
Towards Fuzzy Querying of NoSQL Document-oriented Databases

Fuzzy Mongo Query Language

Belhadj Kacem Abir

LR-SITI

ENIT, University of Tunis El Manar

Tunis, Tunisia

e-mail: belhadj.kacem.abir@gmail.com

Grissa Touzi Amel

LIPAH

FST, University of Tunis El Manar

Tunis, Tunisia

e-mail: amel.touzi@enit.rnu.tn

Abstract—When querying databases, users have become

more demanding to express vague concepts. We speak

then of flexible queries which have been the subject of

several researches in the case of relational databases.

Unfortunately, Not Only SQL (NoSQL) databases do not

support this type of queries. In this paper, we focus on

NoSQL oriented-document databases because they are

the most appropriate for use in the context of a web

applications where the role of fuzziness is crucial (e.g.,

social networks). We consider MongoDB oriented-

document Database Management System (DBMS),

which represents a leader in this market. Thus, we

present an extension of the Mongo Query Language

(MQL) to support fuzzy queries (fMQL) as well an

extension of MongoDB architecture to support fMQL.

Keywords-fuzzy queries NoSQL oriented-document

database; MongoDB; MQL; fMQL.

I. INTRODUCTION

 The end of the last century was marked by a
significant evolution in information technologies. This
evolution is characterized by an exponential growth of
heterogeneous data volumes. Traditional relational
databases have failed to scale with this huge data even
after their physical distribution (distributed databases).
To tackle these challenges, NOSQL databases [1] have
emerged. Indeed, such databases offer: (1) flexible
schemas, (2) high scalability, and (3) distribution of
data.

We distinguish four categories of NoSQL
databases, according to data storage: (1) key-value: As
associative arrays in programming language, data is
represented as a collection of key-value pairs. Among
the NoSQL DBMS based on key /value storage, we
can mention: REDIS [2], Berkeley DB [3], etc., (2)
oriented column: A key point to a set of column, each
having a value. As example of NoSQL DBMS based
on column storage, we can mention: BigTable [4],
Cassandra [5], etc., (3) oriented documents: This
model is versioned documents that are collections of
other key-value collections. The semi-structured
documents are stored in formats like JavaScript Object
Notation (JSON) or Binary JSON (BSON). Among the
NoSQL DBMS oriented-document, we can mention:
MongoDB [6], CouchDB [7], etc., and (4) graph-

oriented: data are modeled as nodes connected with
arcs. Neo4j [8] is a leader in this market.

NoSQL databases are dedicated for using internet
applications. NoSQL oriented-documents databases
are the most appropriate for web applications. Indeed,
with this type of database and through AJAX [9], it is
possible to exchange data in JSON format [10]
documents directly (or with an intermediary which has
a filtering and relaying role). That is why we focus on
NoSQL oriented-document DBMS MongoDB. Mongo
Query Language (MQL); as its name suggests is the
query language of MongoDB. Figure 1 shows an MQL
query which is displayed to return orders with a price
lower than 500$ addressed to a NoSQL database
describing a trading company.

Figure 1. MQL query example.

However, this language does not support the

expression of flexible query, for instance, to find

orders whose prices are "low" or "well paid"

customers where "low" and "well paid" are fuzzy

predicates. This has been extensively studied in the

case of relational databases. Indeed, many efforts have

been made to create query specification mechanisms

that allow users to express their preferences and

manipulate words and phrases in query conditions. As

Query

> db. Commande.find({ prix: { $lt: 500} })

Result (1 document)

>
{
ID_Cmd : <Cmd_120>

Date : 20/10/2014,
Prix: {
 total : 450

 },
Qnt :

{Qnt1 : 25

Qnt2 : 20

}
}

153Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

example of RDBMS supporting fuzziness, we

mention: fSQL [11], fQuery [12], etc.

In [13], Castelltort and Laurent propose an

approach for the implementation of flexible read

queries over NoSQL graph DBMS Neo4j using a

flexible language Cypherf which represents an

extension of the Cypher language: the Neo4j query

language. This solution is unfortunately restricted to

only one type of NoSQL DBMS and has a high

maintenance cost.

In this paper, we focus on fuzzy queries over the

NoSQL oriented-document DBMS MongoDB by

extending its query language MQL to support flexible

queries where we express vague concepts. Thus, we

speak of the fuzzy MQL (fMQL). In addition, we will

propose a new architecture of MongoDB that supports

fMQL.

The rest of the paper is organized as follows:

Section 2 presents the basic concepts of MQL and

flexible querying. Section 3 presents related

researches and its limitations. Section 4 presents our

perspective of extension of MQL language. Section 5

presents the new architecture of MongoDB to support

fuzzy queries. We finish this paper with a conclusion

and a presentation of some future works.

II. BASIC CONCEPTS

A. MongoQuery Language (MQL)

Select queries in MQL have the following syntax:

TABLE I. THE COMMAND FIND() PARAMETERS

Parameter Type Description

Criteria
Optional
Document

Specifies selection criteria using query

operators. To return all documents in a
collection, we should omit this parameter or

pass an empty document ({}).

Projection
Optional

Document

Specifies the fields to return using projection

operators. To return all fields in the matching

document, we should omit this parameter.

The projection parameter have the following
form:

{ field1: <boolean>, field2: <boolean> ... }

The <boolean> value can be any of the
following:

 1 or true to include the field.

The find() method always includes

the _id field even if the field is not
explicitly stated to return in the

projection parameter.

 0 or false to exclude the field.

The find() command allows selecting documents

from a collection and returns a cursor on the selected

documents that match the query criteria.

B. Fuzzy queries

A query is characterized as fuzzy when we can
“express our preferences to order the more or less
acceptable records found according to their adequacy
to the query” [14].

To interpret and execute fuzzy queries, we had to
extend the query languages, as well as the architecture
of DBMS, to support such query languages. We speak
then of Sqlf [11], fQuery [12], RankSql [15], etc.

In such systems, fuzziness in the queries is
basically associated to fuzzy labels, fuzzy comparators
(e.g., ‘fuzzy greater than’) and aggregation over
clauses. Thresholds can be also defined for the
expected fulfillment of fuzzy clauses. For instance, on
a database describing employees, we can address such
a typical fuzzy query: SELECT * FROM employee
WHERE age IS ‘young’ AND salary IS ‘well-paid’ in
order to find the young and well-paid employees
where “well-paid” and “young” are fuzzy labels
described by fuzzy sets (Figure 2 and Figure 3).

Figure 2. Fuzzy representation of « well-paid » predicate.

Figure 3. Fuzzy representation of « young » predicate.

db.collection.find(<criteria>, <projection>)

0

0,2

0,4

0,6

0,8

1

1,2

750 1000 1250 1500 2000

μ
w

e
ll-

p
ai

d

Salary (USD)

0

0,2

0,4

0,6

0,8

1

1,2

20 25 35 37 40

μ
yo

u
n

g

age

154Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

Thresholds can be added for working withα−cuts, such as

searching for employees where the degree young is greater

than 0.7.

III. RELATED WORKS

A. Cypherf

Castelltort and Laurent [13] propose a perspective

to extend the declarative way of querying the NOSQL

graph DBMS Neo4j with the Cypher query language

for dealing with vague queries. We speak then of

Cypherf. Figure 4 shows a prototype under

development, based on the extension of Cypher to

support fuzziness.

Figure 4. Prototype based on cypherf.

With Cypherf, fuzziness is handled over three

levels: (1) properties, (2) nodes, and (3) relationships.

1) Cypherf over propeties

Dealing with fuzzy queries over properties is

similar to the queries on relational databases. Such

queries are defined by using linguistic labels and/or

fuzzy comparators.

Such fuzzy queries impact the START, MATCH,

WHERE and RETURN clauses from Cypher.

2) Cypherf over nodes

Dealing with fuzzy queries over nodes allows

retrieving similar nodes. For instance, it is possible to

retrieve similar employees.

3) Cypherf over relationships

Queries in this case are based on the graph structure

in order to better exploit and benefit from it. In

Cypher, the structure of the pattern being searched is

defined in the MATCH clause. To deal with fuzziness

over structure, fuzzy pattern matching considering

chains and depth were defined.

B. Limits of existing solutions

Certainly, the solution proposed in [13] offers optimized

performance, but it has a high cost of development and

maintenance. This solution presents limitations:

 It is restricted to a single type of NoSQL bases,
namely, graph-oriented. Indeed, Cypherf cannot
query other NoSQL databases which are very
popular and more used than Neo4j.

 There is not always a function that transcribes
faithfully a preference expressed in natural language.
More generally, a score function is inadequate when
the desired preferences do not induce a total order on
all objects.

 It does not consider the dependencies between the
criteria for scheduling the result records knowing the
order described in the query.

Apart from this solution, there is not an effective solution
for flexible querying of other types of NOSQL databases.
We propose a perspective to extend document NoSQL
database MongoDB to support fuzziness in read queries.

IV. FUZZY MONGO QUERY LANGUAGE (FMQL)

We propose a description of the fuzzy query
language fMQL, which is an extension of the MQL to
support flexible queries. We are mainly interested in
the extension of MQL to support linguistic labels and
fuzzy comparators.

A. Linguistic labels in fMQL

If an attribute supports fuzzy processing, linguistic
labels can then be defined. These labels will be
preceded by the # symbol to distinguish them easily.

These labels will be replaced by the corresponding
intervals that the minimum and maximum values are
stored in a meta-knowledge database.

For instance, on a NoSQL document database
describing employees, we can address such a typical
fuzzy query:

This query allows to find the young and well-paid
employees where “well-paid” and “young” are fuzzy
labels described by fuzzy sets (Figure 2 and Figure 3).

db.employees.find(
{ Age: #young ,
Salary: #well-paid }
{Employee_id: 1,
Name: 1,
Surname: 1,
Age: 1,
Salary: 1,
Adress: 1,
 _id: 0}
)

155Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

TABLE II. FMQL QUERIES TRANSLATED IN MQL

Query fMQL Query MQL Query

List of young

employees

db.employees.

find(

{ age:#young}

)

db.employees.find(

{ age: { $gt: 20,

$lte: 40 } }

)

List of well-
paid employees

db.employees.

find(

{salary:#well

-paid

}

)

db.employees.find(

{salary: {

$gt: 750,

$lte: 2000} }

)

List of young

and well-paid

employees

db.employees.

find(

{ age:#young,

salary:#well-

paid

}

)

db.employees.find(

{ age: { $gt: 20,

$lte: 40 },

salary: {

$gt: 750,

$lte: 2000} }

)

In Table II, we have presented some fMQL queries

translated into MQL.

B. Fuzzy comparators

In addition to typical comparators ($gt, $lt, $gte,
$lte, etc.), fMQL includes fuzzy comparators. fMQL
fuzzy comparators for fMQL are defined by the user.

In the case of the digital attributes, a fuzzy logic
comparator can be defined by means of the distance
measurement. Distance measurements allowed are difference
and the quotient. The satisfaction degree of comparison is
given by the membership of this distance to a user given
fuzzy set. In case of scalar attributes, it is also possible to
define fuzzy comparators by listing the related pairs with
their corresponding satisfaction degrees. Comparison is
always established between regular (crisp) data values.

As in MQL, fuzzy comparators can compare a column
with a constant or two columns having the same type.

We define for fMQL 18 integrated fuzzy comparators
(Table 2). Six of them are defined as possibility measures

($feq, $fgt, $fgte, $flt, $flte, $fdif). Two are purely fuzzy
much greater then ($mgt) and much less then ($mlt). We
define eight other comparators that have been conceived as
the necessity measures counterpart of preceding possibility
comparators.

TABLE III. TABLE TYPE STYLES

Possibility

comparators
Necessity

comparators
Description

$Fgt $FNgt
Fuzzy greater than

(necessity/possibility)

$Flt $FNlt
Fuzzy less than

(necessity/possibility)

$Fgte $FNgte
Fuzzy greater or equal

than(necessity/possibility)

$Flte $FNlte
Fuzzy less or equal

than(necessity/possibility)

$Feq $FNeq
Fuzzy equal

(necessity/possibility)

$Fdif $FNdif
Différent

(necessity/possibility) flou

$mlt $Nmlt
Beaucoup plus grand

(necessity/possibility)

$mgt $Nmgt
Beaucoup plus petit

(necessity/possibility)

V. EXTENSION OF MONGODB ARCHITECTURE

A. Architecture

1) Architecture type

The implementation of a fuzzy query system can be

tackled in two types of architecture [16]: the low coupling

and the high coupling. We have chosen the low coupling

where new features are integrated through a software layer

above the DBMS because this solution is a cheap and non-

intrusive.

The concept is to create a high-level fuzzy language

(fMQL) that will be used to generate MQL well-formed

queries. The generated MQL queries will be executed by the

existing MongoDB engine. Thus, MQL is used as a low

level language to achieve fuzzy queries.

2) Bosc Architecture for flexible querying modeling

To extend the architecture of Mongdb to support fuzzy

queries, we were inspired by the Bosc architecture [17]

proposed for relational databases.

The approach proposed by Bosc (Figure 5) consists of

using the capacities of the commercial DBMS (in particular

their mechanisms of optimization) while adding a

supplementary layer assuring the interface between flexible

queries and Boolean queries [17][18].

156Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

Figure 5. Bosc Architecture for flexible querying modeling.

As shown in Figure 5, the fuzzy query process is done by a

transformation procedure located on top of the existing

DBMS. The translation mechanism generates a SQL query

addressed to the DBMS.

B. Architecture implementation

We propose an extension of the DBMS MongoDB

architecture to support flexible data retrieval (fuzzy queries)

following the architecture of Bosc. In this architecture, the

layer fMQL_TO_MQL functions as an interface between a

fuzzy query modeled in fMQL and its corresponding query

modeled in MQL, as presented in Figure 6. This layer

interacts with a Fuzzy Meta-Knowledges Base (FMB)

which extends the DBMS dictionary in order to store all

necessary information to describe fuzzy attributes and

satisfaction degrees of fuzzy comparators.

Figure 6. New MongoDB architecture to support fuziness.

The fMQL_TO_MQL layer is a tool that allows the

automatically transformation of the fMQL query to its

equivalent MQL query, while specifying the modifications

that should be made at the level of the FMB. Its main idea is

to replace the linguistic labels and fuzzy comparators of

fuzzy queries with the Boolean expressions compatible with

the MongoDB engine system. This task is done thanks to

the procedure Translation_fmql_in_mql() shown in Figure7.

This procedure extracts the fMQL query criteria and cut

the extracted part in several lines each containing one

criterion then proceeds as follows:

 To replace linguistic labels, the procedure

Translation_fmql_in_mql() should, first of all,

extract the label proceeded by ‘#’ from the criteria.

This label is, then, replaced by the bounds of the

corresponding interval, imported from the FMB (eg.,

The criteria‘age:#young’ is replaced by ‘age: { $gt:

20, $lte: 40 }’. The values 20 and 40 correpond to

the bounds of the interval corresponding to the label

‘young’). Thus, we proceed as follows :

 To replace fuzzy comparators, the procedure

Translation_fmql_in_mql() should, first of all, find

out the position of the fuzzy comparator proceeded

by ‘$F’ from the criteria. Then, if it’s a necessity

comparator, it replaces the compared value V by the

appropriate bounds interval depending on the

satisfaction degree μ<1 defined by the user (eg., The

criteria‘age: {$Feq 20}’ is replaced by ‘age: { $gt:

18, $lte: 22 }’ μ=0.1). Thus, we proceed as follows:

User fMQL query

fMQL_To_MQL

MongoDB DBMS data

Final result

Fuzzy Meta-

Knowledge

Base

0) Begin

1) Find out the position of # character with whom

begin linguistic label

2) Extract this label

3) Connect to FMB and import the corresponding

interval of this label

4) Replace the label with the interval in the

criterion

5) End

0) Begin

1) Find out the position of $F

2) If $F is followed by N

Replace the compared value V with the

interval [V-μ*V, V+μ*V] (where μ is the

satisfaction degree specified by the user)

Else

Execute Two queries R1 and R2: (1) R1

drops the criterion containing $F and (2)

R2 where we replace the compared value

V with the interval [V-μ*V, V+μ*V] in

the criterion containing $F (where μ is the

satisfaction degree specified by the user)

3) Display the result

4) End

157Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

Figure 7. Procedure Translation_fMQL_In_MQL.

The procedure Translation_fmql_in_mql() summarized in

Figure 7 implements the algorithms of replacing fuzzy

comparators and linguistic labels.

VI. CONCLUSION AND FUTURE WORK

Several applications need to manage fuzzy information

and to make benefit their users from flexible queries. This

need have been intensively studied in the case of relational

databases but there is not an efficient solution to benefit

from flexible queries in case of NoSQL databases.

In this paper, we have been interested to NoSQL

oriented-document DBMS MongoDB because it is the most

adapted NoSQL DBMS to web application where dealing

with fuzziness is crucial.

Indeed, we have proposed to extend the MQL to fMQL

that describes, in addition to the boolean MQL query, fuzzy

queries whose predicates contain vague concepts such as

linguistic labels and fuzzy comparators. Furthermore, we

have proposed an extension of the MongoDB architecture to

support fMQL by integrating a software layer on MongoDB

translating fMQL queries to corresponding MQL queries.

As future perspectives, we plan to (1) extend the fuzzy

concept to description manipulating language dealing with

data stored in a NoSQL oriented document database, and (2)

implement a finalized solution that allows flexible read and

write querying.

REFERENCES

[1] R. Cattell, "Scalable SQL and NoSQL data stores," ACM SIGMOD

Record, vol. 39, no. 4, 2011, pp. 12-27.

[2] J. L. Carlson, Redis in Action, vol. 79, Connecticut: Manning

Publications Co., 2013.

[3] M. A. Olson, K. Bostic, and M. I. Seltzer, "Berkeley DB," USENIX
Annual Technical Conference, FREENIX Track, 1999, pp. 183-191.

[4] F. Chang et al., "Bigtable: A Distributed Storage System for

Structured Data," ACM Trans. Comput. Syst., vol. 26, no. 2, 2008,
p. 205–218.

[5] E. Hewitt, Cassandra - The Definitive Guide: Distributed Data at

Web Scale, California: Springer, 2011.

[6] K. Chodorow and M. Dirolf, MongoDB - The Definitive Guide:

Powerful and Scalable Data Storage, O'Reilly, 2010.

[7] J. C. Anderson, J. Lehnardt, and N. Slater, CouchDB: the definitive
guide, California: " O'Reilly Media, Inc.", 2010.

[8] J. J. Miller, "Graph Database Applications and Concepts with

Neo4j," Proceedings of the 2005 ACM SIGMOD international
conference on Management of data, 2013, pp. 131-142.

[9] D. Crockford, "The application/json Media Type for JavaScript

Object Notation (JSON)," July 2006. [Online]. Available:
https://tools.ietf.org/html/rfc4627. [Accessed January 2015].

[10] J. J. Garrett, "Ajax: A New Approach to Web Applications," 23

March 2007. [Online]. Available:
http://www.adaptivepath.com/publications/essays/archives/000385p

rint.php. [Accessed January 2015].

[11] P. Bosc and O. Pivert, "SQLf: a relational database language for
fuzzy querying.," IEEE T. Fuzzy Systems, vol. 3, no. 1, 1995, pp. 1-

17.

[12] J. Kacprzyk and S. Zadrozny, "Computing with words in intelligent
database querying: standalone and Internet-based applications,"

Information Sciences, vol. 134, no. 1-4, 2001, pp. 71-109.

[13] A. Castelltort and A. Laurent, "Fuzzy Queries over NoSQL Graph
Databases: Perspectives for Extending the Cypher Language,"

Information Processing and Management of Uncertainty in
Knowledge-Based Systems, 2014, pp. 384-395.

[14] P. Bosc, A. Motro, and G. Pasi, "Report on The fourth International

Conference on Flexible Query Answering systems," ACM
SIGMOD Record, vol. 30, no. 1, 2001, pp. 66-69.

[15] C. Li, K. C.-C. Chang, I. F. Ilyas, and S. Song, "RankSQL: query

algebra and optimization for relational top-k queries," Proceedings
of the 2005 ACM SIGMOD international conference on

Management of data, 2005, pp. 131-142.

[16] A. Urrutia, L. Tineo, and C. Gonzalez, "FSQL and SQLf: Towards a
standard in fuzzy databases," Handbook of Research on Fuzzy

Information Processing in Databases, vol. 1, no. 1, 2008, pp. 270-

298.

[17] P. Bosc and O. Pivert, "SQLf query functionality on top of a regular

relational database management system," in Knowledge

Management in Fuzzy Databases, Heidelberg, Springer, 2000, pp.
171-190.

[18] P. Bosc, L. Liétard, and O. Pivert, "Bases de données et flexibilité:

les requêtes graduelles," TSI. Technique et science informatiques,
vol. 17, no. 3, 1998, pp. 355-378.

Traduction_fMQL_to_MQL(Var Query :String)

Begin

Criteria = extract_critera (Query)

While (Criteria <>End_String) faire

Criterion=Extract(Criteria,’{‘, ‘}’)

If (Criterion contain ‘#’) Then

Label=Remove(Criterion,’#‘, ‘ ’)

Res= ConnexionFMB(Label)

Interval_inf= Res[inf]

Interval_sup= Res[sup]

Label=Concat (‘{$gte’, Interva_inf,’,$lte’

Interva_sup,’}’)

Criterion=Insert(Criterion,’#’, Label)

Else

If (Criterion contient ‘$FN’) Then

Value=Remove (Criterion,’$FN‘, ‘ ’)

inf= Val(Value)+μ

sup= Val(Value)-μ

Value= Concat (‘{$gte’, inf,’,$lte’ sup,’}’)

Criterion =Insert(Criterion, $FN’, Value)

Else

Remove (Criterion,’$F ‘, ‘,’)

EndIF

EndIF

Loop

End.

158Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

