
Towards a New Incremental Implementation Approach for Distributed

Databases

Bouraoui Marwa

Université Tunis El Manar

SITI, ENIT

Tunisia

e-mail: bourawimarwa@gmail.com

Hassen Fadoua

Université Tunis El Manar

 LIPAH, FST

Tunisia

 e-mail: hassen.fadoua@gmail.com

 Grissa touzi Amel

Université Tunis El Manar

 ENIT, LIPAH, FST

Tunisia

e-mail: amel.touzi@enit.rnu.tn

Abstract—In this paper, we propose a new incremental

implementation approach of a Distributed Database (DDB).

On one hand, the frequent need to add and/or delete number

of sites in the geographical distribution of a DDB has become

a requirement of the user. On the other hand, we find that

the already existing Distributed Database Management

System (DDBMS) does not even offer an automatic

implementation for a Distributed Database, which has been

initially allocated to a predefined number of sites. In this

approach, we propose a weak coupling with any existing

DDBMS. This consists in garnishing all DDBMS with an

intelligent layer that offers: 1) a convivial interface for an

incremental definition of the different sites in the DDB, 2) an

incremental design approach to DDB while knowing

fragmentation attributes and 3) an automatic update of the

scripts in the different sites. To validate our approach, we

have used Oracle as an example of DDBMS.

Keywords-Distributed Database; Fragmentation;

Allocation; Integrity Constraint; Distributed Updates.

I. INTRODUCTION

The design and implementation of a Distributed
Database (DDB) has always been a challenge for the
designers of this type of Database especially with: 1) the
size of the original model, 2) the frequent need to add
and/or suppress sites in the geographical distribution of
DDB and 3) the limits of existing Distributed Database

Management System (DDBMS).
Several studies have been conducted in this context. As

examples, we can cite the work of Abdalla [1] and Moussa
[2] who have proposed a support system for the design of
DDB. We can also mention the work of Hassen and
Grissa [3], who has proposed a new aid approach for the
DDB implementation. This approach has been validated by
the design and implementation of a tool that provides a
graphical interface which guides the user through the DB
fragmentation and validates his choices. The final product
was a set of Structured Query Language (SQL) scripts
automatically generated for each site from the initial
configuration.

Unfortunately, these proposals remain static and do not
take into account the evolution of the number of sites that
occurs throughout the Database (DB) lifecycle.

In this paper, we propose a new incremental
implementation approach of DDB taking into account the

evolution of the number of the DB sites. This approach
should allow 1) an incremental design of the DB taking
into consideration the addition and/or deletion of a site, the
fragmentation concepts and the duplication of data, 2) the
updating of the various links between the sites, and 3) an
automatic generation of DDL script for each site as well
as Procedural Language (PL) / SQL procedures and the
necessary triggers for the update and the verification of the
DDB integrity constraints. This approach has been
validated by an implementation of an intelligent layer
under the Oracle DDBMS.

This paper is organized as follows: Section 2 presents
some basic concepts of DDB. Section 3 presents an
example of a DDB implementation, thus illustrating the
problems and limitations of already existing DDBMS.
Section 4 presents our motivation for this work. Section 5
presents a description of our proposed approach. Section 6
presents our implemented tool, Intelligent-Incremental-
DDB. We end with a conclusion and some perspectives.

II. BASIC CONCEPTS

A distributed database (DDB) is a collection of
multiple, logically interrelated databases distributed over a
computer network [4].

A Distributed Database Management System
(DDBMS) is a software system that manages a set of
databases which are physically distributed but logically
connected and which provides the necessary means of
access to ensure a transparent distribution [5].

In particular, a DDBMS must ensure a continuous
functioning. Indeed, the need for a planned system
shutdown should never be felt, even for some operations
such as site adding or site deleting, or else the dynamic
creation or deletion of fragments in one or more sites.

We cite as examples: Oracle 11g [6], Cassandra [7],
Informix [8], INGRES [9], among the top DDBMS
ranked in the market.

Distributed database design must take into account the
number of sites on the distribution. It is based especially
on the following concepts [10]:

 Fragmentation: Fragmentation is the process of
the decomposition of a database into a set of sub
databases. This decomposition should be with no
loss of information [11]. We distinguish three

75Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

types of fragmentation: 1) horizontal
fragmentation: It consists of dividing the relations
into sub relations obtained through the selection
of tuples in a table according to a specific
criterion. The reconstruction of the relations is
defined by the union of the fragments. 2) Vertical
Fragmentation: Each fragment represents a
subset of relationship attributes. The primary key
must be maintained in each fragment. The
reconstruction of the relations is defined by join.
3) Mixed fragmentation: It results from the
successive application of horizontal and vertical
fragmentation operations on a global relation.

 Replication: the replication of a database is the
reproduction of a subset of the main database on
remote sites.

 Data allocation: is the allocation of fragments to
different sites depending on the origin of the
queries that have been used during the
fragmentation process.

III. EXAMPLE OF A DDB IMPLEMENTATION

In this section, our goal is to describe, through an
example, the necessary process to implement a DDB on a
number of initial sites, then show the necessary changes
that have to be made by the DDB designer following the
addition of a new site.

Consider the database described by the following
global schema:

Client (ID-cl, Name, Address, City, Business_Sales,
Rate_Reduction)
Command (Num-c, Date_c, # ID-cl, Delivery)

We propose first to distribute this DB on two sites:

Tunis and Sousse. This distribution is shown in Figure 1.

Figure 1. DB spread over two sites

Then, following the user needs, we propose to add a
third site: Sfax, as it is illustrated in Figure 2.

Figure 2. DB spread over three sites

In this section, we propose to use Oracle 11g as
DDBMS to implement our DDB.

A. Allocation mechanism in Oracle

Like any commercial DDBMS, Oracle does not accept
the distributed allocation mechanism, although the
administrator can manually allocate DB data to produce
similar results. This has the effect of shifting the
responsibility under the auspices of the end user, who must
know that a table has been fragmented and that he can
convert this knowledge into the application. In other
words, the Oracle DDBMS does not ensure transparency
of the distribution, while it allows location transparency
[8].

In order to ensure transparency, the designer must stick
to the following steps:

 User accounts creation among sites.

 Bi-directional links creation between different
sites (using oracle CREATE DBLINK
command).

 Local schema implementation on each site

 Synonyms definition to ensure location
transparency.

 View and/or materialized views creation and/or
snapshots to ensure fragmentation independent
schema. On each materialized view and snapshot
definition, we have to specify update mode
(asynchronous, synchronous) and refresh delay in
accordance with the application need .

 Stored procedure definition, as PL/SQL script, on
each update operation in a way to make data
fragmentation and duplication automated and
transparent.

 As a DBMS can ensure only local data integrity,
the designer must define PL/SQL triggers that
allow checking distributed data integrity among
DDB.

B. DB implementation at two sites

The implementation of this database will be as follows
(Figure 3):
For site1 :Tunis

DDL_Site1.sql

76Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

---------------DDL FOR DATABASE LINK ------------
--
create public database link DB_Link_S2
connect to user2 identified by passwd2
using 'ConfigBD2';
------------------- DDL FOR TABLES -------------------
--
create table Client_Tunis (ID-cl number (4), Name
varchar2(10), First_Name varchar2(10), Adress
varchar2(20), City varchar2(10), Business_Sales
number (10,3), Rate_Reduction number (4,2),
Constraint PK11 primary key (ID-cl));

create table Command_Tunis (Num_c number (4),
Date_c Date, ID_cl number (4), Delivery char chek
(Delivery in (‘O’,’N’) ,constraint PK12 primary key
(Num_c), constraint FK1 foreign key (ID_cl)
references Client_Tunis(ID-cl));
-------------------- DDL FOR SYNONYMS --------------
--
create public synonym Client_Sousse for
Client_Sousse@DB_Link_S2;

create public synonym Command_Sousse for
Command_Sousse@DB_Link_S2;
---------------- DDL FOR VIEW ---------------------------
--
create view Client
 as
 (select * from Client_Tunis)
 union
 (select * from Client_Sousse);

create view Command
 as
 (select * from Command_Tunis)
 union
 (select * from Command_Sousse);
-------DDL FOR INSERT_CLIENT PROCEDURE ---
--
Create or replace Procedure insert_client(idc number,
namec varchar2, fnamec varchar2, addressc varchar2,
cityc varchar2, bsc number, rrc number)
is
begin
 if (cityc=‘TUNIS’) then
 insert into Client_Tunis values(idc, namec,
fnamec , addressc, cityc, bsc, rrc);
 elsif (cityc=‘SOUSSE’) then
 insert into Client_Sousse values(idc, namec,
fnamec , addressc, cityc, bsc, rrc);
 else DBMS_OUTPUT.put_line(‘The client city
must be either Tunis or Sousse’) ;
end if ;
commit ;
end ;

Figure 3. Part of DDL_Site1.sql

For the site 2: Sousse: we follow the same principle of

Site1

C. DB implementation at three sites

Now, suppose that we add a new site 'Sfax'. Such a
change will result in various modifications in the generated
scripts.

To involve the new site added, several changes will be
applied in different sites. For example, one of these will be
the updating of the site 1 Data Definition Language
(DDL) script, which includes changes at three levels
(Figure 4) :

- Views
- Synonyms
- The PL / SQL procedures

create view Client
as
 (select * from Client_Tunis)
 union
 (select * from Client_Sousse)
 union
 (select * from Client_sfax);
--
create public synonym Client_Sousse for
Client_Sousse@DB_Link_S2;

create public synonym Client_Sfax for
Client_Sfax@DB_Link_S3;

create public synonym Command_Sousse for
Command_Sousse@DB_Link_S2;

create public synonym Command_Sfax for
Command_Sfax@DB_Link_S3;
 --
Create or replace Procedure insert_client(idc number,
namec varchar2, fnamec varchar2, addressc varchar2,
cityc varchar2, bsc number, rrc number)
is
begin
 if (cityc=‘TUNIS’) then
 insert into Client_Tunis values(idc, namec,
fnamec , addressc, cityc, bsc, rrc);
 elsif (cityc=‘SOUSSE’) then
 insert into Client_Sousse values(idc, namec,
fnamec , addressc, cityc, bsc, rrc);
 elsif (cityc=‘SFAX’) then
 insert into Client_Sfax values(idc, namec,
fnamec , addressc, cityc, bsc, rrc);
 else DBMS_OUTPUT.put_line(‘The client city
must be either Tunis or Sousse or Sfax’) ;
end if ;
commit ;
end ;

Figure 4. Part of DDL_Site1.sql automatically updated after adding a new

site

IV. MOTIVATION

As shown previously, designers are still facing issues
when dealing with Distributed DBs:

 The process of implementing a DDB is still a
quite tedious task and time consuming even for a

77Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

fixed number of sites. The variety of scripts to
generate, the size of the database, and the number
of sites are factors that can rise the complexity of
the exercise.

 Incremental implementation of a DDB with a
variable number of sites (addition or deletion) is
very delicate and error-prone mission. In fact,
multiple updates must be applied in order to
ensure data coherence, fragment validation and
other critical constraints. In addition, such a
modification will affect the initial design every
time a site is added or removed.

Several studies have been conducted in this context. As

examples, we can cite the work of Abdalla [1] and Moussa
[2] who have proposed a support system for the design of
DDB. We can also mention the work of Hassen and grissa
[3], who has proposed a new aid approach for the DDB
implementation. This approach has been validated by the
design and implementation of a tool that provides a
graphical interface which guides the user through the DB
fragmentation and validates his choices.

Unfortunately, these contributions still static; they are
designed for a fixed number of sites, so they do not offer a
solution that supports dynamic design while adding,
updating or deleting sites. They are also limited to the
design and implementation of a DDB but do not offer a
solution for updating this DDB through adding or deleting
fragments.

We can mention here the work of Hsu [12], who
explain the concepts of the Rensselaer Polytechnic
Institute Metadatabase System while discussing a single
approach to the integration problem. This contribution
answers one part of the matter but it is limited for the
Metadatabases. In addition, it is an integration approach of
heterogeneous data application while we are interested in
distribution approaches for DDBs.

What characterizes our work also is the support for
fragmentation aspect, where each fragment is hosted in a
remote DB. Such a feature introduces more complexity to
the procedure. Not only it supports variable number of
sites, but also, sychronizes scattered fragments in remote
sites which are bound by some integrity rules.

In the following, we propose a new architecture of the

DDBMS that supports an incremental implementation.
This consists in garnishing all DDBMS with an intelligent
layer that offers: 1) a graphical interface for an incremental
definition of the different sites in the DDB, 2) an
incremental design approach to DDB while knowing
fragmentation attributes and 3) an automatic update of the
scripts in the different sites. To validate our approach, we
have used as an example of DDBMS, the Oracle DDBMS.

V. NEW APPROACH PROPOSALS FOR ORACLE

DDBMS

A. The Approach Specification

To validate our approach, the new layer must ensure
the followings:

 Verification of distributed data integrity: for the
centralized DB, the existing DBMS validate the
integrity constraint verification, but the problem
occurs in case they check them for the distributed
DB.

 Dynamic design of the database: adding /
removing a site entails the integration /
suppression of a local schema, which leads to the
modification of the global schema.

 Updating scripts of:
- Views
- Synonyms
- Stored procedures
- Triggers
- Allocation of data in remote

databases

B. Suggested layer architecture

The architecture of our application is illustrated in
Figure 5. The graphic interface provides an easy method to
interact with the users who, in turn, may interact easily
with different modules:

 A validation module, which informs the user if
his operation is true or false, is implemented to
help the less experienced user not to make
mistakes when handling complex schema. In
reality, this layer is implemented on two levels:

 Validate fragmentation: check if the
fragmentation process respects the three
criteria: Reconstruction, Completeness
and Disjointness.

 Validate data integrity: check
distributed data integrity across the
remote databases.

 The site management module includes: update
bases schemas, update scripts of (views,
synonyms, triggers, data allocation), update
database links.

 The script generation module allows the user to
consult the SQL script of all transactions that took
place during the database implementation
process.

Figure 5. Layer architecture

78Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

C. Incremental implementation procedure

In the following (Figure 6), we present the procedure
we have implemented for the addition of a new site:

Adding site principle

BEGIN
{
s = The site that we wish to add;
F = {f1, f2,.., fn} list of fragments //fi may be a
horizontal, vertical, hybrid or dulicate fragment in a
remote specific site;
1. Enter the list of configuration parameters of this site
s (database link, site name, IP address ,remote database
SID, login, password);
2. Generate scripts for creation of database links
according to s;
3. Attribute fragments to the site s;
3.1 Retrieve the list of relationships based on initial
schema ;
3.2 WHILE " Complete Fragmentation " is false
{
FOR each table from the centralized database
{
// Choose the type of fragmentation
IF horizontal fragmentation
THEN {
Select column fragmentation;
Affect the value of fragmentation ; }
ELSE IF vertical fragmentation
THEN Selected the columns of the fragment ;
ELSE IF hybrid Fragmentation
THEN Treat the hybrid fragment;
ELSE IF duplication
THEN Duplicate the table;
 Validate the fragmentation;
 Display the validation report;
IF validation is negative
THEN break;
ELSE
//Generate scripts fragments
generate scripts for creation of fragments;
generate scripts of data allocation;
}
}
4. Run the database link scripts according to s;
5. Generate the relational schema of this site s;
6. Regenerate the new global schema;
7. Add the new fragment to the list of fragments;
8. Add this site s to the list of sites;
9. Check distributed data integrity
9.1. Collect some necessary information: Site list,
fragment list, etc;
9.2. Generate triggers scripts ;
9.3 Run the triggers scripts;
10. Generate CRUD procedures;
11. Generate views;
12. FOR each fragment fi according to s
{
 execute script of fragment creation;
 // execute script of allocation
{ allocate data to the fragments of s;
 delete the allocated data from the centralized DB; }

}
}
END

Figure 6. Adding site principle

Considering the case of a site removing, it requires to
delete its fragments, its database links and to update
global conceptual schema and triggers. In the following
(Figure 7), we present the procedure we have implemented
for this operation.

Deleting site principle

BEGIN
{
s = The site that we wish to delete;
F = {f1, f2,.., fn} list of fragments; //fi may be an
horizental, vertical, hybride or dulicate fragment in a
remote specific site
1. FOR each fragment(fi) in the fragments lists(F)
{
IF fi belongs to the current site s
{
a. Delete fi's data
{
 IF fi does not have a primary Key
 THEN delete fi's data;
 IF fi has a primary key
 THEN activate a cascade suppression to delete
 fi's data(recursive procedures);
}
b. Delete fi from the fragments lists F;
}
}
2. Delete database links which refer to s;
3. Delete s from to the sites lists;
4. Generate the new global schema;
5. Check distributed data integrity
5.1. Collect information to generate scripts of
distributed triggers(database link, site name, fragments
lists,..);
5.2. Generate updating triggers scripts;
5.3. Execute triggers scripts;
6. Generate new scripts of views end synonyms ;
}
END

Figure 7. Deleting site principle

D. Performance analysis

Among the most important performance criterion that
users seek today, is the response time. We are primarily
interested in our application to the incremental aspect of to
the number of sites, so we have analyzed the response time
required for the generation of scripts when creating /
deleting sites.

 First Scenario: Adding Site

 Second Scenario: Removing site
We varied the number of sites for each scenario from 1

to 60 sites. The results are described through the following
figure (Figure 8):

79Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

Figure 8. Performance analysis

The results presented in the Figure 8 shows that adding a

site consumes more time than deleting a site. This is

justified by, while adding a new site, we have more scripts

generated for verifying data integrity of new integrated

fragments. For each site, our application handles of

updating scripts of: views, synonyms, stored procedures,

triggers and allocation of data in remote databases. A

cascade delete implemented by our solution can also speed

up the removal process.

VI. INTELLIGENT-INCREMENTAL-DDB

In this section, we propose to validate our approach.
For this we propose a weak coupling with Oracle as an
example of DDBMS.

Thus, we used a Windows7 operating system. For the
development environment, we have worked with DotNet
framework 4.0 (CSharp). We installed virtual machines
(Oracle Virtual Box) for the remote databases.

We detail our application operation with the most
important interfaces:

Once authenticated, the user is asked to fill in the
required coordinates to connect to the centralized DB. If
the database is in a remote server, the user must switch to
advanced mode to indicate the IP address and the port
server (Figure 9).

Figure 9. Connection to the centralized database

After a successful connection, the user can benefit

from the functionality of the application. He can also refer
to the overall relational schema of the centralized database
as well as the local schemas of the remote databases
(Figure 10).

Figure 10. Consult relational schema

Figure 11 shows the site management interface. As an

example, we present below the interface of adding a new
site. Firstly, the user configures settings, which allow
access to remote sites, by indicating (IP address, database
link, login, password, SID).

Figure 11. Configuration of parameters access to the remote site

Secondly, the user may add fragments from the
centralized tables to the current site. He can also perform a
horizontal fragmentation, a vertical fragmentation, or even
duplicate an existing table. Figure 12 shows an example of
such an operation.

Figure 12. Fragment allocation to the new site

80Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

By clicking on the "Generate" button, the script of this
operation is displayed; it consists of : a validation report of
fragmentation, creation script fragments and the data
allocation script. For a valid fragmentation, the user can
run the script (Figure 13).

Figure 13. SQL script for the creation of the new site Generation

To check distributed data integrity, our application
provides the user with the opportunity to run triggers that
take into account the database distribution. He can also
consult their SQL script. These triggers are updated
automatically when adding, changing, or deleting a site.

In Figure 14, we can visualize an example of an
automatically generating script for a deleting trigger (the
user just mentions the centralized table and the system
detects the tables' fragments and generate the distributed
trigger script). The user can choose to activate a cascade
delete.

Figure 14. Triggers script generation

In this section, we have detailed our implemented tool
with the most important interfaces.

VII. CONCLUSION

In this paper, we proposed an incremental solution for
the implementation of DDB in the Oracle DBMS, that
takes into account the addition or deletion of a site or the
modification of a site by adding or removing fragments.
Our approach has been validated by providing a graphical
tool, which takes charge of the necessary updates that

ensure distributed data integrity, remote access,
transparency, allowance, etc.

However, our implementation still needs several
improvements such as: 1) the refinement of the script
generation algorithms 2) the expansion of the environment
supporting our solution, which is currently limited to
Oracle technology, by generalizing it to the other DBMS.

REFERENCES

 [1] H.I. Abdalla, “A New Data Re-Allocation Model for
Distributed Database Systems”, International Journal of
Database Theory and Application, 2012, Vol. 5, No. 2, pp.
45-60.

[2] R. Moussa, “DDB Expert: A Recommender for Distributed
Databases Design”, Database and Expert Systems
Applications (DEXA), 2011, pp. 534-538.

[3] F. Hassen and A. Grissa Touzi, “Toward a new approach of
distributed databases design and implementation
assistance”, DBKDA, 2014, pp. 104-110.

[4] S. Gupta, K. Saroha, and K. Bhawna, “Fundamental
Research of Distributed Database”, International Journal of
Computer Science and Management Studies, 2011, Vol. 11,
Issue 02, pp. 138-146.

[5] M. T. Özsu and P. Valduriez, “Principles of distributed
database systems”, New York, Springer, 2013.

[6] F. Bouzaiene, “Oracle Golden Gate”, Oracle Technologie
Day Tunis, March. 2013.

[7] E. Hewitt, “Cassandra: The definitive guide”, O'Reilly,
2010.

[8] J. Shute, M. Oancea, S. Ellner, B. Handy, E.
Rollins, B.Samwel, R. Vingralek, C. Whipkey, X. Chen, B.
Jegerlehner,K. Littlefield, P. Tong, “F1: The Fault-Tolerant
Distributed RDBMS Supporting Google’s Ad Business”,
SIGMOD conference, 2012, pp.777-778.

 [9] M. Stonebraker, “The INGRES Papers: natomy of a
relational database system”, Addison-Wesley Publishing
Compay, 1986.

[10] H. Madi, “Design and implementation of a distributed
database under Oracle: For accommodation of university
residences”, Faculty of Exact Sciences in Algeria, 2009.

[11] J. Guignard, “Design method for DDB”, 2004.

[12] C. Hsu, A.Rubenstein , L. Yee, G. Babin, N. Lawson, W.
Hofmann., “What Is Rensselaer’s Metadatabase System? ”,
Proc. 3rd International Conference on computer integrated
manufacturing, IEEE Computer Society, pp.424-433,1992.

81Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

http://dblp.uni-trier.de/pers/hc/r/Rollins:Eric
http://dblp.uni-trier.de/pers/hc/r/Rollins:Eric
http://dblp.uni-trier.de/pers/hc/s/Samwel:Bart
http://dblp.uni-trier.de/pers/hc/v/Vingralek:Radek
http://dblp.uni-trier.de/pers/hc/w/Whipkey:Chad
http://dblp.uni-trier.de/pers/hc/c/Chen:Xin
http://dblp.uni-trier.de/pers/hc/j/Jegerlehner:Beat
http://dblp.uni-trier.de/pers/hc/j/Jegerlehner:Beat
http://dblp.uni-trier.de/pers/hc/l/Littlefield:Kyle
http://dblp.uni-trier.de/pers/hc/t/Tong:Phoenix

