors benchmarked only NoSQL systems and did
not consider analytical workloads. They did not track
financial aspects for operating the platform. Thibault
Dory et al. [9] introduce a dimensionless measure for
elasticity for cloud databases. In their methodology, Dory
defines elasticity as a characterization of how a cluster
reacts on node provisioning. Regarding to Dory, elasticity
is defined by two properties. The first one is the time
a cluster takes to stabilize itself after nodes have been
added. The second property is the influence on the
cluster’s performance. In regard to the first property,
they define a cluster as stable when the variations of
time needed to fulfill a certain number of requests is
equivalent to the variations of a cluster known as being
stable. In this case, it is a cluster where no data is being
moved from one node to another. The authors suppose
that the response time for requests increases after new
nodes have been added, and then decrease after a certain
amount of time. Dory et al. define the elasticity as a
ratio of elastic overhead to the absolute performance
of a cluster. This approach of quantifying elasticity is
validated against a NoSQL architecture with an OLTP
workload using the behavior of a Wikipedia user.

Another cloud-based quality measurement and analysis
framework is introduced in the work of Klems et al. [10].
By contributing with an infrastructure, configuration and
cluster configuration manager, Klems et al. propose a
framework to evaluate the performance, latency and
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consistency of the cloud-based data stores Amazon S3,
Amazon SimpleDB, DynamoDB and Cassandra using the
Yahoo! Cloud Serving Benchmark and YCSB++ bench-
mark. The authors analyze different scaling strategies
and conflicts between contradictory objectives, such as
consistency versus high-availability and scalability. In
addition, they examine the impact of system changes
on performance and availability. Unfortunately, further
investigations of elastic scalability in regard to data
migration and performance impacts of such, is not pre-
sented, though can be expected in future work.

The Cloud Service Measurement Index Consortium pro-
posed a framework [11] to define and measure certain
quality of service aspects of cloud providers. Its service
measurement index is intended to help customers to
rank and compare cloud service providers based on
customers requirements like accountability, agility, costs,
performance, assurance, security and usability. Elasticity,
defined as how much a cloud service is able to scale
during peak time, is seen as a subcomponent of agility.
As part of a case study, Garg et al. present a relative
service-ranking vector for elasticity. This approach takes
the time a system needs to expand or contract into ac-
count. An impact on how data migration might influence
the performance is not considered. The remainder of
this section gives a detailed breakdown of the different
parameters. Table I on the next page summarizes which
parameters are considered in the previously mentioned
related work.

A. Metrics

Each of the three benchmarks uses different metrics
to express elasticity. Islam’s [6] approach is based on
a financial penalty model. When a system runs in an
undesired state, being either under- or over-provisioned
a fine will be charged. Undesired in this context means
that either there are not enough resources to handle the
load or that there are too many, unnecessary resources
present which could be de-provisioned for the cause of
cost savings. The penalty amount is calculated from the
time the system is in an undesired state, representing
the responsiveness of the system to scale and change the
state into a desired one. The smaller the penalty the more
elastic is the system.

The Yahoo! Cloud Serving Benchmark [7] uses quite a
basic metric for elasticity. It takes response latency to
requests as a measure to express elastic speedup. The
authors conducted a benchmark examining the elastic

speedup of three cloud-based data stores. For each data
store they started with a small cluster offering a load
feasible for a three-times bigger system. Then, they
added nodes to the cluster until it was stabilized and
able to serve the load. The implications on latency have
been recorded and taken as a degree of elastic speedup.
Dory et al. [9] use a dimensionless metric for elasticity
whereas Konstantinous et al. [8] use throughput, latency
as well as CPU utilization as their elasticity measure.
In our opinion, taking just the latency is not sufficient
enough to measure elasticity. I argue that there are more
metrics influencing the elasticity of a DBMS than just
the responsiveness to queries. Taking fixed budgets for
a cloud system or energy consumption of the hardware
into account, it is conceivable that there are more di-
mensions expressing elasticity. I am in favor of Islam’s
approach, taking the costs per time as a measurement.
Because pay-as-you-go is one of the advantages of cloud
computing over established server based systems, taking
the runtime costs of a system into account creates a more
meaningful metric for elasticity.

B. Scaling Trigger

The various benchmarks and frameworks trigger a scal-
ing operation differently. Whereas YCSB and Dory et al.
use static scaling, meaning it is triggered either manually
or at a fixed moment during the benchmark, Konstanti-
nous and Islam take CPU utilization of the system as
scaling trigger. Konstantinous et al. perform a scale-out
as soon as one node has more than 40% CPU utilization.
A scale-in, on the other hand, is done as soon as the
average of all nodes are less than 15% utilized. Islam
triggers scaling operations in the event of an undesired
provisioning state (under- or over-provisioning).

I emphasize the fact that a framework should be able
to trigger scaling operations automatically. In real-world
scenarios, DBMS operators use automated tools for scal-
ing instead of issuing manual scaling instructions.

C. Data Migration

Migrating data from an existing cluster to an added node
has an impact on elasticity, because transferring data
between nodes or throughout an entire cluster takes time
and slows down regular operations. Except for Islam
et al., all other frameworks consider the time needed
for the migration operation. Konstantinous et al. also
observe the amount of the moved data. This enables
a better differentiation between different architectural

127Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications



TABLE I: Overview of Elasticity Benchmarks and Frameworks for NoSQL Systems

Properties Islam et al. YCSB Dory et al. Konstantinous et al.
Metrics Throughput - - - x

Latency - x - x
CPU Usage - - - x
Monetary x - - -
Dimensionless - - x -

Scaling
Trigger Static - x x -

Latency-based x - - -
CPU Utilization x - - x

Consideration of
Data Migration Time - x x x

Amount - - - x
Operating Costs Taken into Account x - x -
Query
Characteristic OLTP x x x x

OLAP - - - -
Workload
Characteristics Sinus Shaped x x - -

Plateau Shaped x x - -
Exponential Shaped x x - -
Linear x x x x
Random x x - -
Zipfian - x - x

Scale Management
(Monitoring, Cloud/
Cluster Management,
Rebalancing)

Provide Toolset - - - x
External Tools
(e.g. Amazon Autoscale) x - - -

Manual - x x -
Applicability
Difficulty

Simple x x - x
Difficult - - x

characteristics of databases. I comply that the time for
adding a new node and getting it ready to serve should
be reflected in an elasticity benchmark. In addition, it
is of interest to track the time for data migration and
the time for provisioning computing resources, booting
a node, starting the DBMS instance and registering it
with the existing cluster.

D. Operational Costs

Elasticity is a time-critical property. The faster a system
is able to adapt, the more it is considered elastic and this
has consequences on operational costs for the system, e.g.
if computing resources are provisioned and not used, the
landscape generates more costs than necessary to serve
the load. Islam et al. and Dory et al. pay attention to
the operational costs in their elasticity determination. As
already mentioned in the metrics part of this section,
pay-as-you-go is the reason why operational costs have
to be regarded and must be considered in an elasticity
benchmark.

E. Query & Workload Characteristics

All four presented frameworks execute only transactional
queries in their benchmarks. The applied workload pat-
terns are different. Islam et al. as well as YCSB have
a huge variety of different workload patterns available.
Dory et al. and Konstantinous et al. use a linear workload
and Konstantinous makes use of an additional zipfian
workload. Nevertheless, all frameworks lack a real-world
workload scenario. YCSB allows customizing and imple-
menting industry-related scenarios. The benchmark must
reflect a workload pattern, which simulates the intended
area of deployment of the DBMS. This can be a simple
sinus-like workload, but in an enterprise environment it
is conceivable to run complex analytical workloads.

F. Scale Management

To measure elasticity properly, it is necessary for the
framework to provide tools for monitoring load, to
add and remove nodes, to redistribution of data and
to manage the cluster. The work of Konstantinous et
al. is the only framework that provides a conventional
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toolset. Islam et al. are using tools from a third-party
provider, in this case, Amazon CloudWatch and Auto
Scaling. It can only be assumed that monitoring and
provisioning is handled manually in the work of Dory
et al. and YCSB, because scaling is not automated at all.
In our opinion, a proper framework must provide these
tools to supplement missing features in the DBMS. Only
without manual intervention, realistic measurements can
be conducted.

III. Quantifying the Elasticity of a Database

Management System

After extensively reviewing approaches for quantifying
the elasticity of a NoSQL system, we present an elasticity
calculation model for relational DBMS which is inspired
by the work of Islam et al. [6]. To determine elasticity,
Islam et al. offer a way for consumers to measure elas-
ticity for cloud platforms by defining financial penalties
for over- and under-provisioning. Under-provisioning
means that the system has less computing resources
available than actually necessary to fulfill all requests
(demand) against the system in a desired time. Over-
provisioning, on the other hand, describes the state of a
system in which there are excess resources available than
really needed to fulfill the demand against the system.
These excess resources lead to higher runtime costs that
are avoidable. The financial reflection model of Islam et
al. is taken and got adapted to fit the needs for an elastic-
ity benchmark for relational DBMS. To build a calculation
model for elasticity, a few assumptions need to be stated.
Elasticity enables very cost-efficient operation. Therefore,
costs play a key role in defining a metric for elasticity. The
costs for a utilized node to run for one hour are defined
as 100 cents. The price is derived from the Amazon AWS
EC2 pricing list [12] for an Amazon M3 Double Extra Large
Instance. The hardware sizing of this instance type is
powerful enough to run a relational DBMS and therefore
the price can be valued as reasonable. At Amazons AWS
EC2, a resource is allocated for a minimum time period
of one hour. To avoid complexity in situations where
a resource is allocated and therefore charged but not
available, because it is already de-provisioned or not
yet booted, the chargeable time period is reduced to
one second. Consequently, the calculation of chargeable
supply as used by Islam et al. is discarded. The moment
the resource is requested, it is charged until the second
it is de-provisioned.

To calculate the elasticity for an elastic RDBMS, it is nec-

essary to sum up the number of used nodes. A resource
can be charged from the moment of provisioning of a
node to the moment a service on that node is serving, be-
cause booting time of a prepared image with all required
services pre-installed can be done in a constant time.
Hence, for easier consideration it is assumed that the
chargeable time begins at the moment the framework de-
tects an under-provisioned state and ends at the moment
the framework de-provisions the node. The already men-
tioned penalties for over- and under-provisioning need
to be specified as well. An under-provisioning penalty
of 10 cents for every second in an under-provisioned
state is specified. This reflects six times the costs of an
additional node. As Weinman et al. [5] emphasize, the
benefit of using resources should clearly outweigh the
costs of it. The state of over-provisioning is not penalized
because too many provisioned resources create avoidable
costs, which are thereby treated as a penalty. So only the
pure costs of the provisioned resources are taken into
account. In summary, the following numbers need to
be ascertained to calculate elasticity: maximum allowed
latency, number of used DBMS nodes, runtime of utilized
RDBMS nodes, time while being under-provisioned.

The maximum allowed latency is configured by the
benchmark executor and describes in this case the
longest acceptable response time for a benchmark suite
run. A benchmark suite run is defined as a set of
queries, which get executed by a benchmark client. The
benchmark client repeats a benchmark suite run over and
over until the framework controller is stopping the client.
The amount and runtime of server nodes can be retrieved
from the cluster management controller that is respon-
sible for provisioning of RDBMS server nodes. The time
while the RDBMS is under-provisioned can be gathered
by taking the latency until a benchmarking suite run has
finished and subtract the maximum allowed latency for
a benchmark suite run as demonstrated in Formula 1.

f (t) = Benchmark runtimet − upper thresholdt (1)

To get the time when the benchmark suite runtime was
above the upper limit, the function fcutoff(t) needs to
be ascertained. Therefore, only values above the limit as
represented in Formula 2 are taken into account.

fcutoff(t) =

{
f (t) if f (t) > 0

0
(2)
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Now, that only the amount of time, when the runtime
of the benchmark suite has taken longer than the upper
bound per node has been determined, the accumulation
over all recorded instances can be done as seen in For-
mula 3

P(t0, tend) =
#instances

∑
0

∫ tend

t0

fcutoff(t)dt (3)

The next step is to ascertain the penalty sum for all
instances. The sum will be multiplied with the defined
penalty amount. This results in an overall penalty as seen
in Formula 4.

P = P(t0, tend)× punder−provisioned (4)

Finally, the penalty and the runtime costs will be ag-
gregated. To calculate the runtime costs, the number
of running nodes for a certain time frame needs to
be multiplied by the costs of it. Formula 5 shows the
calculation of it.

Cnodes = (
#nodes

∑
n=1

runtime(n))× cnode (5)

Formula 6 shows the calculation of the final elasticity
by adding up the penalty and the runtime costs for
the provisioned resources Cnodes and dividing it by the
runtime of the experiment. This results in a comparable
value in cents per seconds.

E =
P + #nodescharged × cnodes

tend − t0
(6)

The apparent significance of time-to-serve for an elastic
relational DBMS does not need to be measured explicitly.
It is implicitly provided by the runtime of the bench-
marking suite. The longer it takes for a node to be
ready to serve, the longer the cluster stays in an under-
provisioned state. This results in a much higher penalty
than for systems with a very low time-to-serve value.

IV. Conclusions and Future Work

In this paper, known quantification models and meth-
ods from NoSQL systems are evaluated and taken into
account to propose a model for quantifying the elas-
ticity of a database management system. Features and
characteristics as well as pre-conditions for elasticity

measurements are identified, presented and defined. The
proposed elasticity calculation model is a provisioning
based quantification model. The corner stones of the
model are the aspects of maximum allowed latency, num-
ber of used DBMS nodes, runtime of utilized RDBMS
nodes and the time while the DBMS is being under-
provisioned.

The presented elasticity model enables relevant elasticity
determination experiments yielding unique comparable
values for a relational DBMS under a specific workload.
This has to be demonstrated in future work by con-
ducting a case study. Here, different workloads will be
executed on different relational DBMSs and the resulting
elasticity will me calculated and compared.
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