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Abstract—Modern enterprise applications generate workloads
of short-running transactional queries as well as long-running
analytical queries. In order to improve the execution time of
computationally intensive analytical queries we have introduced
an aggregate cache that makes use of the typical main-delta
architecture of columnar in-memory databases (IMDBs) to cope
with data modifications. In this work, we contribute a cache
management system for that aggregate cache, which bases the
cache admission and replacement decisions on novel profit met-
rics. These metrics are tailored to the main-delta architecture
of IMDBs. They ensure that expensive aggregates are stored in
the cache while light weight query results are rejected. For the
profit estimation of a cached aggregate the system also takes
into account transactional data modifications triggered by the
enterprise application. Along with the profit metrics we introduce
an asynchronous cache management algorithm designed for
the main-delta architecture as well as the transactional data
modifications. We evaluate the cache management system on
mixed, transactional and analytical workloads and real customer
data.

Keywords-Aggregates, Materialized Views, Cache Management,
In-Memory Database, Column Store

I. INTRODUCTION
In the past, transactional and analytical queries have been

associated with two separate applications for transactional pro-
cessing (OLTP) or analytical processing (OLAP). This distinc-
tion is no longer applicable for modern enterprise applications
[1], [2] because they make use of both, online transactional and
analytical queries. In a contemporary financials and controlling
application typical OLTP-style queries insert new bookings,
whereas OLAP-style queries aggregate the records for profit
and loss statements.

The OLAP-style queries may take a significant time to be
processed [1]. That is why we have developed an aggregate
cache which leverages the main-delta architecture of columnar
in-memory databases in order to speed up recurring analytical
queries in a consolidated environment [3], [4]. In a columnar
IMDB, a table is stored by column vectors instead of row
tuples and resides in memory. Since inserts of new tuples are
usually more expensive in a column store than in a row store
database, each table has a highly-compressed, read-optimized
main storage and a write-optimized delta storage. The delta
storage persists the transactional manipulations made to the
database table. It contains orders of magnitude less tuples then
the main storage. However, when the delta storage reaches a
certain threshold, a merge process is triggered [5] that merges
the tuples of the delta storage into the main storage.

Our aggregate cache stores the aggregation result returned

from the main storage when an analytical query is executed
for the first time. In the following, we call the result aggregate.
If the same query is executed again, the cached aggregate is
combined with the on-the-fly calculated result on the delta
storage and returned to the application. With this approach
the aggregate cache can provide an up-to-date result and save
significant computation and execution time overhead, because
the delta storage is much smaller than the main storage and
on-the-fly aggregations on it are relatively fast.

In this work, we present a cache management system
for the aggregate cache. It ensures that the aggregate cache
does not grow arbitrarily large. Additionally, it prevents the
aggregate cache from keeping unused or computationally
lightweight aggregates in the cache. For the identification of
such aggregates, the cache management system makes use of a
profit metric. The metric assesses the performance benefit ob-
tainable from each aggregate if it remains in the cache. Existing
profit metrics are calculated from multiple runtime metrics
such as the access rate of a cached aggregate, the execution
time to calculate the aggregate, and the aggregate’s size. These
metrics are not optimal for the aggregate cache because they
do not distinguish between the calculation time on the main
storage and calculation time on the delta storage. However, that
is important for the aggregate cache since it cannot accelerate
recurring queries whose calculation time mostly originates in
the on-the-fly aggregation on the delta storage. Thus, novel
profit metrics are required for the aggregate cache that consider
the main-delta architecture and the mixed workload.

The aggregate cache is designed to concurrently handle the
database requests from multiple users and applications. That is
why the management system should avoid blocking behavior
during query processing. Previous cache management systems
performed synchronous cache management [6]–[8]. The syn-
chronous management has caused blocking behavior for every
processed query. That is why we introduce an asynchronous
cache management algorithm, which evicts cached aggregates
decoupled from the query processing.

During the merge phase of a base table, the current im-
plementation of the aggregate cache removes those aggregates
from the cache whose base table is merged. The consequence is
that the aggregate cache has to recalculate the aggregates from
scratch the next time they are required. Instead of evicting the
aggregates, a sophisticated cache management system can in-
crementally revalidate the affected aggregates while the merge
process is in progress. The incremental revalidation process is
basically the same process that the cache manager performs
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on a cache hit, except that the aggregate cache updates the
cache entry after it has been combined with the result from the
on-the-fly aggregation on the delta storage. For many cached
aggregates, the on-the-fly aggregation is lightweight compared
to the complete recalculation. Thus, the cache performance can
be significantly improved if cached aggregates are revalidated
instead of evicted. That is why we describe an aggregate
revalidation algorithm for the merge process.

Instead of using a mixed workload benchmark like the CH-
Benchmark [9], we evaluate our cache management system
on a financials and controlling scenario that is based on real
world data and query templates from an operational enterprise
system. For the evaluation purpose, we have implemented the
cache management system in SanssouciDB, a columnar IMDB
with main-delta architecture.

In the following section, we describe how our cache man-
agement system differs from other existing cache management
systems. In Section 3, we give an architectural overview of
the aggregate cache with our cache management extensions.
We introduce the novel profit metrics in Section 4 and the
asynchronous cache management algorithm in Section 5. In
Section 6 we describe the revalidation algorithm for the merge
process. We evaluate the profit metrics and the algorithms on
the financials and controlling scenario in Section 7. In Section
8, we summarize our results and give an outlook on future
work.

II. RELATED WORK
Caches are not only applied in database systems but also in

systems for disk buffering or client-server applications. Each of
these systems requires a cache management system to maintain
the cache.

In disk buffering systems, the cache is used to provide fast
access to data on disk. Disk buffering systems have to manage
a limited size of cache space. Hence, they favor frequently
and recently accessed data blocks over rarely touched blocks in
order to maximize the system’s performance. In the past, many
algorithms have been proposed to most profitably manage
the cache. Least-frequently-used (LFU) [10], least-recently-
used (LRU) [11], k-least-recently-used (LRU-K) [12], 2Q [13],
MultiQueue [14] and least-recently-frequently-used (LRFU)
[15] are just a few to be mentioned. It takes only minimal
effort to adjust these algorithms to work with the aggregate
cache. However, they do not consider the cached aggregate’s
size, the execution time for a cache hit and the execution
time for a cache miss. These parameters are assumed to be
equal or at least almost equal in a disk buffering system,
but can significantly differ in a cache system for database
aggregates. For example, we have two analytical queries which
have been executed similarly frequently in the recent past. The
first analytical query has a processing time of several seconds
when it is not cached, but runs only a couple milliseconds
when it is cached. The second aggregate query may take only
several hundred milliseconds overall execution time when it is
not cached and about the same time when it is cached. The
above mentioned algorithms would not prefer one query over
the other. Our cache management system should prefer the
first query over the second in order to maximize the saved
processing time.

Another popular application for caches and, hence, cache
management systems lies in client-server systems. A client
retains information received from the server via a network in

order to avoid redundant data transfer and network contention.
Client-side caches have also been introduced for database
systems [16]. Opposite to these caches our aggregate cache
resides on the server. The server side cache can serve multiple
tenants working on a single consolidated database system.
In this way, multiple clients can profit from a single cached
aggregate on the server.

A couple of cache management systems for materialized
views and query results have already been introduced and
implemented in the past. In the following, we first provide a
non-comprehensive overview over previous cache management
systems and then distinguish them from our aggregate cache.

Scheuermann et al. introduce WATCHMAN [6] system as
one of the first approaches to manage database query results.
It makes cache admission and replacement decisions based
on the execution frequency, the execution time, and the result
set size of a query. The authors show that WATCHMAN
significantly improves the cache performance over an at that
time sophisticated disk buffer management algorithm LRU-K.
In a follow-up project the group around Scheuermann extended
the original WATCHMAN system described in [6] to support
subqueries and to consider update costs for the result sets [17].

Kotidis et al. implement a view management system called
DynaMat for data warehouses. It dynamically manages ma-
terialized aggregates [7]. The authors evaluate four metrics
for cache admission and replacement, the frequency metric,
the execution time metric, the result set size metric and a
combination of the three of the previous metrics. They show
that the combined metric, which is similar to the WATCHMAN
metric, performs best.

Park et al. design a caching mechanism for OLAP systems,
which is able to reuse partial results for related queries in
drill-down and roll-up sequences [8]. The cache admission and
replacement algorithm is extended in order to take into account
the profit of a query result for multiple related queries. Related
queries are part of the same drill-down or roll-up sequences
and were either executed in the recent past or will very likely
be executed in the near future. The reuse of partial results saves
their system expensive random accesses to the disk. Therefore,
the system performance can significantly profit from reusing
partial and overlapping query results residing in memory. In
our setup, however, the data is already stored in memory
and random accesses to disk are no limiting factor any more.
Additionally, Park et al. are limited to matching canonical drill-
down and roll-up sequences. Real world enterprise workloads
contain more complex analytical queries with subqueries and
joins. That is why, in the recent years, more sophisticated
research has been done on reusing partial views mitigating
a canonical query schema [18]. However, this is out of scope
of this work.

Opposite to all the above cache management systems our
management system administers an aggregate cache on an
IMDB with main-delta architecture. It considers the costs to do
an on-the-fly aggregation on the delta storage for every query
answered from the cache. That was unnecessary in the above
system setups, because the cached aggregate was delivered as
is.

Additionally, none of the above systems are designed for
mixed workloads in which data modifications can occur at
any time. Some of them consider bulk data modifications
during dedicated maintenance intervals but they cannot process
combined online and analytical workloads. In contrast, our
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Figure 1. The Aggregate Cache Manager inside SanssouciDB

cache management system is designed to deal with mixed
workloads.

III. AGGREGATE CACHE ARCHITECTURE
The aggregate cache and the cache management system are

fully integrated into SanssouciDB. Figure 1 gives an architec-
tural overview over the cache management system. The white
components are already existing components, while the gray
parts are cache management extensions that are implemented
for this work. The textured gray component is extended in this
work in order to support cache management. Figure 1 shows
that the aggregate cache consists of three major components,
the aggregate cache manager, the aggregates map, and the
metrics map.

The aggregate cache manager consists of the cache man-
ager core and the profit estimator. The cache manager core
stores the cached aggregates in the aggregate map and up-
dates the runtime information in the metrics map. It receives
cacheable aggregates from the query processor and delivers
cached aggregates back to the query processor if a query
can be answered from the cache. Before a cached aggregate
is delivered to the query processor, the cache manager core
checks whether the cached aggregate is still up to date. It asks
the transaction manager if rows were invalidated in the main
storage since the point in time the aggregate was created. In
case rows were invalidated, the aggregate cache updates the
cached aggregate before it delivers the aggregate to the query
processor.

The profit estimator is an extension to the existing aggre-
gate cache. It calculates the profit for every cached aggregate
by applying a profit metric on the runtime information residing
in the metrics map.

IV. PROFIT METRICS
The better the profit metric assesses the benefit of a cached

aggregate, the better the aggregate cache can perform. A
higher cache performance, in turn, leads to a better system
performance. Before we introduce the novel metrics, we assess
existing profit metrics in buffer management systems and
previous query result caches in the context of the aggregate
cache.

A. Existing Buffer Profit Metrics
We start with the metrics originating in disk buffering

systems. The symbols used to describe the following metrics

are explained in Table I:
1) LRU: The LRU metric defines the profit of cached

aggregates by their last access [11].

profitLRU (q) =
1

t− last_accessq
(1)

2) LRU-K: An extension of the LRU metric is the
k-recently used metric which considers the k most
recent accesses of a cached result [12].

profitLRU−K(q) =

{
1

t−kth_accessq
, if ≥k accesses

0, else
(2)

3) LFU: The least frequently used metric (LFU) rates
the cached aggregates by their recurrence. The recur-
rence increases constantly with every access [10].

profitLFU (q) = recurrenceq (3)

4) LRFU: The least frequently recently used metric
(LRFU) rates aggregates by their recurrence and
recency of access. It actually is not a single metric,
but a spectrum of metrics covering the range between
the LRU and the LFU metric [15].

profitLRFU (q) =

(
1

2

)λ·(t−last_accessq)

with 0 ≤ λ ≤ 1

(4)

For λ = 0 profitLRFU (q) = profitLFU (q) and
for λ = 1 profitLRFU (q) = profitLRU (q). This
is proven in [15]. If λ lies in between 0 and 1 the
LRFU metric returns a profit between the LFU profit
and the LRU profit. Such a profit is desirable, because
the recurrence and the recency with which a cached
aggregate is accessed are two important indicators for
the benefit of a cached aggregate.

The above metrics only consider access rates and fre-
quencies of cached aggregates. This is sufficient for disk
buffering systems, because they manage disk blocks of equal
size and similar disk fetch times. In database result caches or
aggregate caches like ours, these metrics do not perform well,
because the aggregate sizes can differ significantly. Some may
contain only a couple groups and only a few columns while
others have hundreds or even thousands of groups and several
dozens to hundreds columns. Additionally, the time needed to
calculate the query result or the cached aggregate can differ
substantially. Some calculations finish after a few milliseconds
while others process for several seconds or even longer.

B. Existing Query Cache Profit Metrics
The profit metrics of previous query result caches reflect

the above thoughts, since they consider the result set size as
well as the execution time of the cached query.

1) WATCHMAN: The WATCHMAN metric considers
the k last references as well as the aggregate size and
the execution time of a query [6].

profitWATCHMAN(q) = profitLRU−K(q)

· tq
result_sizeq

(5)

2) DynaMat: Similarly to the WATCHMAN metric,
the DynaMat metric takes the result size and the
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TABLE I. DEFINITION OF SYMBOLS

Symbol Definition
t current time

last_accessq time of the last access to aggregate q
kth_accessq time of the kth last access to aggregate q
recurrenceq number of times aggregate q has been referenced

tq calculation time for an aggregate q on the main and delta storage without cache
tmain calculation time for an aggregate q only on the main storage

tcache+∆ calculation time for an aggregate q on the cache and the delta storage
result_sizeq memory space required to store an aggregate q that is calculated on the main storage

deltaq number of aggregated tuples in the delta storage relevant for aggregate q
mainq number of aggregated tuples in the main storage relevant for aggregate q
invalq number of invalidated tuples in the main storage affecting aggregate q

∆q number of tuples involved in the delta compensation

calculation time of an aggregate into account. They
are combined with the recurrence of the query [17].

profitDynaMat(q) = profitLFU (q)

· tq
result_sizeq

(6)

These metrics worked well in previous query result caching
systems [6], [7]. However, the aggregate cache differs in at
least two substantial characteristics from the previous caches,
which should be reflected in the profit metric. First, the cache
is tailored to the main-delta architecture of columnar IMDBs.
Second, the cache has to deal with invalidated tuples on the
main storage.

C. Novel Profit Metrics for the Aggregate Cache
The above metrics only consider the overall query exe-

cution time. They do not distinguish between processing an
aggregation on the main storage and on the delta storage. The
differentiation is important for the performance of the cache
as the following example demonstrates. The aggregate cache
keeps only the aggregation result from the main storage and
performs an on-the-fly aggregation on the delta storage for
every incoming query. If a query only touches tuples in the
delta storage and the overall execution time of the query is
considerably long, the cache does not speed up this query.
However, the above metrics assign the associated aggregate a
high profit, because the overall execution time is long and the
cached (empty) aggregate has a small size.

The following four metric extensions are tailored to the
aggregate cache architecture. They distinguish between the
aggregation on the main storage and the delta storage.

1) TAR: The tuples aggregated ratio (TAR) metric rep-
resents the ratio of the tuples aggregated on the
main storage and the tuples aggregated on the delta
storage for a query q. The ratio yields more profitable
results, if the number of aggregated delta tuples is
low or the count of processed main tuples is high.
That is desirable, because the tuples on the delta
are aggregated whenever q is processed, whereas the
tuples on the main are aggregated only when the
aggregate is cached.

profitTAR(q) =
mainq
∆q + 1

(7)

Note that a "+1" is added to the tuples touched in
the delta storage in order to avoid a zero division. For
the simple case of just having a single table, ∆q =
deltaq .

2) ETR: The execution time ratio (ETR) metric is the
proportion the main storage processing time and the
delta storage processing time of a query q. It favors
queries that have a short processing time on the
delta storage and a long processing time on the main
storage. We want to cache the aggregates of these
queries, because they are answered quickly from the
cache, but they need a significant amount of time if
they are calculated from the main storage.

profitETR(q) =
tmain

tcache+∆
(8)

3) TAD: The tuples aggregated difference (TAD) metric
considers the number of tuples that do not have to be
aggregated when a query q is answered with the help
of the aggregate cache. The tuples on the delta storage
are aggregated on a cache hit and miss to answer q.
The tuples on the main storage are not aggregated on
a cache hit, because the aggregation result is cached
by the aggregate cache. Their count is the number
of tuples saved on a cache hit. The higher it is, the
higher is the profit of q’s aggregate.

profitTAD(q) = (mainq + ∆q)−∆q

= mainq
(9)

4) ETD: The execution time difference (ETD) metric
reflects the time saved when a query q is executed
with the aggregate cache. The processing time on the
delta storage is needed to answer q in both cases,
when the q’s aggregate is cached and when it is not
cached. Therefore, the time saved when q’s aggregate
is cached is the main processing time. The higher this
main processing time is, the higher is the profit of q’s
aggregate.

profitETD(q) = (tmain + tcache+∆)− tcache+∆

= tmain
(10)

Manipulative database transactions like deletes and updates
can invalidate rows in the main storage [19]. Thus, the deletes
and updates potentially have an impact on the cached aggre-
gates. In case the deleted rows are part of a cached sum the
rows are added up and then subtracted from the cached sum.
This on-the-fly process occurs whenever a query is answered
from the aggregate cache.

To address the invalidation of rows in the main storage and
the resulting compensation process in the cache, we define the
following compensation factor that is based on the number
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of invalidated tuples relevant for aggregate q, invalq , and the
number of aggregated tuples mainq in the main storage:

icomp(q) =
1

2
− invalq
mainq

(11)

If more than 50% of the aggregated tuples are being
invalidated, the profit becomes negative; which indicates that
an on-the-fly aggregation on the main storage is more cheaper
than using the cached aggregate.

The novel profit metrics combine one of the four main-
delta metric extensions with the invalidation compensation
extension, the LRFU metric, and the size of the cached
aggregate. That allows them to assess the profit of each cached
aggregate more precisely than the existing profit metrics.

1) AC-TAR: The aggregate cache tuples aggregated
ratio metric (AC-TAR) is a combination of the LRFU
metric (cf. Equation 4), the tuples aggregated ratio
metric (cf. Equation 7), the invalidation compensation
(cf. Equation 11), and the size of the aggregate
associated with query q.

profitAC−TAR(q) = profitLRFU (q) · icomp(q)

·profitTAR(q)

result_sizeq
(12)

2) AC-ETR: The aggregate cache execution time ratio
metric (AC-ETR) combines the LRFU metric (cf.
Equation 4), the execution time ratio metric (cf.
Equation 8), the invalidation compensation (cf. Equa-
tion 11), and the size of the aggregate associated with
query q.

profitAC−ETR(q) = profitLRFU (q) · icomp(q)

·profitETR(q)

result_sizeq
(13)

3) AC-TAD: The aggregate cache tuples aggregated
difference metric (AC-TAD) is a combination of the
LRFU metric (cf. Equation 4), the tuples aggregated
difference metric (cf. Equation 9), the invalidation
compensation (cf. Equation 11), and the size of the
aggregate associated with query q.

profitAC−TAD(q) = profitLRFU (q) · icomp(q)

·profitTAD(q)

result_sizeq
(14)

4) AC-ETD: The aggregate cache execution time dif-
ference metric (AC-ETD) is assembled from the
LRFU metric (cf. Equation 4), the execution time
difference metric (cf. Equation 10), the invalidation
compensation (cf. Equation 11), and the size of the
aggregate associated with query q.

profitAC−ETD(q) = profitLRFU (q) · icomp(q)

·profitETD(q)

result_sizeq
(15)

V. CACHE MANAGEMENT ALGORITHM
The algorithm evicts aggregates from the cache that do

not improve the overall system performance. Such aggregates
may be empty aggregates or aggregates based on meanwhile
invalidated rows. On-the-fly recalculation of these aggregates
is cheaper than retaining the aggregates in the cache. The
algorithm also has to remove the least profitable aggregates
from the cache in case the system is running out of memory.
Many analytical queries may be processed in parallel along
with even more transactional operations. That is why, the
algorithm should not block the system’s progress with every
incoming analytical query.

For the given reasons, we propose a cache management
algorithm which maintains the aggregate cache asynchronously
to the query processing. In previous systems the aggregate
cache was maintained with every incoming analytical query
[6]–[8]. We simply add the queries to the aggregate cache
and trigger a maintenance routine to evict the least profitable
queries in time intervals and when memory space is running
low.

The regular cache maintenance and the aggregates revali-
dation task during the merge phase requires the algorithm to be
split into three parts: The first part updates the cache metrics,
the second part evicts queries from the cache, and the third
part removes entries from the metrics map.

1) Cache Metrics Update: This first part of the algorithm
updates the information stored in the metrics map. If the
aggregate matching the executed query already exists as an
entry in the metrics map, the entry is updated. This process
requires a read lock on the metrics map, because another
process in the system may concurrently remove entries from
the map. If there is no matching entry in the map, the
procedure creates a new entry and fills it with the information
obtained from the system. That requires a write lock on the
metrics map, since other procedures handling other analytical
queries concurrently may add new entries to the metrics map.
However, the algorithm inserts the entry to a hash map so that
the procedure has an average complexity of O(1) [20]. So in
comparison to the other parts of our algorithm, the update is
processed very quickly and does not cause noticeable blocking
behavior.

2) Cache Trimming: Trimming the cache is more complex
than updating the metrics for a single aggregate. The procedure
is described in Algorithm 1. It is executed periodically and
when the system’s memory space is low.

First, the procedure iterates over the cache metrics map M
and appends each entry whose associated aggregate is cached
in a separate list ca. For this task it acquires a read lock on
M . This process has a complexity of O(n), where n is the
number of entries in the cache metrics map. Therefore, the
lock time scales linearly with the number of records in M . The
collection process does not block the update of information
in existing entries, because that only requires a read lock on
M . However, it blocks the insertion of new entries into the
metrics map, because the insertion of new entries requires
an exclusive write lock. The insertion of new entries is only
necessary, when a unknown query gets cached. In that case,
the query has to be processed on both, the main and the delta
storage. That processing time exceeds the time to collect all
cached aggregates in most cases so that the blocking behavior
is hardly noticeable.

As the next step, the procedure sorts the entries in the list ca
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by profit in ascending order. Since most of the profit metrics
introduced in Section IV require a timestamp, the a current
timestamp is handed to the profit estimator that encapsulates
the profit metric. The sorting is the most costly part in the
cache trimming procedure. It has a complexity of O(n log(n)),
where n is the number of cached entries. However, it does not
require any lock, because it works on a temporary list. Thus,
it cannot cause any blocking behavior.

Given this sorted list of cached entries the procedure starts
removing entries from the aggregate map A. It fetches entries
from the front of the list ca until the new cache size is reached
or the profit of an entry is bigger than zero. Recapture that the
profit becomes negative if more than 50% of the rows that the
cached aggregate is based on are deleted. The removing of
cache entries requires locks on both the aggregate map A and
the metrics map M . The cache trimming procedure obtains
and releases them for the eviction of each entry in order to
avoid blocking behavior.

If new aggregates are added to the cache, while the
procedure is sorting or removing entries from the list ca. They
are ignored for the current trimming process.

Algorithm 1 Cache Trimming Procedure
Require: aggregate_map A, metrics_map M,

current_cache_size cs, target_cache_size ts
1: procedure TRIM_CACHE(A, M, cs, ts)
2: cached_aggregates ca ← [ ]
3: M.acquire_read_lock()
4: for all metrics_map_entry 〈k, v〉 in M do
5: if v.is_cached then
6: ca.append(〈k, v〉)
7: end if
8: end for
9: M.release_read_lock()

10: timestamp t ← current_time()
11: profit_estimator.sort(ca, t)
12: for all metrics_map_entry 〈k, v〉 in ca do
13: if profit_estimator.profit(v) > 0 then
14: if cs < ts then
15: break
16: end if
17: end if
18: A.acquire_write_lock()
19: M.acquire_read_lock()
20: cs ← cs − v.result_size
21: M.invalidate(k)
22: A.evict(k)
23: M.release_read_lock()
24: A.release_write_lock()
25: end for
26: end procedure

3) Metrics Trimming: Similarly to the cache entries, the
metric entries are trimmed in periodic intervals. For the metrics
trimming task, all metric map entries for uncached aggregates
are obtained and stored in a list. A read lock on the metrics
map is required for this operation. It has a complexity of O(n),
where n is the number of entries in the cache metrics map. The
read lock may block the insertion of unknown aggregates to
the cache, but as described previously, query processing should
not noticeably be blocked.

The list of uncached aggregates is sorted by LRU in order
to find the metric map entries that have not been used for
the longest period of time. They are evicted from the metrics
map one after another until the defined threshold is reached.
For every entry eviction, a write lock on the metrics map
is acquired and released after the entry is removed from the
metrics map. This fine grained lock handling avoids blocking
behavior.

VI. INCREMENTAL REVALIDATION ALGORITHM FOR THE
MERGE PROCESS

The incremental revalidation algorithm for the merge pro-
cess updates those cached entries whose underlying base table
is merged. It is integrated with the merge process described in
[21]. During the merge prepare phase, the algorithm identifies
and collects all cached aggregates that are based on the table
being merged. It marks the aggregates to indicate that they
need revalidation.

When the merge process is in progress, the algorithm orders
the cached aggregates by their profit in descending order, so
that the most profitable aggregates are at the beginning of the
list. It incrementally revalidates the aggregates beginning from
the head of the list until the merge process is finished. Directly
after the revalidation the aggregates are marked as revalidated.

When the merge process is committed, the algorithm
removes all aggregates which have not been updated from the
cache, because they do not represent the aggregation result on
the new main storage any more.

VII. EVALUATION
For the evaluation, we implemented the algorithms and

profit metrics in SanssouciDB [21], an IMDB with main-delta
architecture. However, we are confident that our algorithm
and metrics yield similar results when implemented in other
IMDBs such as SAP HANA [22] or Hyrise [23]. We evaluate
our algorithms and metrics with a financial accounting appli-
cation. Other than mixed workload benchmarks such as the
CH-benchmark [9] the application works on a database with
real customer data. It also generates a mixed workload with
OLTP-style inserts for the creation of accounting documents
and OLAP-style queries for the calculation of reports like
profit and loss statements. Therefore, the financial accounting
application suits our evaluation purposes.

The application’s database contains 22 million records in a
single, denormalized table. We generated inserts based on these
records for our workload. We also extracted 100 OLAP-style
aggregate queries from the application and validated these with
domain experts. They contain at least one aggregation function.
From these 100 distinct OLAP-style queries, we create an
analytical workload with 1000 queries, which we use for the
following experiments. The server for the benchmarks has 4
Intel Xeon processors with a total of 40 physical cores and 1
TB of main memory.

A. Delta Storage Tuples
In the first experiment, we vary the number of tuples in the

delta storage and compare the four aggregate cache metrics
AC-ETD, AC-TAD, AC-ETR, and AC-TAR with the exist-
ing profit metrics LRU, WATCHMAN (WM), and DynaMat
(DYN). The results are displayed in Figure 2. As performance
measure we use the workload execution time. The lower it is,
the better a metric performs. We set the eviction threshold to
80%. As a consequence the cache is trimmed to 80% of its
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Figure 2. Comparison of Profit Metrics with Varying Delta Sizes.
(Cache Size 200kB, Eviction Threshold 80%)

maximum size when the maximum size of 200kB is reached.
200kB are sufficient to cache about 40 to 50 aggregates. The
LRFU decay factor λ is set to 0.0001. This value has proven
to perform best in our experiments.

The results show that the execution times of all profit met-
rics increase with a growing delta storage. The reason is that
the aggregations on the delta storage become more expensive
with an increasing delta size. When the delta storage is empty,
all metrics, except the LRU metric, show similar performance
results. That is the case, because the delta access time is very
low and almost equal for all queries. With increasing delta size,
the AC-ETD and AC-TAD metrics more and more outperform
the other metrics. When the delta contains 200,000 tuples or
more, the two metrics perform at least two seconds better than
the existing WATCHMAN and DynaMat metrics. That is a
performance gain of at least 11%. The AC-ETD and AC-TAD
metrics constantly yield workload execution times that are five
to six seconds faster than the LRU metric, independent from
the delta size.

The ratio metrics AC-ETR and AC-TAR perform one and a
half to six seconds worse than AC-ETD and AC-TAD metrics.
The reason is that the ratio metrics assign high profit to all
aggregates that consider only few tuples on the main and
the delta storage. For example, an aggregate a is computed
over 2 tuples in the delta storage and 100 tuples in the main
storage. An aggregate b is calculated over 2,000 tuples in the
delta storage and 50,000 tuples in the main storage. When
the size and access history is equal for a and b, the AC-
TAR metric assigns a profit to a that is twice as high as b’s
profit. Consequently, the AC-TAR metric favors lightweight
aggregates like a. However, caching b is better for the cache
performance, because the time to calculate b on the main
storage is higher than the time to compute a. The AC-ETR
metric also assigns a higher profit to a, but the profit is less
than twice as high, since the aggregation time does not scale
linearly with the number of tuples aggregated. That is why the
AC-ETR metric performs up to three seconds faster than the
AC-TAR metric.

Since the AC-TAR metric favors lightweight aggregates the
performance of the metric decreases to the performance of the
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Figure 3. Comparison of Profit Metrics on Different Cache Sizes.
(Delta Tuple Count 200,000, Eviction Threshold 80%)

LRU metric when the delta storage contains 300,000 tuples.
The LRU metric shows the worst results because assessing an
aggregate’s profit on the last access only is not sufficient. The
AC-TAD and AC-ETD metric constantly have results that are
five to six seconds faster. That is a performance benefit of
more than 35%.

B. Cache Size
In a second experiment, we evaluate the influence of the

cache size on the performance of the profit metrics. The results
are shown in Figure 3. The execution time is the same for all
metrics when the cache size is 500kB. Since the aggregates
have a total size of 450kB, they all fit into the cache of 500kB
size. Therefore, results from the runs with 500kB cache size
show the optimal aggregate cache performance because no
aggregate is evicted in any of the runs. In operational systems,
the cache can grow several hundred gigabytes large because
the systems process more than a hundred distinct queries. At
a cache size of 400kB, the results of all metrics are similar
because most of the aggregates fit into the cache. The cache
metric has hardly any influence on the cache performance.

When the cache size is smaller than 400kB, the per-
formance of all metrics decreases. However, the decrease
significantly differs between the metrics. The LRU metric
shows a performance decrease of 11 seconds or 100% in case
the cache size decreases from 500kB to 200kB. In comparison,
the performance decrease of the AC-ETD and the AC-TAD
metrics is only five seconds or 45%. That is less than half the
performance decrease. The WATCHMAN, DynaMat, and AC-
ETR metric have a decrease of seven seconds or 63%. The
AC-TAR metric has a decrease of 81%.

C. Eviction Threshold
The results in Figure 4 show the impact of the eviction

threshold on the profit metrics. When the eviction threshold
is 0%, all aggregates are evicted from the cache once the
maximum cache size of 200kB is reached. Then, the profit
metrics have no influence on the cache performance so that
all of them show the same performance. In general, the bigger
the threshold gets, the better all of the profit metrics perform,
except from the AC-TAR metric.
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Figure 4. Comparison of Profit Metrics for Different Eviction Thresholds.
(Delta Tuple Count 200,000, Cache Size 200kB)

The AC-TAR metric does not improve the cache perfor-
mance, when the threshold gets bigger than 50%. That has
two reasons. On the one hand, the metric tends to favor
lightweight aggregates. On the other hand, costly aggregates
can run multiple times between two consecutive runs of the
cache trimming procedure. The bigger the intervals, the more
likely is it, that the queries reoccur. Their aggregates get cached
on the first occurrence. On the following occurrences, the
queries are answered from the cache.

The AC-ETD and the AC-TAD metrics show the best
results for an eviction threshold between 10% and 100%. They
are up two seconds faster than any of the other metrics. The
AC-ETR, WATCHMAN, and DynaMat metrics show similar
results when the threshold is bigger than 50%. In case the
threshold is smaller, the AC-ETR metric is up to one second
faster than the WATCHMAN and DynaMat metrics. The LRU
metric shows the lowest performance. The time difference to
the AC-ETD and the AC-TAD metrics grows from at least
one second at an eviction threshold of 10% to more than five
seconds at an eviction threshold of 100%.

D. Invalidation Compensation
The fourth experiment describes the impact of the invalida-

tion compensation for deleted tuples in the main storage. The
results are presented in Figure 5. We cache all queries, before
we invalidate one million tuples in the main storage. After the
invalidation, we reduce the cache size to 200kB and execute
the analytical workload with the novel aggregate cache profit
metrics. Once the metrics have the invalidation compensation
factor icomp(q); once they do not have it. The results in Figure
5 show that the system’s performance increases by up to almost
17% when the metrics with the invalidation compensation
factor are applied. The percentage increase is higher for the
AC-TAR metric and the AC-ETR metric compared to the
AC-ETD metric and the AC-TAD metric because the overall
performance of the AC-TAR and the AC-ETR metrics is not
as good as the one of the AC-ETD and AC-TAD metrics.

E. Cache Revalidation During Merge Process
In the last experiment, we analyze the performance impact

of the incremental aggregate revalidation during the merge
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Figure 5. Impact of the Invalidation Compensation on the Profit Metrics.
(Delta Tuple Count 200,000, Cache Size 200kB, Eviction Threshold 80%)
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Figure 6. Impact of the Incremental Aggregate Revalidation during the Merge
Process dependent from the Profit Metrics.
(Delta Tuple Count 200,000, Cache Size 200kB, Eviction Threshold 80%)

process. In an operational system, where more than 100 distinct
queries are executed, the revalidation of all affected aggregates
can take more time than the merge process. Since, in our sce-
nario, the merge process takes more time than the revalidation
of the 100 queries, we manually limit the revalidation of the
aggregates to a certain percentage of all cached aggregates.
When half of the workload is processed, we trigger the merge
process.

The results in Figure 6 show that the incremental reval-
idation yields a performance benefit of up to 15% when all
aggregates are revalidated. The benefit increases with the per-
centage of incrementally revalidated aggregates. When the AC-
TAR metric is applied, the benefit stagnates at around 5%, once
more than 50% of the cached aggregates are revalidated. That
has the following reason: In case no aggregates are revalidated,
the cache is empty after the merge. Then, many expensive
aggregates are cached and repeatedly accessed before the first
cache trimming after the merge is executed. That reduces
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the execution time. In case all aggregates are revalidated, the
lightweight aggregates that the AC-TAR metric assigns a high
profit permanently content the cache.

VIII. CONCLUSION
We have introduced novel profit metrics and cache manage-

ment algorithms tailored to the special main-delta architecture
of modern IMDBs. In the evaluation section, we showed that
the novel profit metrics yield up to 10% better results than ex-
isting metrics. The experiments on SanssoucciDB indicate that
especially the AC-ETD and the AC-TAD metrics outperform
all existing profit metrics.

We also showed that it is important to consider the in-
validated tuples in the main storage for the profit metrics. In
our experiments, the metrics with invalidation compensation
factor perform 6% to 16% better than the same metrics without
invalidation compensation factor.

The evaluation also indicates that the system’s performance
increase when the profitable aggregates are incrementally
revalidated instead of invalidated during the merge process.
The performance increases up to 15% when all cached aggre-
gates are incrementally updated.

So far our evaluation was based on a single table. In
the future, we want extend the evaluation to scenarios with
multiple tables and even more complex queries including joins.
We also want to evaluate the impact of different incremental
update strategies with our cache. The cache management
system can update the cached aggregates not only during merge
phase, but whenever the aggregate is touched and an on-the-fly
aggregation on the delta is performed.
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