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Faculty of Mathematics and Physics

Charles University in Prague, Czech Republic
email: {bednarek,krulis,malyp,yaghob,zavoral,pokorny}@ksi.mff.cuni.cz

Abstract—Data streaming systems have been successfully em-
ployed for various data processing tasks. Their main benefit is
that they simplify the design of data-intensive applications and
they introduce many opportunities for task, data, and pipeline
parallelism. In this work, we are proposing an enhancement
for data streaming systems that allows distributed processing of
the data streams and also introduce parallel accelerators, which
can be utilized for data parallel subtasks. The viability of our
approach is verified by integrating the support for heterogeneous
accelerators into the Bobox system, which is a parallel framework
for data stream processing.
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I. INTRODUCTION

A significant part of the scientific community and high per-
formance computing (HPC) community has become fascinated
by the growing potential of GPU (graphics processing unit)
accelerators in a number crunching applications. However,
the GPUs excel only in specific tasks while in others their
performance is inferior. In particular, tasks involving complex
data structures struggle with the complexity of the GPU
memory hierarchy. The utilization of GPUs is also limited
by the necessity of transferring the data between the host
system and the internal GPU memory, which brings additional
overhead to the data processing. Consequently, complex data
manipulation (which often occurs in database systems) is in
most cases performed faster by CPUs than by GPUs and
the fact that more efficient GPU algorithms exist for many
subproblems is outweighed by the additional costs imposed
by the GPU architectures.

At the same time, the growing size of data sets means that
even applications that focus solely on numerical computations
require sophisticated methods for data manipulation, which
were previously known only in database systems. Although
this does not necessarily mean that all applications must use
a relational database or a database management system at
all, an application must directly or indirectly use elaborate
data structures to store its data on external media and to
explicitly cache working sets of this data in operating memory.
In addition, a scalable application must be able to balance the
workload over a number of computing nodes, which results in
intensive communication between the nodes conducted either
directly or indirectly through a distributed file system or similar
abstraction layer.

As a consequence of the growing potential of the GPUs
and the expanding data sets, almost every computationally
intensive application combines parts, which are best suited
for GPUs, as well as parts that must be done by CPUs.
In some cases, the performance of GPUs and CPUs on a
particular subtask may be approximately equal; consequently,
such a subtask may be subject of load balancing between both
platforms.

These considerations lead to increased interest in heteroge-
neous computing systems, which combine both large number
of CPUs (or at least a CPU with multiple cores), as well as
one or more GPUs. In addition, many-core platforms like Intel
Xeon Phi have emerged recently. They represent another step
in CPU-GPU convergence trend which combines the generality
of CPUs and the massive parallelism of GPUs. While the
heterogeneous systems are already available as hardware, the
software that is responsible for efficient hardware utilization
is still immature. It is quite improbable that one solution will
fit for every application, thus a number of thoroughly different
approaches is being attempted.

In this work, we investigate the applicability of the
stream data processing paradigm in heterogeneous comput-
ing platforms. The semantics of a stream naturally fits to
the data flow between individual heterogeneous computing
nodes, meaning both the communication between servers in
a distributed system and the data movement between host
memory and accelerators such as GPUs or Xeon Phi devices.
Since the scheduler of such a system must be aware of all
communication and synchronization inside the application, it
requires that every communication between individual subtasks
is explicitly expressed using streams. Although this restriction
requires a different approach to application decomposition
than traditional procedural programming, there are numerous
examples of problems that were successfully modeled in the
stream paradigm. In particular, almost all database systems
convert every query to an execution plan, consisting of op-
erators chained to a tree or directed acyclic graph, which
almost exactly fits to the decomposition imposed by the stream
systems. Given the necessity of database-like processing of
large data sets, computational applications may often employ
presented approach (or a very similar one) directly.

The paper is organized as follows. Section II summarizes
related work and Section III revises most important facts about
parallel hardware. The architecture of the distributed Bobox
and necessary modifications of the existing implementation are
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presented in Section IV. The integration process of dependent
accelerators is proposed in Section V and Section VI concludes
the paper.

II. RELATED WORK

A. Bobox
The Bobox framework [1] was designed to support devel-

opment of data-intensive parallel computations. The main idea
behind Bobox is to divide large tasks into many simple tasks
that can be arranged into a nonlinear pipeline while preserving
transparency of the distribution logic. The tasks are executed in
parallel and the execution is driven by the availability of data
on their inputs. The developers do not need to be concerned
about technical issues such as synchronization, scheduling, or
race conditions [2].

The system can be easily used as a database execution
engine; each query language requires its own frontend that
translates a request (query) into a definition of the structure of
the pipeline that corresponds to the query [3]. Bobox uses its
own language called Bobolang [4] in which the execution plan
in described. The bobolang code can be generated by database
frontends, but it can also be created directly by the developer
of a parallel application.

B. Streaming Systems
Stream processing has no formal definition and this term is

used to describe a variety of systems [5]. One of the founding
systems in this domain is StreamIt [6], which uses streaming in
combination with general parallel data processing. It provides
a domain specific language that follows the Synchronous Data
Flow paradigm [7] and it is able to utilize various hardware
architectures such as distributed multi-core systems.

Data stream management systems (DSMS) form a partic-
ular category of streaming systems. Systems as Borealis [8],
STREAM [9], or NiagarsST [10] are used for real-time query-
ing of data streams, which are usually continuous and infinite.
These systems typically provide a high-level runtime API
accompanied by either a set of predefined operators or by a
specialized query language.

The class of hardware-specific streaming languages and
systems is represented by StreamC/KernelC [11], which is
designed for the Imagine processor [12] or BrookGPU [13]
designed for GPUs.

The Auto-Pipe [14] is intended to simplify development of
complex streaming applications on various architectures. It is
based on specification of operators, resources, and a topology
of these resources. The system provides an optimal mapping
between the operators and the resources.

Intel Threading Building Blocks (TBB) [15] is a framework
for parallel computing. It cannot be strictly regarded as a
streaming system; however, it provides similar functionality
through its Flow Graph component [16]. In addition, it pro-
vides basic algorithm templates, so it can be employed for
parallel data processing in more general way. Another widely
used framework is OpenMP [17] with an extension for data
stream processing [18] that enables description of the pipeline
stages of an algorithm. However, more complex constructions
are tricky and rather difficult to implement.

The MapReduce programming model [19] is another ex-
ample of a specific data streaming system with fixed number

of stages. It is mainly intended for processing of large data
in a distributed environment [20]. Despite the fact that it
is considered a step back [21] in parallel database engines,
this model gained significant attention since it can be easily
utilized for large tasks and it provides sufficient scalability and
robustness. Unfortunately, it does not support more complex
execution plans like non-linear pipelines. This drawback is
partially solved by the Apache Pig [22] environment together
with the Pig-Latin language [23], which is able to transform
non-linear pipeline into a sequence of MapReduce programs.

C. Accelerated Database Engines
Many-core parallel accelerators (especially GPUs) have

proven useful for accelerating individual database operations.
For instance, GPUTeraSort [24] is an algorithm developed to
sort database rows, and demonstrated significant performance
improvements over serial sorting methods. Similarly, the re-
lational join operation has been successfully implemented for
GPUs [25].

Using external procedures in big commercial databases,
such as Oracle [26] or PostgreSQL [27], GPU hardware can be
employed to accelerate certain critical operations. In [28], the
authors propose a design of a GDB database accessed through
a rich set of individual parallelizable operations.

III. COMPUTING ON PARALLEL AND DISTRIBUTED
ARCHITECTURES

In this section, we revise important facts related to the
parallel computations and parallel architectures which became
popular in the past few decades. We will mention mainstream
architectures, which are employed widely in various applica-
tions.

A. CPU and Multi-CPU Architectures
A multicore CPU is perhaps the most typical representative

of current parallel hardware. It comprises several physical
cores, which are further divided into logical cores by means
of hyper threading (Intel) or dual-core module (AMD) tech-
nology. Logical cores share most of the units of the physical
core in order to improve utilization of the physical core. Most
of the current CPUs employ three-level memory cache, which
reduces the latency of operating memory. In the parallel pro-
cessing, we must consider the fact that some levels of the cache
are shared among cores. Therefore, the overall cache capacity
available solely for individual cores is reduced; however, the
shared cache can improve situations where the cores read the
same memory or need to exchange small amounts of data
among themselves.

Multiprocessor systems are composed of several multi-
core CPUs. The systems which use an independent memory
controller are usually organized as symmetric multiprocessing
systems. If each CPU has a memory controller integrated, the
system has to be organized as nonuniform memory architecture
(NUMA) and each CPU manages its part of the (shared)
operating memory. In modern NUMA systems, the hardware
is able to maintain cache coherency (ccNUMA); thus, the
memory access is transparent. Nevertheless, the latency and
bandwidth are not uniform across the memory range, since
any access to memory managed by different CPU has to be
routed through interprocessor communication grid.
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B. Parallel Accelerators
Parallel accelerators, especially GPUs, form an important

group of architectures used for parallel computing. An acceler-
ator is usually an extension card connected to the host system
which controls its utilization. Most accelerators are capable
of performing computations concurrently to the host CPU;
however, the host system is still responsible for providing
(or at least passing on) the input data. In this work, we are
particularly interested in GPUs and Intel Xeon Phi devices,
which are typical representatives of parallel accelerators of the
day.

GPU devices have become quite popular platform for
data parallel processing. A GPU processor consists of several
symmetric multiprocessing units (SMPs). Each SMP comprises
multiple GPU cores, single instruction decoder and scheduler,
L1 cache and shared memory. The cores of the SMP are tightly
coupled since they share its internal resources and they all
execute the same code in a SIMT (Single Instruction, Multiple
Threads) fashion, i.e., in a way that all cores perform the same
instructions. This model makes GPUs perfect devices for data
parallelism, where the same routine is executed many times
on different data objects.

The memory hierarchy of GPUs is significantly different
from current CPUs. A GPU device has its own global memory,
each SMP has shared memory which is much faster but
accessible only by the cores of the SMP, and finally, each
core has its own registers (assigned from the SMP registry
pool). This hierarchy is particularly important for fine-tuning
and optimizations of the GPU code. Furthermore, the GPU
processor cannot access data in the host memory directly, but
the data must be transferred to the global memory first. These
transfers have to be carefully planned, so they will not present a
bottleneck of the data processing. Fortunately, modern GPUs
are capable of performing two concurrent data transfers (in
and out, since PCIe bus is duplex) while the GPU processor
is computing.

Intel Xeon Phi is a many-core device usually delivered
in the form of accelerator card. It resembles GPUs in the
main aspects, since the accelerator has its own memory and
its processor is designed to be massively parallel. The most
important difference is that the Xeon Phi processor is based
on x86 architecture being used in common multicore CPUs.
Therefore, the device is capable of running more general code
and it even hosts an internal operating system, which makes
it more independent on the host.

C. Distributed Computing
The performance scaling of individual servers (i.e., vertical

scaling) has its limits, since we can incorporate only limited
number of accelerators and employ only limited number of
CPUs in a single host. In order to increase performance further,
we need to utilize multiple servers, which are connected by
some networking technology. This approach is called horizon-
tal scaling.

Horizontal scaling brings new challenges, since the data
transfers over the network require special handling and intro-
duce additional possible bottlenecks to the whole system. Fur-
thermore, incorporating many nodes in one system increases
the chance of individual failures and also introduces new types
of failures caused by communication.

In the remainder of this paper, we will assume that the
system is composed of multiple nodes, which all employ some
technology for message passing (e.g., MPI). On the other hand,
we have no additional requirements on the individual nodes,
and the whole environment could be quite heterogeneous.
In other words, the distributed system may employ different
servers with different configurations.

IV. ARCHITECTURE OF DISTRIBUTED BOBOX

The Bobox framework evaluates a data streaming program,
which is expressed in a form of oriented graph called execution
plan. Vertices of the execution plan (denoted boxes) perform
individual data processing operations and each operation is
implemented as a sequential routine in C++ language. The
edges prescribe the data flow among the boxes. The data
transfers on the edges are aggregated for efficiency reasons
and transferred in bundles called envelopes. An envelope
is a fragment of a data stream which consists of multiple
rows, where each row has prescribed number of columns of
prescribed type. Internally, an envelope uses column-oriented
format, so it is organized as a tuple of columns where each
column is an array of cells and columns of one envelope have
the same number of items. The types and numbers of columns
are defined in the edge descriptor, which is embedded in the
execution plan specification. An example of execution plan is
depicted in Figure 1.

Box 1 

Box 6 Box 8 

Box 5 

Box 4 

Box 7 

Box 3 

Box 2 

Figure 1. An example of Bobox execution plan

Manual construction of an execution plan in a procedural
or object-oriented language would be tedious. Furthermore,
the plan has to be tuned for the hardware configuration (e.g.,
number of available CPU cores) to achieve optimal perfor-
mance. For these reasons, we have developed the Bobolang
language [4], which simplifies the creation of execution plans.
Bobolang is used for the definition of execution model. The
model expresses the evaluation logic of a streaming data
application, but it can generalize some details, which can
be specified later (e.g., according to the hardware properties)
when the model is instantiated into an execution plan. A model
is either generated by a database front-end (e.g., a SPARQL
engine [29]) or it may be created manually by a developer.
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Modifications described in this paper require updates of
both the parallel runtime that processes execution plans and
the Bobolang language that describes the model of a streaming
application. Individual issues of these updates are addressed in
this section.

A. Considering Distributed Hardware
Distributed Bobox runs on a cluster, which is defined as a

set of computers connected with each other by one connection
technology. In this case, the term connection technology refers
to the API used for communication regardless of its physical
realization in hardware. Each computer connected to the cluster
is denoted a node. A node may have one or more accelerators
and the nodes in a cluster do not have to be homogeneous – i.e.,
nodes may be built on different architectures and may utilize
variable numbers and types of accelerators. An accelerator is
accessible locally from its node (which we also denote host
when emphasizing its relation to the accelerator) and the node
must provide either explicit management of the accelerator or
extend the connection technology so the accelerator can be
attached to the cluster as a nested node. An example of a
cluster is presented in Figure 2.

Node 1 

Acc 1 
Xeon 
Phi 

Acc 2 
Xeon 
Phi 

SCIF 

Node 2 

Acc 1 
Tesla 
K40 

CUDA 

Node 3 
Acc 1 
Xeon 
Phi 

Acc 2 
Tesla 
K40 

SCIF 

Node N 

CUDA 

Acc 3 
FirePro 
W9100 

OpenCL 

Figure 2. Example of cluster architecture from the Bobox perspective

For the purposes of our work, we will distinguish between
dependent accelerators and independent accelerators. Depen-
dent accelerators are fully controlled from the host system
(i.e., from a code running in a CPU thread) thus they require
additional management from our distributed framework. An
example of dependent accelerator is a GPU, which can perform
computations concurrently with the host system, but all com-
putational tasks must be issued from a host CPU. Integration
of dependent accelerators is detailed in Section V.

Independent accelerators can execute more complex code
which is capable of managing the internal workload and which
may also initiate communication and data transfers to and from
the host system. Intel Xeon Phi is an example of independent
accelerator, since it is operated internally by a Linux system
and it can be perceived as a separate computer, which is
interconnected with the host system via a PCI-Express bus.
In the remainder of this work, the independent accelerators
are treated the same way as cluster nodes.

Bobox relies on fine grained parallelism, so the execution
plans of data queries [3][29] usually comprise hundreds or even
thousands (single-threaded) boxes. Moreover, many front-end
query compilers are capable of providing additional estimates
regarding the amount of data being transferred on the edges.
This information can be used to divide the execution plan into
parts, which are then distributed over the nodes of the cluster.

This work focuses solely on the static distribution of the
execution plans. Dynamic distribution and load balancing can
be additionally employed; however, it raises many additional
issues such as workload measurement, migration of box inter-
nal states, etc. Most of these details are beyond the scope of
this paper.

An example of a static distribution of the execution plan is
depicted in Figure 3. The plan is divided into three parts and
distributed among three nodes. Nodes 1 and 2 are independent
servers, while node 1 is also host for a Xeon Phi device.

Node 2 

Node 1 

Node 1 – Xeon Phi 1 

Box 1 

Box 6 Box 8 

Box 5 

Box 4 

Box 7 

Box 3 

Box 2 

Figure 3. Example of an execution plan distributed on a cluster

The distribution of the execution plan requires additional
method of envelope transfers. In its original parallel mode,
the Bobox runtime assumes that all boxes can share data
via the operating memory of the node. Therefore, passing
an envelope from one box to another is only a matter of
passing one memory pointer. Furthermore, shared memory
allows immutable data to be shared among boxes.

In the distributed environment, the envelope must be hard-
copied whenever crossing a border of a cluster node. In order to
minimize modifications of the original runtime, we introduced
two specialized boxes.

• A send box (S-box) consumes envelopes, performs
data serialization, and send the data to another node
using connection technology.

• A receive box (R-box) receives data from the connec-
tion technology, deserializes them, and emits them as
envelopes.

The S-Boxes and R-boxes form inseparable pairs, where
each pair represents one unidirectional peer-to-peer connec-
tion. Different pairs may use different types of communication
technologies, but both boxes of a single pair must use the same
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technology. The example from Figure 3, augmented with a set
of corresponding send/receive boxes is presented in Figure 4.
The solid arrows represent normal edges of the execution plan
(i.e., where the envelopes are passed via shared memory) and
the dashed arrows symbolize connections between transport
boxes.

Box 1 

Box 6 Box 8 
Box 5 

Box 4 

Box 7 

Box 3 

Box 2 

MPI R-box 
port 1 

MPI S-box 
port 1 

SCIF R-box 
port 1 

SCIF R-box 
port 2 

SCIF S-box 
port 1 

SCIF S-box 
port 2 

Node 1 

Node 2 

Node 1 
Xeon Phi 1 

Figure 4. A distributed execution plan connected with communication boxes

B. Construction of Distributed Execution Plan
As mentioned before, the Bobox execution plan is not

assembled manually by the programmer, but it is created
automatically as an instance of a given application model. The
model is written in Bobolang and it may also be generated
from a query language such as SPARQL or SQL by a Bobox
frontend module. In a single-node environment, the instantia-
tion of a model into the execution plan is straightforward. In
the distributed environment, the situation becomes much more
complex, since the execution plan has to be divided among
individual nodes and appropriate send and receive boxes must
be added at the node boundaries. The situation gets even more
complicated when dependent accelerators are being utilized in
the system.

In order to maintain generality and sufficient level of
abstraction, we have modified the execution plan instantia-
tion process in the following way. A new intermediate plan
abstraction called bound model is introduced and the term
’bound’ emphasized that the model is designated only for
the current cluster configuration. The bound model is also
described in Bobolang and it is created from the model by
the concretization process, which is performed by a placement
binder. The complete Bobox abstraction overview and termi-
nology is summarized in Figure 5.

The placement binder is a separate component which has
complete information regarding the cluster topology, hardware
properties of the nodes, and properties of the attached accelera-
tors. Its concretization process transforms the original model to
the bound model by replacing selected edges by S-box/R-box
pairs and by replacing selected boxes or subgraphs by accel-
erator boxes that contain nested execution plans for selected
accelerators. Furthermore, the placement binder assigns each
box to a specific node in the cluster and each accelerator box to

Frontend

query

Task Scheduler

Accelerator Manager

Placement

Binder

...

SPARQL,
SQL, ...

Bobolang

Runtime
Local Runtime

execution plan
...

execution plan

bound

model
model

Figure 5. Bobox model abstraction and execution plan construction

an accelerator. These assignments are represented as Bobolang
box annotations and they are recognized by the Bobox runtime
that instantiates the models.

The bound model is subsequently distributed to every node
of the cluster and passed to their respective Bobox runtimes.
The local runtimes work in the same way as the single-
node runtime, except that each runtime instantiates only those
boxes (and their adjacent edges), which are designated to its
respective node.

C. Technical Details

In the remainder of this section, we address several tech-
nical issues, which are essential for the distributed imple-
mentation. The first problem is caused by the diversity of
addressing schemes that the underlying communication tech-
nologies use in S-box/R-box transfers (MPI uses message
tags, SCIF uses ports, TCP/IP uses address:port pairs, etc.).
Since the placement binder has to be independent on the
communication technologies, it assigns each S-box and R-
box an identification number called port. The runtime is
responsible for mapping these port numbers to identification
tokens of particular communication technologies. The mapping
is stored in a distributed form, so the corresponding pairs of
S/R-boxes can establish their data connections. The placement
binder is responsible for correct port assignments (i.e., that
there is exactly one S-box and one R-box for each issued port
number).

The Bobox runtime relies on an external startup mech-
anism (e.g., such as Hydra or MPD, which are used by
MPI technology), which is responsible for starting a Bobox
runtime process on every node of the cluster. After the local
runtime starts and detects the local accelerators, it starts the
appropriate versions of the Bobox runtime on the independent
accelerators and the accelerator management threads for each
dependent accelerator. Finally, the local runtimes use group
communication primitives to exchange their configurations, so
that each node knows the configuration of the whole cluster.

Section IV-B describes the process of execution plan cre-
ation and distribution. The initial model can be submitted to
Bobox via any node, since the placement binder is replicated
on every host and the bound model is distributed via distributed
communication primitives of the runtime. If necessary, the
Bobox front-end modules responsible for translating database
queries into models can be replicated as well and the Bobox
can be used as platform for a distributed database management
system.

The proposed solution is highly scalable and it is expected
to be applicable for large clusters. It has no single point of
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failure since the hosts are mutually interchangeable. Neverthe-
less, the current implementation does not handle node failures
and reliability is a subject of our future work.

V. PARALLEL ACCELERATORS

In the previous section, we have described our proposed
solutions for distributed processing and for independent ac-
celerators, which are treated as independent nodes of the
cluster. In this section, we address the issues of the dependent
accelerators.

A. Integrating Accelerators into System
Dependent accelerators are more complicated, since they

need to be managed from the host system. In case of GPUs
(which are typical representatives of dependent accelerators),
there are two basic approaches that are supported by current
frameworks such as CUDA [30] or OpenCL [31]:

• The GPU can be managed by a dedicated thread and
all operations are invoked as blocking operations (i.e.,
the thread is resumed by the operating system, when
the issued work on the GPU has concluded).

• The GPU operations are issued in asynchronous man-
ner so the thread which has issued them can process
other tasks. The GPU events (such as work com-
pletion) can be either polled by the host code, or
reported via asynchronous callbacks executed in a
service thread.

In our system, we primarily use the first approach, but
the second approach is additionally employed in special cases.
Bobox runtime (i.e., its task scheduler) already support block-
ing operations [32] without limiting CPU utilization. The
thread dedicated for GPU workload management uses internal
API functions to notify the task scheduler that the thread is
about to invoke blocking operation. The scheduler can wake up
a replacement thread which supplants the blocked thread in the
thread pool, so the size of the thread pool always corresponds
to the available computational cores.

Modern GPUs [33] are capable of overlapping data trans-
fers with kernel execution or even executing multiple kernels
if they consist of only a few thread blocks. However, the GPU
driver may exploit these features only when the overlapping
work has been issued without explicit synchronization at the
host side. To comply with these requirements of GPU API, we
have additionally employed asynchronous operations in special
cases when the host code needs to issue overlapping tasks.

B. Exploiting Data Parallelism
The parallel accelerators present a potential complication

regarding their optimal utilization. The original Bobox frame-
work and its distributed version have presented themselves
very efficient for the parallel processing of OLAP workload;
however, the framework itself employs task parallelism, which
can be used to process data parallel and pipeline parallel
problems as well. On the other hand, current accelerators (es-
pecially GPUs) are suitable mainly for data parallel problems
and other forms of parallelism are difficult to express or even
encumbered with serious overhead.

In order to avoid this problem, the execution plan should
be designed or generated in a way that allows maximal appli-
cability of the accelerators. In other words, the data parallel

parts of the execution plan should be primarily assigned to
accelerators whilst the task parallel or even sequential parts of
the plan should be processed by CPUs. In order to simplify the
design of the application model, Bobox framework introduces
two techniques:

• operator composition
• envelope aggregation

Operator composition is one of the key features, which has
been present in Bobox since its first versions. A composed
box is treated as regular box in the execution plan, but it
holds a nested execution plan instead of C++ routine. We
have extended this feature to designate parts of the execution
plan for accelerator processing. These parts are represented
as specialized operators called accelerator boxes and these
boxes hold a nested execution plan dedicated solely for an
accelerator. Furthermore, the accelerator box carries annota-
tions that identify the target accelerator which is responsible
for the processing of the box. These annotations can also hold
additional execution details, such as number of accelerator
threads or required internal buffer sizes. The whole idea is
depicted in Figure 6.

Dependent Accelerator #1 Dependent Accelerator #2

accelerator

box

aggregation

box

dispersion

box

Figure 6. Designating parts of execution plan for accelerators

Regular boxes process data in portions called envelopes.
Envelope size is carefully selected by the runtime based on the
hardware properties of the target system – especially the CPU
cache size. Accelerators need to process data in lager batches,
in order to exploit the data parallelism principle. Therefore,
an accelerator plan has an envelope aggregator box at its very
beginning. This operator use heuristics and information from
operator annotations to select the batch size for its current
accelerator box. It aggregates data from multiple incoming
envelopes and the aggregated envelope is transferred into the
internal memory of the accelerator. Analogically, the plan
represented in an accelerator box is ended by a dispersion box,
which transfers the result data from the accelerator memory
back to host memory and divides them into envelopes of
regular size (suitable for CPU processing).

Finally, we need to specify how the accelerator plans are
executed on accelerators. Even though the accelerator boxes
are assigned to specific accelerators, the workload cannot
be planned strictly statically since it is heavily data-driven.
Therefore, the placement binder can employ oversubscription –
i.e., assign multiple accelerator boxes to the same accelerator.
The accelerator management thread plans the workload dy-
namically to maximize the overall utilization of the accelerator
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and to increase the chance of data transfers and computations
overlapping.

C. Memory Allocation
Perhaps the most problematic issue of the accelerator

utilization is its memory allocation and management. Current
accelerators are usually equipped with several gigabytes of
internal memory, which is approximately 10 − 100× smaller
amount than the operating memory of modern NUMA servers.
Therefore, an accelerator cannot replicate the entire content
of the host memory and the data has to be copied only as
necessary.

Internal execution plan of an accelerator box requires four
buffers. The buffers may have complex internal structure, or
even be composed from several memory blocks. However, we
are omitting technical details and focusing on the purpose of
these buffers. These buffers need to be allocated in the internal
memory of the accelerator:

• buffer for input data,
• buffer for output results,
• buffer for internal data (operator state),
• and buffer for temporary data.

The input data buffer stores data from the aggregated
envelopes which are transferred from the host. Analogically,
output buffer is designated for data yielded by the accelerator
box, which are transferred back to the host memory. Both these
buffers are present in at least two instances, so that one pair
of input/output buffers can hold data that are being processed
by the accelerator, whilst the other buffers are engaged in
concurrent data transfers (the following input envelope is being
copied to the accelerator and the preceding result envelope is
being copied to the host memory).

The buffer for internal data holds the current state of the
operator which needs to be maintained across the processed
envelopes. The consistency of the internal operator state has to
be achieved by internal synchronization implemented in every
part of the execution plan of the accelerator box. The scheduler
ensures that at most one envelope is being processed by the
accelerator at any time (except for the external data transfers).

The temporary buffers are designed to hold intermediate
data that may be required by the execution plan of the accel-
erator and that cannot be accommodated by internal storage
capacities of the computational units such as registers or shared
memory of an SMP in case of GPUs. Unlike the internal state
buffer, data in the temporary buffer does not have to be kept
between the processing of two subsequent envelopes nor they
have to be initialized before the first envelope is processed.

All buffers are allocated when the accelerator box receives
its first incoming envelope. Furthermore, the internal data
buffer has to be filled with the initial state of the operator.
The buffers are disposed when the accelerator box receives
termination envelope (the poisoned pill) and when the last
aggregated envelope is processed.

D. Deadlocks
Multiple accelerator boxes can be assigned to a single

accelerator and each one will attempt to allocate all its memory
buffers when it receives first portion of data to process. If
the overall size of the buffers required by all boxes assigned

to an accelerator exceeds its available memory and if the
data flow pattern requires that all the accelerators are working
simultaneously, the overall execution will end by either failure
or by a deadlock.

A naı̈ve solution to this problem is to instruct the execution
plan designer not to exceed the combined memory capacity of
any accelerator, except in cases when boxes assigned to the
same accelerator (and which possibly exceed its total memory
capacity) are strictly divided by an implicit barrier such as
a global sort operator placed between them in the execution
plan. In this approach, a failure to allocate memory buffers for
an accelerator box should be treated as a global failure of the
whole execution plan and the responsibility of the frontend.

Unfortunately, the naı̈ve solution limits the utilization of
the accelerators quite severely. Hence, we propose a more
elaborate model that allows allocator memory oversubscription
and ensures successful execution. When an accelerator box
fails to allocate its buffers, its execution is postponed until
another box occupying the accelerator concludes its work and
releases its buffers. Such behaviour may naturally lead to
deadlock which has to either avoided or recovered. There are
two possible approaches:

• The accelerator manager monitors the workload of
all active boxes assigned to the accelerator and all
requests from boxes that cannot be accommodated due
to the limited memory capacity. When a deadlock is
detected, the manager swaps internal state of selected
accelerator box to the host memory and activate one of
the waiting accelerator boxes. The box swapping can
be even performed preemptively, when an accelerator
box does not have any input data for some time. Let
us emphasize, that only the internal data buffer needs
to be swapped. If the box does not have any internal
state or the internal state is relatively small, the box
swapping can be very fast.

• Every accelerator box has an alternative backup execu-
tion plan that consist of regular boxes (i.e., boxes ex-
ecuted on CPU). If an accelerator box fails to allocate
memory on an accelerator, it switches for the backup
execution plan and starts processing its workload on
the host system. Since the boxes used in the execution
plans are usually developed so that Bobox does not re-
quire accelerators, constructing an alternative backup
plan for each accelerator box should be rather simple.

Both presented approaches can also be combined. Further-
more, if the internal state of the accelerator box and its backup
execution plan can be maintained in a binary compatible
format, an accelerator box can switch between GPU plan and
the CPU backup plan dynamically by swapping the internal
state to/from the accelerator.

VI. CONCLUSIONS

The main contribution of this paper is a description of the
architecture of a heterogeneous distributed system. The unique
feature of the system is a combination of three modern com-
puting platforms – multi-core CPUs, many-core accelerators
like Intel Xeon Phi, and GPU-based accelerators. In particular,
we investigated the differences between these two types of
accelerators and suggested both static distribution of execution
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plans, as well as dynamic swapping of work between hosts and
their accelerators.

We are currently experimenting with all the described
approaches; however, the dynamically evolving properties of
accelerators requires larger empirical data to make clear con-
clusions on the strategy. In our future work, we will measure
various types of workloads processed on various hardware
configurations, in order to compare different load-distribution
strategies.
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