

Capturing the Structure of Internet of Things Systems with Graph Databases

for Open Bidirectional Multiscale Data Mediation

Dana Popovici, Gilles Privat

Orange Labs

Grenoble, France

email:dana.popovici@gmail.com, gilles.privat@orange.com

Abstract—The deep structure of Internet of Things (IoT)

environments understood as complex Cyber-Physical Systems

(CPS) is made up of all interwoven relationships of physical

actuation, sensing, proximity, grouping and containment between

their constituent subsystems. We describe and assess three

solutions for capturing and exposing this structure as a persistent

graph of matching links between the informational proxies that

represent these subsystems. A graph database may provide an

access-efficient persistence support for this graph, tightly coupled

with the mediation platform. Alternatively, the Resource

Description Framework (RDF) may be used directly as a

standard, open and extensible means to represent this graph and

its associated semantics, with triplestores as a persistent

repository supporting queries with standard languages such as

SPARQL. A third solution would be, if fine-grain hyperlinked

REST interfaces are provided to subsystems or their states

viewed as resources, to delegate the creation and maintenance of

this graph to an external web crawler and search engine.

Keywords—Internet of Things(IoT); Cyber-Physical Systems

(CPS); Sensor-Actuator Networks; Ontologies; Linked Open Data;

Resource-Oriented Architectures(ROA); Resource Description

Framework (RDF)

I. INTRODUCTION

The Internet of Things (IoT) may, in its extended
acceptation [1], reach beyond connected devices to encompass
all kinds of physical entities, be they legacy appliances, passive
items or subsets of space. These entities get identified and
represented together with the attached devices through Internet
of Things platforms [2] and may as such be the target of varied
applications operating on top of these platforms. The
information maintained by these platforms may comprise both
real-time information about the state of the identified entities
and devices as well as structural semi-static information about
the relationships between these. We focus here on the solutions
for the representation and management of the graph made up of
all these relationships, which may correspond to the following:

 device used as primary sensor for an entity

 device used as secondary sensor for an entity

 device used as actuator for an entity

 device acting upon an entity as a side effect

 entity containing another

 entity adjacent to another

 device connected to another through the network
This clearly goes much beyond networked device

management, to get closer to the structural representation of
Cyber-Physical Systems (CPS) decomposed as interacting
relevant subsystems. Typical examples of these IoT
environments modeled as Cyber-Physical Systems could be
smart homes, smart buildings and smart cities. We are
interested in these rather than in more traditional one-of-a-kind
industrial CPS because they stand to gain the most from the use

of shared platforms instead of dedicated and vertically
integrated design. We can take advantage of the generic
character of the categories of entities/subsystems that make up
these systems and of their invariance from one of their
instances to another. All buildings are thus made up of rooms,
corridors, floors, appliances and furniture items pertaining to
broadly similar categories, while cities comprise streets,
crossings, blocks, parking places, etc. These categories may be
drawn from shared domain-specific ontologies and the entities
we target as nodes of our extended IoT graph will be instances
of these classes, providing a semantic reference for their
eventual identification.

We present an architecture template for an IoT platform in
the smart home, building or city domains in section II. We
explain how the graph of relationships between entities can be
the core of this platform in section III. We assess
comparatively the two database solutions we propose, graph
data base and RDF triplestore, in sections IV and V
respectively and explain how they get interfaced to the
platform in section VI. Section VII presents the alternative to
having just a RESTful interface to the platform provided as a
complete set of hyperlinked resources and delegating the
capture of the corresponding graph to an external web crawler.

II. ARCHITECTURE OF AN INTERNET OF THINGS

PLATFORM

Virtual EntitIes

& Entity Groups

Real-time

Applications &

Services Layer

Physical

Environment

Device

Abstraction

Layer (DAL)

Entities

Virtual

entity

Space

Entity

Space

Entity

equipment

Entity

equipment

Entity

Sensor/

actuator

Sensor/

actuator

Sensor/

actuator

Sensor/

actuator

Space

PEIR

Equipment

PEIR

Equipment

PEIR

Virtual

entity

Virtual

entity

Service 3 Service 1

Service 2

Space

PEIR

(EAL)

Figure 1. IoT platform architecture

An IoT platform mediates data between the target physical
environment and applications, both upwards by fusing
/aggregating/abstracting sensor data, and downwards by
passing on commands to actuators[2][3]. The architecture of
such an IoT platform uses, in our approach, software modules
called “Physical Entity Informational Representatives” (PEIR)
that serve as proxy for the individual entities, making up an
Entity Abstraction Layer (EAL). This may comprise additional

176Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

levels of abstractions when these entities get regrouped as
“virtual entities” according to functional or physical criteria
(Figure 1). Beneath this, the Device Abstraction Layer (DAL)
provides a uniform interface to networked devices (sensors &
actuators) that serve as physical intermediaries to the entities,
regardless of protocols and technologies. DAL and EAL each
have their own REST interface for a full decoupling of the two.

III. CAPTURING THE DEVICES & SUSBSYSTEMS INSTANCE GRAPH

Our approach does partially disregard the heterogeneity and
actual complication of individual entities (subsystems) by
mapping them to simple or even simplistic generic models
drawn from domain ontologies as proposed above. This makes
it possible to focus on the more relevant complexity of the
overall system, as it results from the composition of these
individual subsystems and, crucially, the web of relationships
of different kinds into which they are caught.

We will use throughout this paper the example of a smart
building, renting office space to a number of companies as a
prototype IoT environment. Each floor may comprise similar
spaces and pieces of equipment, but there is a multitude of
relationships to account for between these physical entities and
other relevant virtual entities (e.g., sets of offices rented by the
same company). Moreover, certain devices or entities can be
used for purposes other than their primary function, generating
contextual information through indirect relationships, for
example a computer acting as presence sensor (if someone is
typing, the office is occupied). Figure 2 shows a small subset of
the different types of relationships captured by the graph
representing our smart building example as an IoT system,
showing parts of its three interconnected sub-graphs: the nodes
of which are respectively ontology categories, physical entities
and devices. The ontologies are imported from online
repositories, but a local copy is needed on the IoT platform for
efficient access. The external ontologies being referenced may
be upper ontologies, domain ontologies (e.g., for smart
home/building/city), and transversal device ontologies. The
links between nodes are also of diverse types, representing
either semantic relationships (e.g., instanceOf, subClassOf) or
structural (e.g., isOn, actuated by) relationships. The resulting
overall graph is thus heterogeneous and unites sub-graphs with
different types of nodes, linked by different types of arcs.

Entity proxy instances

Sensors actuators

p
re

s
e

n
c
e

Door Room

Exit Office

s
u

b
C

la
s
s
O

f

s
u

b
C

la
s
s
O

f

a
c
c
e

s
s
T

o

lig
h

t-
s
w

it
c
h

s
m

o
k
e

 d
e

t.

d
o

o
r

lo
c
k

Office "Of 21"

Floor "Fl 2"

Company

"Co 12"

FireExit

"FE 22"

a
c
tu

a
te

d
 b

y

s
e
n
s
o
r fo

r

is On

is O
n

close

a
c
tu

a
te

d
 b

yse
n
so

r
fo

r

is
 O

n

re
n

ts

instanceOf

instanceOf

Switch

instanceOf

...

Domain ontology

Ontologies

D
e

v
ic

e

o
n

to
lo

g
y

s
m

a
rt

 p
lu

g

a
c
tu

a
te

d
 b

y

s
e
n
s
o
r fo

r

g
a

s
 d

e
te

c
t.

s
e
n
s
o
r fo

r

Figure 2. Example smart building graph

Contrary to the closed & fixed systems, which are the usual
target of embedded systems design, these relationships and the
systems configuration they capture will vary over time, as new
entities will appear, move or be moved.

To give just a tiny example of the use of this graph by a
very simple Smart Building IoT application, we could imagine
a situation where an alert from a gas detector triggers turning
off electrical equipment that belongs to a given company in the
corresponding area. A query could be used to find the smart
plugs that should be turned off for the company “Co 12”.
Expressed in a SPARQL-like language, it would be:

SELECT ?smart_plug WHERE
{?smart_plug location:adjacent ?gas_detect;
?gas_detect state:hasState Alert;
?smart_plug co:belongs ”Co 12”.}

IV. GRAPH DATABASE REPRESENTATION

The first solution that we investigate for capturing the
structure of the IoT system through the relationships between
physical entities that it represents is a graph database. This type
of database focuses on the software objects that are the nodes
of the graph and provides optimized algorithms for the
traversal of the graph, with the benefit that nodes connected
through directed paths are fast and easy to retrieve and
unrelated nodes are not traversed. Property graphs provide rich
information about both nodes and relationships, through key-
value-pairs that describe them. A solution such as Neo4j, an
open-source graph database implemented in Java, offers both
an embedded and a server version. Neo4j queries are expressed
in Cypher, an SQL-inspired, declarative language that
describes patterns on the graph.

A. Integrating database engine into the IoT platform

A graph database seems well suited for the task of
capturing the complex connections between the IoT sub-
systems and entities. Based on the target platform there are
several aspects to consider, among them the scale and latency
requirements. Our approach includes two abstraction layers
that are not necessarily hosted on the same machine, resulting
in the distribution of nodes between these two platforms. The
scale of the graph may vary widely, from smart homes with a
few hundreds of nodes, up to smart buildings and smart cities.
Even for the smaller scale of a smart home, it would still be
possible to have two different platforms, typically a HomeLAN
gateway and a dedicated home automation server. Tight
coupling between the core of IoT platform (the Entity
Abstraction Layer made up of all PEIRs) and the database
(with nodes matching the PEIRs), could be achieved by hosting
both on the same platform.

The database is built and updated from two sources, the IoT
platform, during configuration and reconfiguration phases, and
the domain ontologies stored in online repositories. Although
graph databases can represent semantic information, this
requires another step to import them from the OWL format
with the OWL API.

B. Advantages and disadvantages of a graph database

The most important advantage of the graph database
solution is, for our purposes, besides their query performance
and scalability, their potential tight integration with the IoT
platform, if both could share the same Java execution
environment as proposed before. The disadvantage of using
such a database is the added effort of its integration to the
platform, both for representing structural relationships when
they are discovered and for semantic relationships that need to
be transformed and included from ontology repositories.
Reasoning from the graph (e.g., inferences drawn from
combinations of structural and semantic relationships) is not

177Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

“native” to graph databases such as Neo4j, requiring one more
step of data transformation to RDF triples and the use of a
reasoner such as Pellet.

V. RDF REPRESENTATION & TRIPLESTORE-BASED

PERSISTENCE

Representing the relationships of entities in the IoT
platform through RDF and storing the information in
triplestores (the corresponding “native” solution) could be
considered as the “opposite” solution of a graph database. RDF
natively represents semantics and needs to be extended to
include structural information whereas the graph database does
the contrary. RDF is a W3C standard and represents relations
(statements) as triples: subject, predicate, object. RDF
databases are a prominent standards-based NoSQL solution.
This representation is the basis of Linked Open Data, offering a
means to publish structured and semantically annotated data
that supports database-style queries. It is also one of the data
models used for the representation of OWL-based ontologies.
All these advantages can be used to our benefit, as our
approach includes importing ontologies and sharing the
generated data.

A. Exporting the database as RDF graph

Depending on the target system, the data generated and
stored in the triplestore should be made available to the general
public or to a subset of authorized stakeholders. Some of the
information could be useful if exposed directly as Linked Open
Data. For example, in a smart city, car parks with their location
and number of available parking places could be shared. A
smart building might have a public list of companies that are
currently renting offices, as well as the number of available
offices for rent. It is especially appropriate to share data for the
smart city, but even some of the data from the smart home
might be of interest to the general public. For example,
temperature information or luminosity, as measured by outside
weather stations can be shared and used to compute mean
values for a city or area. It should be noted though that in the
smart home and smart building domains the access to the RDF
graph should be tightly restricted, as most of the information it
contains is strictly private.

B. Query languages, rule specification & reasoning tools

Representing the system graph as RDF triples can profit
from the existing tools to better exploit the information.
Powerful open source triplestores exist today, such as Jena,
Sesame, Virtuoso, Bigdata and many others. Most of them
support SPARQL, a standardized and interoperable query
language that is fairly simple to use. Some of the frameworks
provide more precise functions, including reasoning tools for
the stored data, and may even be built for that purpose, like
Ontotext GraphDB, an OWL-based triplestore.

In this paper, we use the example of Jena, one of the most
popular triplestores. Although its native persistence
implementations are not the best ones from a scaling point of
view, Jena can be used to interface several other triplestores. It
also provides good inference support through several reasoners
and their rules. It includes a generic rule reasoner, as well as an
RDFS, OWL and a transitive reasoner for different levels of
inference. Other advantages include the SPARQL server that is
provided out of the box (Fuseki for Jena), allowing distant
access to the graph.

These tools are used to enrich the knowledge stored in the
graph, and help support smart environment-specific
requirements. In a smart environment, the applications target

not only devices and physical entities, but also entity groups
and virtual entities. Some of the groups are static or semi-static,
requiring them to be represented in the graph at all times (e.g.
the group of offices being rented by a company). Other groups
might be created in an ad-hoc fashion when they are needed, by
querying the RDF database. This, plus the reasoning tools
available, opens the IoT platform to unlimited possibilities.

C. Advantages and disadvantages of RDF databases

When compared to other NoSQL databases, RDF
triplestores have some important advantages. Data is
represented by a simple, uniform, standard model, which
allows for portability and interoperability. This also means that
the inner graph representation is vendor-independent, and it can
easily be imported to another database. Having a high-level
declarative query language is another major advantage.

Compared to graph databases, there are several differences.
RDF can be considered as a graph, but is relation-centric (as
opposed to node-centric) and is composed solely of labeled
arcs. Representing undirected edges would require coupling
two arcs in opposite directions between the corresponding
nodes. Another issue concerns literal properties that are objects
in the RDF representation, causing the resulting graph to have
“leaf nodes”.

Alternatively to “native” RDF triplestores, the persistent
storage of RDF graphs may be provided through multiple
methods, including tuple stores, graph databases and even
traditional SQL-based databases. Graph databases such as
Neo4j store data directly as a graph and thus benefit from
optimized traversal algorithms. In general, native RDF
databases offer slower performance than other solutions
(especially graph databases) and they scale badly, making them
a solution that is not perfectly adapted to applications with
harder requirements.

VI. INTEGRATING THE DATABASES WITH THE IOT

PLATFORM

We have presented two solutions for the representation of
the relationships between entities of an IoT platform and
compared their relative performance. In this section, we wish to
address some of the issues that are shared between them and
can be discussed jointly. Implementations of both RDF and
graph databases can be either tightly or loosely coupled with
the IoT platform. We use as example two representing
databases, Jena for triplestores and Neo4j for graph database.
Both offer Java APIs that can be used through direct
invocations and that imply the database should be on the same
machine as the rest of the IoT platform. This raises several
questions about possible implementation solutions. As
explained in the previous sections, we consider at least two
separate abstraction layers, which might be on different
machines, one for the connected devices and another for the
entity representation. It seems more appropriate in this case to
host the database on the same machine as the entity abstraction
layer. In this way, the database can still store information
coming from the device abstraction layer, but it will be more
tightly coupled with the entities. Given that IoT applications
target the entity level, the database enriches the quality of the
applications through semantic and structural information. This
solution might work very well in a smart home IoT system, but
less so in a smart city, where the abstraction layers are
physically distributed.

The second option, once again available for both Jena and
Neo4j, is to use servers and a RESTful interfaces over HTTP.

178Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

Jena has the Fuseki server that can be used for SPARQL
queries and Neo4j is first and foremost a server. This option
prompts another choice about the location of the server with
regard to the abstraction layers: should we use a regular cloud-
based solution, or use “edge of cloud” (“fog”) computing [4]
which extends cloud computing to embedded platforms on the
outer edges of the network. Fog computing combines the
benefits of centralized data processing and proximity to the
end-user, enabling flexible and virtualizable platform support
for real-time applications of the IoT. Regarding the application
domains that we consider, it seems that fog/edge of cloud
solutions could provide a good tradeoff while being equally
adapted for different types of systems: smart home, smart
building or smart city.

VII. EXPORTING THE GRAPH FROM HYPERLINKED ROA

INTERFACES

Both of the previously presented solutions imply an effort
to create and maintain the structural relationship graph for the
IoT system within the platform and keep it consistent with the
internal operational representation at all times, thus placing a
heavy burden on the software design of the platform. A third
option is more in line with a full “web of things” [5] approach.
Assuming we provide a full REST [6] interface to the platform,
which means each entity of the Entity Abstraction Layer, each
state of these entities and each device of the Device
Abstraction Layer would be a resource in the REST sense, each
with its own URI and exposed hyperlinks to other resources it
interacts with, we could dispense with creating and
maintaining a database of the corresponding graph of
hyperlinks inside the IoT platform and delegate it to another
platform or third party general-purpose web tools. This is what
search engines have done for the original web of documents:
mapping it as a graph and exploiting the structural properties of
this graph for information retrieval. This would also fit better
with a preference for of a minimal and loosely-coupled IoT
platform.

In a “pure” ROA interface, (corresponding to the third level
of the Richardson Maturity Model, “HATEOAS” [6]), no
global functional description is required, all resources are self-
descriptive and provide their own URI that can be interpreted
by applications without requiring any “out-of-band”
information or prior knowledge, with their behavior, semantic
mappings, associated resources and sub-resources accessible
through hyperlinks. In our architecture, these hyperlinks
correspond to the relationships between entity groups, entities
and devices as maintained by the graph database proposed in
the previous two approaches, with additional links
corresponding to the allowed state transitions between states
viewed as sub-resources. Non-functional and semantic
information is attached to each entity as read-only resources,
accessible together with entity states through HTTP GET,
while the controllable states can be updated through
corresponding HTTP PUT. In this approach, the graph
representation of the system does exist, but only implicitly
through these hyperlinks, just as is the case in the web viewed
as a graph. All the information that may be required from
applications is in principle available by traversing the graph
made up of these hyperlinks, providing the equivalent of
interface introspection, discovery and dynamic service
composition from more traditional SOA approaches. Just as the
public web itself, this minimal web of things platform requires
external or third party tools to provide the equivalent of the
functionalities that are natively provided by the databases

provided in the previous two approaches, especially responding
to database-like queries. The graph structure could thus be
extracted by using a crawler tool similar to web crawlers that
would systematically and exhaustively traverse the graph of
REST hyperlinks to recreate a fully indexed, searchable data
structure, possibly using a graph database of its own. This
database could in turn respond to queries such as the one
mentioned in section III (possibly with restrictions on the
primitives involved), providing direct links to the target entities
for applications to monitor or control through the
corresponding resources addressed individually through their
REST-compliant URIs, thus making it possible for these
applications to bypass the database when direct control will be
involved.

VIII. CONCLUSION

Most present-day Internet of Things applications are
limited to monitoring and data collection. If they involve
control, it is usually not part of their automatic operation and
occurs through human operators. The architecture we propose
here is clearly designed to go beyond these in order to support
bidirectional data mediation for applications that involve direct
real-time automatic control of the same entities being
monitored. With this in view, the proposed graph
representation is essential in determining the perimeter of
entities that may be impacted by a given control action, to
avoid undesirable or potentially cascading and catastrophic side
effects of any action, which could be done by just tracing
directed paths of relevant actuation relationships through this
graph. More fundamentally, a platform based on such a
representation is intended to be a Cyber Physical System
platform, not only an IoT platform, and the proposed graph
representation should be understood as representing this CPS
as a complex system, in keeping with received graph-based
modeling approaches for such systems where node (subsystem)
models may be grossly simplified as long as the complexity
and structural accuracy of their interrelationships and of their
physical grounding is fully accounted for.

ACKNOWLEDGMENTS

We are most grateful to Mengxuan Zhao and Laurent Lemke,

who have contributed to shape and evolve the infrastructure on

which this work is based, to Didier Donsez and Florence

Maraninchi, for many in depth discussions around the issues

presented here, and to Wenbin Li who has taken on the

challenge to follow up on this work.

REFERENCES

[1] G. Privat, “Extending the Internet of Things”, Communications &
Strategies, Digiworld Economic Journal , vol 87, 2012, pp101-119

[2] G. Privat, M. Zhao, and L. Lemke, “Towards a Shared Software
Infrastructure for Smart Homes, Smart Buildings and Smart Cities”,
International Workshop on Emerging Trends in the Engineering of
Cyber-Physical Systems, Berlin, April 14, 2014

[3] Z. Hu, G. Privat, S. Frenot and B. Tourancheau, “Self-configuration of
Home Abstraction Layer via Sensor-Actuator Network”, Ambient
Intelligence. Springer Berlin Heidelberg, 2011, . pp146-150.

[4] F Bonomi, R Milito, J Zhu and S Addepalli, “Fog computing and its role
in the internet of things”, Proceedings of the first edition of the MCC
workshop on Mobile cloud computing. ACM, 2012. p. 13-16

[5] D. Guinard, V. Trifa and E. Wilde, “A resource-oriented architecture for
the web of things”, Internet of Things (IOT),. IEEE, 2010. p. 1-8. .

[6] L. Richardson and S. Ruby, “RESTful web services” O'Reilly Media,
2008.

179Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

