
Discovering the Most Dominant Nodes in Frequent Subgraphs

Farah Chanchary

School of Computer Science
Carleton University

Ottawa, Canada K1S 5B6
Email: farah.chanchary@carleton.ca

Herna Viktor

School of Elec Eng. and Comp Sc.
University of Ottawa

Ottawa, Canada K1N 6N5
Email: hviktor@uottawa.ca

Anil Maheshwari

School of Computer Science
Carleton University

Ottawa, Canada K1S 5B6
Email: anil@scs.carleton.ca

Abstract—Recently, there is a growing trend to utilize data mining
algorithms to explore datasets being modeled using graphs. In
most cases, these graphs evolve over time, thus exhibiting more
complex patterns and relationships among nodes. In particu-
lar, social networks are believed to manifest the preferential
attachment property which assumes that new graph nodes have
a higher probability of forming links with high-degree nodes.
Often, these high-degree nodes have the tendency to become the
articulation points in frequent subgraphs (also known as the most
dominant nodes). Thus, their identification is important, because
their disappearance may have greater influence on their peer
nodes. Also, exploring their properties is essential when aiming
to predict future frequent patterns. In this paper, we introduce
a binary classification model DetectMDN to correctly classify the
most dominant nodes in frequently occurring subgraphs. A set
of experimental results confirms the feasibility and accuracy of
our approach.

Keywords–Frequent subgraphs; Graph mining; Most dominant
nodes; Time evolving graph.

I. INTRODUCTION

In recent years, there has been considerable interest in
graph structures arising in technological, sociological, and
scientific settings. These domains include computer networks
(routers or autonomous systems connected together); networks
of users exchanging e-mails or instant messages; citation
networks and hyperlink networks and social networks [25].
Frequent pattern mining provides a way to extract significant
and interesting patterns from large datasets that otherwise
commonly remain unexplored. This idea was first proposed
by Agrawal and Srikant [1] in their work on proposing faster
association rules mining. At present, frequent pattern mining
is used in numerous scientific, business and legal application
domains where the datasets are generally large, multidimen-
sional and dynamic, and traditional approaches of exploratory
data analysis yield limited success [14].

Other than association rule mining, frequent pattern mining
is also used in many standard knowledge discovery tasks such
as classification and clustering to achieve better outcomes
from these patterns. At the same time the applications have
expanded extensively in domains where objects of various
datasets are modeled using graphs [21] [22], trees [19], se-
quences [16] or time evolving networks [7] [24]. Following the
trend, research has been carried out on graph and tree pattern
mining to discover complex associations that are frequent
according to some predefined concept.

Interesting frequent patterns can further be used as a source
of features in a supervised learning task when the database

events are labeled. In many networks, e.g., communication,
social networks, citation and co-authorship networks, this
idea can play a significant role in solving problems like
hidden group identification and link prediction. In cases when
similar patterns of groups or links occur very frequently
within large networks, they can provide important information
for predicting future patterns. This leads to the problem of
efficiently identifying most dominant nodes (MDNs) in these
frequent sub-groups. It follows that MDNs tend to dominate
the interests and activities of their peer nodes. Thus, knowing
their attachment patterns is valuable to many entities, including
marketers, employers, credit rating agencies, insurers, spam-
mers, phishers, police, and intelligence agencies [8].

The main contributions of this study are three-fold. Our
paper describes and presents the performance of DetectMDN
algorithm designed to find, and subsequently correctly label
MDNs in hidden frequent subgraphs of any large network. We
further analyze the impact of different types of networks on
the prediction results. Thirdly, we identify the most relevant
attributes to accurately define frequent subgraphs.

The paper is organized as follows. Section 2 describes the
problem domain and highlights related work. This is followed,
in Section 3, with a description of our DetectMDN algorithms.
Section 4 details our experimental setup and evaluation, while
Section 5 concludes the paper.

II. DESCRIPTION OF THE PROBLEM DOMAIN AND
RELATED WORK

There are generally two distinct settings for subgraph
mining. The first one is the graph-transactional setting, where
a set of graphs {G1, ..., Gn} and a threshold t are given, and
our goal is to find patterns that occur in at least t graphs in
the set. The second graph mining setting is called the single
network setting, where a single graph G and a threshold t are
given, and we aim to find patterns that have a support of at
least t in G according to some appropriate support measure.
We use both settings as inputs to evaluate our classification
model.

Formally, the problem definitions are as follows:
1) In a graph-transactional setting, a graph dataset D1 =

{G1, ..., Gn} and a threshold t are given.
2) In the single network setting, a dataset D2 consisting of

a large graph G and a threshold t are given.
In this setting, our task is thus to correctly identify all

MDNs in D1 and D2.

72Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

All graph datasets used in this study are undirected. We
revisit relevant definitions below.

Definition 1: A graph G = (V,E) has a set of nodes
denoted by V and the edge set denoted by E. A graph G′

is a subgraph of another graph G if there exists a subgraph
isomorphism from G′ to G, denoted by G′ ⊆ G.

Definition 2: A subgraph is frequent if its support (occur-
rence frequency) in a given dataset is no less than a minimum
support threshold t, where t > 0.
Hence, the frequent subgraph is a relative concept, whether or
not a subgraph is frequent depends on the value of t [28].

Definition 3: A subgraph isomorphism is an injective func-
tion f : V (G) → V (G′), such that, (1) ∀u ∈ V (G), l(u) =
l′(f(u)), and (2) ∀(u, v) ∈ E(G), (f(u), f(v)) ∈ E(G′) and
l(u, v) = l′(f(u), f(v)) where l and l′ are the label function
of G and G′, respectively.

These labels represent some properties of the nodes (or
edges) from the same domain, e.g., location or gender, and for
simplicity it is assumed that they do not change with time.
We also assume that labels do not represent any combinations
of properties (i.e., both location and gender). Each node (or
edge) of the graph is not required to have a unique label and
the same label can be assigned to many nodes (or edges) in
the same graph. Here, f is called an embedding of G in G′.

Figure 1 presents an example of frequency counts of
subgraphs X and Y in a source graph G. Subgraph X on
top has a frequency count of 2 and the subgraph Y on bottom
has frequency counts of 4 in the source graph on the left.

a

c

a

c

a

c

a c

b

a

b

b

Graph G

Subgraph X

Subgraph Y

Figure 1. Frequency counts of subgraphs.

Definition 4: A most dominant node u ∈ V in an undi-
rected graph G is an articulation point having maximum degree
in a frequent subgraph of G.

Definition 5: A node x ∈ V in an undirected graph G is an
articulation point if removing x disconnects the graph into two
or more connected components. In other words, node x ∈ V
is an articulation point if there exists distinct nodes v and w,
such that every path between v and w goes through x.

Figure 1 has three articulation points but only two of these
are MDNs (shaded nodes). Note that more than one articulation
point may have the same maximum degree, and these are all
considered as MDNs.

Definition 6: A time evolving graph is a conceptual rep-
resentation of a series of undirected graphs G0, · · · , GT ,
so that Gt = (Vt, Et) represents the graph at time t over
time 0 to T . Thus, {G0, G1, · · · , GT } is combined as one
undirected graph G = (V,E) with V = ∪Tt=0Vt = VT and
E = ∪Tt=0Et = ET . To each edge e = (u, v) a time-stamp
t(e) = minj{Ej |e ∈ Ej} is assigned. So, formally a time
evolving graph is defined as G = (V,E, t, λ) with t assigning

time-stamps to E and a labeling function λ : V ∪ E → Σ,
assigning labels to nodes and edges from an alphabet Σ [24].

The edge labels of the graph shown in Figure 2 represent
collaboration time between pairs of authors. Label 0 represents
the starting time (e.g., month, day or year) and it increases by
1 after every time unit.

a b d

c a

0 0

1 1 21

1

0

1

7

6

5

d d

ba

ac

Graph G Pattern X Pattern Y

Figure 2. Time evolving graph.

Time evolving graphs support relative-time pattern match-
ing.

Definition 7: Let G = (V,E, t, λ) be a time evolving
graph and P = (VP , EP , tP , λP) is a pattern subgraph. Let
us assume that P is connected. P occurs in G at relative time
if there exists a ∆ ∈ R and a function ψ : VP → V mapping
the nodes of P to the nodes in G such that, ∀u, v ∈ VP :

1) (u, v) ∈ EP implies (ψ(u), ψ(v)) ∈ E
2) (u, v) ∈ EP implies t((ψ(u), ψ(v))) = t(u, v) + ∆
3) λP (u, v) = λ(ψ(v))λP (u, v) = λ((ψ(u), ψ(v)))

Figure 2 shows an example of how relative-time pattern
matches subgraphs with the source graph. Here, pattern X is
not a valid subgraph of G since node labels do not match
properly. On the other hand, pattern Y is valid according to
property 2 of Definition 7.

Definition 8: Minimum Image Based Support is based on
the number of unique nodes in the graph G = (V,E) that a
node of the pattern P = (V ′, E′) is mapped to, and defined as
δ(P,G) = minv∈V ′ |{ψi(v) : ψi is an occurance of P in G}|.

Figure 3 shows the host graph (a) and a pattern (b).
According to minimum image based support measure the
frequency of the given pattern in the host graph will be 1,
though in general the pattern can be matched with multiple
embeddings of the host graph.

a a

a a

b

c

c c c

c

Graph G

Pattern X

a b c

Figure 3. A graph with possible different occurrences of a pattern.

A. Related Work
A number of research has been carried out on the separate

themes of the effect of node removal from large graphs and
discovering influential or important nodes from large graphs
based on different measurement and characteristics of graph
elements, such as a model based on semi-local centrality
measure [5], another model based on bio-inspired centrality
measure [6], stochastic diffusion models [20], and the infor-
mation transfer probability between any pair of nodes and
the k-medoid clustering algorithm [33]. In [3], Albert et al.
showed that a class of inhomogenously wired networks (such

73Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

as the World Wide Web, social networks and communication
networks) are extremely vulnerable to the selection and re-
moval of a few nodes that play a vital role in maintaining
the network connectivity. Shetty et al. [27] worked on an
entropy model to identify the most interesting nodes in a
graph. Here, the concept of importance depends on the amount
of commands/messages forwarded through the network. A
different measure using principal component centrality has
been used in [15] to identify social hubs, nodes at the center of
influential neighborhoods. Further, the problem of identifying
influential spreaders in complex networks has also been studied
in [34]. As far as we are aware, this paper presents the first
work in which a classifier is used to find the MDN in frequent
subgraphs.

III. DETECTMDN ALGORITHM

This section describes main components of our Detect-
MDN algorithm.

Step 1. Extract frequent patterns: From input graph datasets
D1 = {G1, ..., Gn} and D2, all frequent subgraphs are
extracted where frequency occurs more than a given threshold
t. By applying a graph mining algorithm (gSpan [32]) on D1,
we construct a set of frequent subgraphs D′

1 = {F1, ...Fn}.
Another graph mining algorithm (GERM [24]) is applied
on D2 to obtain another set of frequent subgraphs D′

2 =
{F1, ...Fm}.

We describe these algorithms here briefly. The gSpan
algorithm uses a pattern growth approach to discover frequent
subgraphs from large graphs, as depicted in Figure 4 and 5.
The gSpan method builds a new lexicographic order among
graphs, and maps each graph to a unique minimum depth
first search (DFS) code as its canonical label. Based on this
lexicographic order, gSpan adopts the DFS strategy to mine
frequent connected subgraphs efficiently. This algorithm uses
the DFS lexicographic order and rely on the minimum DFS
concept, which forms a novel canonical labeling system to
support the DFS search [32].

Data: Graph set GS
Result: Set of frequent subgraphs S
sort labels in GS by their frequency;
remove infrequent nodes and edges and relabel
remaining nodes and edges;
S′ ← all frequent 1-edge graphs in GS;
sort S′ in DFS lexicographic order;
S ← S′;
for each edge e ∈ S′ do

initialize s with e, set s.GS by graphs which
contains e;
SubgraphMining(GS,S,s);
GS ← GS − e;
if |GS| < minSupp then

break;
end

end

Figure 4. GraphSet Projection Algorithm

On the other hand, GERM mines patterns from a single
large graph. The GERM algorithm is adapted from gSpan
where the support calculation is replaced by the minimum

Data: Graph set GS , DFS code s
Result: Set of frequent subgraphs S
if s 6= min(s) then

return;
end
S ← S ∪ s;
enumerate s in each graph in D and count its children;
for all c, c is s′ child do

if support(c) ≥ minSupp then
s← c;
SubgraphMining(D,S, s);

end
end

Figure 5. SubgraphMining Algorithm

image based support (see Definition 8). GERM has made
another modification in gSpan’s use of minimum DFS code
by modifying the canonical form used in DFS code. This is
done so that the first edge in the canonical form is always the
one with the lowest time-stamp, as compared to gSpan where
the highest label is used as a starting node [22].

Step 2. Apply LabelMDN algorithm: The algorithm works
as follows (see Figure 7).

For each frequent pattern Fi of every datasets D′
1 and D′

2,
it identifies the set of articulation points A. If |A| = p > 1, we
identify the total number of nodes V (Fi) and edges E(Fi), and
number of connected components BC(Fi). We also calculate
the degree deg(aj) and associated time stamps ts(aj) of each
articulation point aj ∈ A, where 1 ≤ j ≤ p. An articulation
point can be associated with multiple time stamps as it evolves
with time.

To compute the articulation points, we implement the
standard linear time DFS approach proposed by Hopcroft
and Tarjan [18]. All articulation points satisfy the following
conditions: Any node x is an articulation point if and only if
either (a) x is the root of the DFS tree and x has more than
one child, or (b) x is not the root and for some child w of x
there is no back-edge between any descendent of w (including
w) and a proper ancestor of x. (For further reading, we refer
the interested reader to [4].)

a b

c

e

d

f

g

c

e

g

f

b

a

d

(a) Subgraph F (b) DFS tree of F with root node c

Figure 6. Labelling articulation points using DFS tree.

Figure 6 gives an example of a given subgraph F in (a)
and its DFS tree starting at c in (b). Backedges are shown
with dotted lines. It is clear that F has two articulation points
c and e, but only e will be labeled as MDN since it has the
maximum degree in F .

The next step is to correctly label each aj whenever it is a
MDN in Fi. This is done by verifying whether deg(aj) of each
articulation point aj is maximum within it’s corresponding Fi.

74Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

Thus, each ai is labeled with a class label C1 if it is a MDN,
with C0 otherwise. Now, we have a training dataset T having
records for each aj with the expectation to train a classifier
for correctly predicting the labels of unclassified test datasets.
Step 3. Classify MDNs: A number of classification algorithms

Data: Set of frequent subgraphs D′
1, D′

2
Result: Training dataset T
for all frequent subgraphs Fi ∈ D′

1 (or D′
2) do

find set of articulation points A ∈ Fi. [use the
standard DFS based algorithm];
if |A| ≥ 1 then

find V (Fi), E(Fi), and BC(Fi);
for each aj ∈ A from j = 1 to p do

find deg(aj) and ts(aj);
if deg(aj) = max{deg(u) : u ∈ V (Fi)}
then

label aj with class C1. [aj is a MDN];
else

label aj with class C0. [aj is not a
MDN];

end
store information of each aj as a record in
T ;

end
end

end

Figure 7. LabelMDN Algorithm

was used from the WEKA environment [31]. The baseline
model is constructed using ZeroR, where the classifier assigns
all items to the largest class. We also utilized a number of other
classifiers, including the Naive Bayes probabilistic approach,
Support Vector Machines (SMO), a rule based method (JRip)
and a decision tree based classifier (J48). We also built models
using the Boosting and Bagging meta-learning techniques, both
using J48 decision trees as base learner.

IV. EXPERIMENTAL SETUP AND EVALUATION

This section describes our experimental setup and evalua-
tion. We have used the implementations of gSpan and GERM
that are available in [13] and [24] respectively. We made
use of the previously mentioned WEKA classifiers, as noted
earlier. All other algorithms have been implemented in Java
programming language.

A. Datasets
Five datasets have been used for evaluating DetectMDN

algorithm. Brief descriptions of these datasets are given below,
and their summary information is shown in Table I.

(a) Co-authorship network data, DBLP [11]: Three sample
datasets from the same DBLP network span over three periods,
namely 1992-2002, 2003-2005 and 2005-2007. In this dataset,
authors are represented by nodes with a connecting edge if they
are co-authors. The assigned time-stamp on an edge represents
the year of the first co-authorship. The three different samples
each contains the edges created in the corresponding years.
We also aggregate all datasets into one large DBLP dataset
with information from the year 1992 to 2007. This is done for
analyzing both long and short term trends.

(b) Social network dataset, Facebook [12]: This network
describes friendship relations between users of Facebook. It
was collected in April of 2009 through data scraping from
Facebook. Each node represents a user and an edge represents
friendship between two users. The graph is undirected and
unweighted thus all nodes are labeled with the same default
value.

(c) Citation network [10]: The format for the Citation
dataset is similar to the Facebook dataset. It contains a sorted
2 column vector where the left column is the arxiv id of the
paper cited from and the right column is the arxiv id of the
paper being cited.

TABLE I. DATASET PROPERTIES.

Dataset Date Node Edge Avg Degree Time Stamp
dblp92-02 92-02 129073 277081 2.15 0-10
dblp02-05 02-05 109044 233961 2.15 0-3
dblp05-07 05-07 135116 290363 2.15 0-2
facebook 2009 4039 88234 21.85 NA
citation 92-03 27718 352806 12.73 NA

B. Experimental Results

This section generalizes the results we obtained against
the above-mentioned datasets. Firstly, the GERM algorithm
has been applied to all the DBLP datasets to extract frequent
subgraphs. These files are compatible with GERM and need
no further modification. In the DBLP datasets the timestamps
vary from 0 to 10. To normalize this range, each timestamp
has been categorized as initial, middle and final and a three-
digit bit string is generated which later is converted into a
numeric value. Note that, since the Facebook and Citation
datasets do not have timestamps, the ts attribute in Algorithm 7
is not relevant for these datasets. Subsequently, the original
gSpan algorithm has been used for these two datasets. Table
II gives brief explanations of the set of attributes generated
by LabelMDN from all frequent patterns. Table III gives a
summary of the results found in this level. The numbers
under Nodes, Edges, Degrees and BC columns come with the
format min-max-average. The ts column shows only min-max
numbers. Although there is no significant differences in the
average numbers of nodes and edges in frequent subgraphs of
all five datasets, articulation points in Facebook and Citation
datasets have higher degrees than that in the DBLP datasets.

TABLE II. ATTRIBUTES EXTRACTED FROM GIVEN DATASETS.

Attributes Description Type
V (Fi) Total number of nodes in frequent subgraph Fi Numeric
E(Fi) Total number of edges in frequent subgraph Fi Numeric
BC(Fi) Total number of biconnected components in Fi Numeric
deg(aj) Total degrees of articulation point aj Numeric
ts(aj) Time stamps associated with aj Numeric
Ck Class of aj , where k ∈ {0, 1} Binary

TABLE III. SUMMARY OF EXTRACTED ATTRIBUTES.

Datasets Inst Nodes Edges Degrees BC ts
dblp92-02 2471 3-10-5.8 2-9-4.9 2-5-2.4 2-9-4.7 1-5
dblp03-05 1971 3-11-5.7 2-10-4.9 2-6-2.5 2-10 4.6 1-7
dblp05-07 2923 3-12-5.7 2-11-4.9 2-7-2.5 2-11-4.6 1-7
Facebook 65 3-14-6.3 2-13-5.5 2-13-4.2 2-13-5.2 —
Citation 80 3-13-6.0 2-12-5.1 2-12-3.8 2-12-4.9 —

75Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

C. Research Questions
In this study, experiments are conducted to answer the

following research questions:
Q1. Do our DetectMDN algorithm result in accurate models
of the studied networks? (See Section C.1)
Q2. Do different types of networks (co-authorship and social)
influence the prediction results? (See Section C.2)
Q3. What type of frequent pattern attributes are more effective
than others? (See Section C.3)

C1. Performance of DetectMDN Algorithm
Table IV shows the accuracies achieved by each of the

classifiers against all the datasets. In this table the names
DBLP1, DBLP2, DBLP3, FB and Cita are used to repre-
sent dblp92-02, dblp03-05, dblp05-07, Facebook and Citation
datasets respectively. All WEKA classification algorithms are
used with 10-fold cross validation for each of the datasets.
Compared with the baseline all other classifiers performed
significantly better, and for all datasets, the best performances
are shown by JRip and AdaBoost (with J48) both are ranked
as 1. It should be noted that the differences among these
top ranked classifiers’ performances are not significant. Our
algorithm successfully classifies MDNs in both full-term and
short-term time-evolving DBLP datasets, while the classifier
performs equally well for the static graph datasets, namely
Facebook and Citation. These results show that our classifiers
are able to encompass both the duration and the variation of
the relationship patterns among all MDNs.

TABLE IV. ACCURACY OF CLASSIFICATION MODELS (%).

Classifiers DBLP1 DBLP2 DBLP3 DBLP FB Cita Rank
Base 67.5 65.7 66.8 66.7 81.8 82.5 4
JRip 74.3 74.4 74.2 73.8 90.8 85.0 1
NaiveBayes 71.6 72.0 71.8 72.0 80.0 78.8 4
J48 74.1 74.4 74.2 73.6 88.0 86.3 2
SMO 73.3 74.0 74.3 74.0 81.5 82.5 3
Boosting 73.5 74.5 74.3 73.6 90.8 85.0 1
Bagging 73.7 74.4 74.2 73.8 87.7 81.3 2

C2. Influence of Network Types on Prediction Results
Since a classifier’s performance does not only depend

on the percentage of accuracy value, we present another set
of analysis in Table V. We consider two classifiers, namely
Boosting (AdaBoostM1) with a J48 base learner, as well as J48
on its own, for this analysis. These two classifiers were chosen
based on their high rankings during our earlier experiments.

ROC analysis and AUC: For all datasets, the high per-
centage of Area Under Curve (AUC) value demonstrates the
efficiency of our model since it depicts the relative trade-
offs between true positives and false positives across a range
of thresholds of a classification model. Figure 8 shows the
comparison between the ROC graphs of the AdaBoostM1
(J48) and J48 algorithms for the Citation, Facebook and DBLP
datasets.

F-measure represents a harmonic mean between recall and
precision.

F −measure =
2×Recall × Precision
Recall + Precision

A lower recall value (69%) for DBLP results a comparatively
lower F-measure (75%). For the static datasets, the accuracy
rates are more than 90% for Facebook dataset and 85% for

Citation dataset. Figure 9 plots the Precision-Recall (PR) graph
demonstrating performance of the classifier for all datasets.
From these results it can be said that static networks are more
predictable than time evolving graphs.

TABLE V. AUC AND F-MEASURE VALUES USING ADABOOST WITH J48.

Dataset AUC Precision Recall F-measure
DBLP 0.82 0.78 0.69 0.75
Facebook 0.96 0.90 0.91 0.91
Citation 0.93 0.85 0.85 0.85

Figure 8. Comparisons between ROC Graphs of AdaBoostM1 and J48 for
(a) Citation, (b) Facebook and (c) DBLP. The x-axis represents the false

positive (FP) rates and y-axis represents the true posotive (TP) rates.

Figure 9. Precision and Recall graph for (a) Citation, (b) Facebook and (c)
DBLP. Here, x-axis represents Recall and y-axis represents Precision.

C3. Effective Attributes for Classification
The aim of this section is to evaluate the contribution of

a subset of attributes by considering the individual predictive
ability of each feature along with the degree of redundancy
between them. We employed the CfsSubsetEval function for
this task, which has been successfully applied previously in
many studies including [9] [17] [26] to improve the accuracy.
For all datasets, the degrees attribute has been identified as
the most important attribute to aid the classifier, while DBLP
dataset utilizes a second attribute, namely nodes. Both the
Facebook and Citation datasets have comparatively higher
average degrees than the DBLP dataset (see Table I). Recall
that the first two datasets represent a static view of the network
where the communication with peer nodes are not labeled
with time. Therefore, the total number of peer nodes (i.e.,
degrees) associated with each articulation point mostly governs
the classification rules. In the case of the DBLP datasets, our
classifier performs the labeling task based on the total number
of authors (nodes) and consider when they are connected with
peer nodes (degrees). It should be noted that dependency on
different attribute sets do not degrade the overall performance
of our classifier.

D. Discussions
In this study, we are interested to correctly classify all most

dominant nodes in frequent subgraphs of large networks. Based
on the results reported above it can be concluded that our
model can successfully classify both static and time-evolving
graphs with reasonable accuracy. However, the large number

76Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

of frequent subgraphs that are often present in network settings
constitutes some challenges [28]. The first one is redundancy,
in that most frequent subgraphs only differ slightly in structure
and repeat in many subgraphs. The second is the statistical
significance of subgraphs. Since both frequent and infrequent
subgraphs may be uniformly distributed over all classes, only
frequent subgraphs whose presence is statistically significantly
correlated with class membership are promising contributors
for classification.

In our research, MDNs are defined irrespective of their
direction of communications with peer nodes. Although it has
little impact in co-authorship networks, we may expect a con-
ceptual change in social and communication networks where a
MDN either communicates with (both-way) or only broadcasts
to (one-way) their peer nodes in a frequent subgraph. For
example, a fan page of Facebook may have many responses
from a group of members for each post. On the other hand, an
online marketing page may post news to many of its clients,
but typically does not receive responses equally.

V. CONCLUSION AND FUTURE WORK

We presented an algorithm to classify the most dominant
nodes in frequent subgraphs of large networks. We consid-
ered both static and time-evolving graphs. We evaluated the
performance of our algorithm with percentage of accuracy,
precision and recall. We also identified the attributes (i.e.,
degrees in general, and a second attribute nodes in DBLP
dataset) that are the most effective for successful classification.
Our experimental results showed that our method achieved
good performance in terms of accuracy and other statistical
measurements. Our future work will center on finding scalable
solutions to effectively deal with numerous frequent subgraphs
that are similar in structure and scope. We are also interested
in studying the effects of changes in properties, in order to
extend our work to deal with concept drift in a graph setting.

REFERENCES

[1] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association
Rules in Large Databases.” In Proc. of ACM SIGKDD Conference on
KDDM, pp. 12-19, 1994.

[2] A. L. Barabasi and R. Albert, “Emergence of scaling in random net-
works.” Science 286, no. 5439, pp. 509-512, 1999.

[3] R. Albert, H. Jeong, and A. L. Barabasi, “Error and attack tolerance of
complex networks.” Nature, 406(6794), pp. 509-512, 2000.

[4] Biconnected Component, (2016, Mar.) [Online]. Available: https://en.
wikipedia.org/wiki/Biconnected component

[5] D. Chen, L. Lu, M. S. Shang, Y. C. Zhang, and T. Zhou, “Identifying
influential nodes in complex networks,” Physica a: Statistical mechanics
and its applications, 391(4), 2012.

[6] C. Gao, X. Lan, X. Zhang, and Y. Deng, “A bio-inspired methodology
of identifying influential nodes in complex networks,” PloS one, 8(6),
2013.

[7] B. Bringmann and S. Nijssen. “What is frequent in a single graph?.”
In Advances in Knowledge Discovery and Data Mining, Springer Berlin
Heidelberg, pp. 858-863, 2008.

[8] J. Bonneau, J. Anderson, R. Anderson, and F. Stajano. “Eight friends
are enough: social graph approximation via public listings.” In Proc. of
the 2nd ACM EuroSys Workshop on Social Network Systems, ACM, pp.
13-18, 2009.

[9] P. Chanda, Y. R. Cho, A. Zhang, and M. Ramanathan, “Mining of
attribute interactions using information theoretic metrics,” IEEE Inter-
national Conference on Data Mining Workshops, 2009.

[10] Citation network, (2016, Jan.) [Online]. Available: http://www.cs.
cornell.edu/projects/kddcup/datasets.html

[11] Co-authorship Network, (2016, Mar.) [Online]. Available: http://
www-kdd.isti.cnr.it/GERM/

[12] Facebook Dataset, (2016, Mar.) [Online]. Available: http://snap.
stanford.edu/data/egonets-Facebook.html

[13] gSpan: Frequent Graph Mining Package, (2016, Mar.) [Online]. Avail-
able: http://www.cs.ucsb.edu/∼xyan/software/gSpan.htm

[14] M. A. Hasan, “Mining Interesting Subgraphs by Output Space Sam-
pling,” PhD Thesis, Rensselaer Polytechnic Institute, New York, 2009.

[15] M. U. Ilyas and H. Radha. “Identifying influential nodes in online so-
cial networks using principal component centrality.” IEEE International
Conference on ICC, IEEE, pp. 1-5, 2011.

[16] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and
M. C. Hsu. “Prefixspan: Mining sequential patterns efficiently by prefix-
projected pattern growth.” In Proc. on ICCCN, IEEE, pp. 2-15, 2001.

[17] J. Hancke and D. Meurers, “Exploring CEFR classification for Ger-
man based on rich linguistic modeling,” In Learner Corpus Research
Conference, 2013.

[18] J. Hopcroft and R. Tarjan. “Algorithm 447: efficient algorithms for
graph manipulation.” Communications of the ACM 16 (6), pp. 372-378,
1973.

[19] A. M. Kibriya and J. Ramon, “Nearly exact mining of frequent trees
in large networks.” Machine Learning and Knowledge Discovery in
Databases, Springer Berlin Heidelberg, pp. 426-441, 2012.

[20] M. Kimura, S. Kazumi, N. Ryohei, and H. Motoda. “Extracting influ-
ential nodes on a social network for information diffusion,” Data Mining
and Knowledge Discovery 20, no. 1, pp. 70-97, 2010.

[21] M. Kuramochi and G. Karypis, “Frequent Subgraph Discovery,” In
Proc. IEEE International Conference on Data Mining, ICDM, pp. 313-
320, 2001.

[22] M. Kuramochi and G. Karypis. “An efficient algorithm for discovering
frequent subgraphs,” IEEE Transactions on Knowledge and Data Engi-
neering, 16.9, pp. 1038-1051, 2004.

[23] KDD cup 2003 Datasets, (2016, Mar.) [Online]. Available: http://www.
cs.cornell.edu/projects/kddcup/datasets.html

[24] B. Michele, F. Bonchi, B. Bringmann, and A. Gionis. “Mining graph
evolution rules,” In Machine learning and knowledge discovery in
databases, Springer Berlin Heidelberg, pp. 115-130, 2009.

[25] M. E. J. Newman. “The structure and function of complex networks,”
SIAM Review 45, no. 2, pp. 167-256, 2003.

[26] K. Selvakuberan, M. Indradevi, and R. Rajaram, “Combined feature
selection and classification - A novel approach for categorization of web
pages.” Journal of Information and Computing Science. 3 (2), 2008.

[27] J. Shetty and J. Adibi, “Discovering important nodes through graph en-
tropy the case of enron email database,” In Proc. of the 3rd international
workshop on Link discovery, ACM, pp. 74-81, 2005.

[28] M. Thoma, H. Cheng, A. Gretton, J. Han, H. Kriegel, A. Smola, L.
Song, P. S. Yu, X. Yan, and K. M. Borgwardt, “Discriminative frequent
subgraph mining with optimality guarantees,” Statistical Analysis and
Data Mining 3, no. 5, pp. 302-318, 2010.

[29] The Graph Evolution Rule Miner, (2016, Mar.) [Online]. Available:
http://www-kdd.isti.cnr.it/GERM/

[30] S. Wasserman and K. Faust, Social Network Analysis: Methods and
Applications, Cambridge, ENG and New York: Cambridge University
Press, Vol.8, 1994.

[31] Weka 3: Data Mining Software in Java, Machine Learning Group at the
University of Waikato, (2016, Mar.) [Online]. Available: http://www.cs.
waikato.ac.nz/∼ml/weka/

[32] X. Yan and J. Han, “gspan: Graph-based substructure pattern mining,”
IEEE International Conference on Data Mining, pp. 721-724, 2003.

[33] X. Zhang, J. Zhu, Q. Wang, and H. Zhao, “Identifying influential
nodes in complex networks with community structure,” Knowledge-
Based Systems, 42, 2013.

[34] Z. Zhao, X. Wang, W. Zhang, and Z. Zhu, “A Community-Based
Approach to Identifying Influential Spreaders,” Entropy, 17(4), 2015.

77Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

