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Abstract— We describe a novel approach for cross-domain 
recommendation for research collaboration. We first 
constructed a large Neo4j graph database representing 
authors, their expertise, current collaborations, and general 
biomedical knowledge. This information comes from 
MEDLINE and from semantic relations extracted with 
SemRep.  Then, by using an extended literature-based 
discovery paradigm, implemented with the Cypher graph 
query language, we recommend novel collaborations, which 
include author pairs, along with novel topics for collaboration 
and motivation for that collaboration.  

Keywords-  Research collaboration; Recommendation 
system; Literature-based discovery; Semantic MEDLINE; Graph 
database; Neo4j. 

I. INTRODUCTION 

Nowadays, high quality science requires collaboration, as 
demonstrated by studies reporting that higher levels of 
collaboration correlate with higher productivity [1]. Current 
systems for recommending scientific collaboration are 
largely based on statistical analysis of co-occuring terms 
(e.g., ArnetMiner [2]); they provide a list of potential 
collaborators, but do not give motivation for the 
recommendations.  Our methodology enhances previous 
work by providing a list of potential collaborators and topics 
for collaboration, in addition to compelling motivation for 
the collaboration. This innovative approach is based on a 
semantic implementation of literature-based discovery 
(LBD) methodology. 

 LBD is a methodology for automatically generating 
research hypothesis by uncovering hidden, previously 
unknown relationships from existing knowledge [3]. For 
example, suppose a researcher has studied the effect of 
substance X on gene Y. Further suppose that a different 
researcher has found a relationship between gene Y and 
disease Z. The use of LBD may suggest a relationship 
between X and Z, indicating that substance X may 
potentially treat disease Z. For a recent review of LBD tools 
and approaches see [4]. 

 The relationships on which this project is based are 
semantic predications. A semantic predication is a formal 
structure representing part of the meaning of a sentence. For 
example, “Metformin TREATS Diabetes” represents part of 
the meaning of “Metformin is commonly used as first-line 
medication for management of diabetes.” A semantic 
predication consists of a predicate (“TREATS” in this 
example) and arguments (“Metformin” and “Diabetes”). We 
used predications extracted by SemRep [5] from all of 

MEDLINE (titles and abstracts). SemRep is a rule-based, 
symbolic natural language processing system that extracts 30 
predicate types expressing assertions in clinical medicine 
(e.g., TREATS, ADMINISTERED TO), substance 
interactions (e.g., INTERACTS WITH, STIMULATES), 
genetic etiology of disease (e.g., CAUSED, 
PREDISPOSES), and pharmacogenomics (e.g., 
AUGMENTS, DISRUPTS). The extracted predications are 
stored in a MySQL database (SemMedDB) which is publicly 
available [6]. The expressiveness inherent in semantic 
predications enhances the value of our system over that of 
the majority of LBD systems. Such systems are largely based 
on simple co-occurrence of phrases or concepts, which does 
not express the meaning of the relationship between the co-
occurrences. 

This work is a continuation and extension of our previous 
work. In [7] we described the basic cross-domain 
collaboration recommendation methodology, and in [8] we 
explained how to implement LBD with Neo4j graph 
database [9]. In this paper, we describe the implementation 
of the cross-domain collaboration recommendation 
methodology with the Neo4j graph database and its query 
language Cypher [9]. 

The paper is structured as follows. In Section II, we 
present the methods used to construct the graph database and 
the prediction algorithm, in Section III we present the results, 
and in Section IV we preset the conclusions . 

II. METHODS 

We first construct a large network and load it into the 
Neo4j graph database. We have used the Neo4j graph 
database because our data can be naturally expressed as a 
large graph and because Neo4j is well suited for storing and 
working with graphs. The network (graph) consists of two 
major types of nodes: authors and biomedical concepts. We 
extract the authors from the full MEDLINE bibliographic 
database. We extract the biomedical concepts from the set of 
arguments (subjects or objects) of semantic relations 
extracted from all MEDLINE titles and abstracts with 
SemRep. Each biomedical concept has a subtype, such as 
Disease or Syndrome or Pharmacologic Substance. We call 
the node subtypes semantic types and they come from 
Unified Medical Language System (UMLS). We use 126 
semantic types. Our network contains several types of arcs 
and edges. co_author edges link any two authors that 
have been co-authors in at least one paper. We use this edge 
type to determine which authors already know each other. 
writes_about arcs link authors to biomedical concepts. 
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and efficient than using a relational database. Implementing 
collaboration recommendation algorithms is conceptually 
easier and more simple when using a graph query language 
such as Cypher when compared to standard SQL. 
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