
OntoEDIFACT: An Ontology for the UN/EDIFACT Standard

Boulares Ouchenne and Mhamed Itmi

Normandie Univ, INSA Rouen, LITIS, 76000 Rouen, France
Email: {boulares.ouchenne,mhamed.itmi}@insa-rouen.fr

Abstract—In this paper, we propose an OWL encoded ontol-
ogy (OntoEDIFACT) to ontologize the United Nations/Electronic
Data Interchange For Administration, Commerce and Transport
(UN/EDIFACT) standard. Our ontology provides a lightweight
representation that captures general concepts about basic com-
ponents of the standard, and also provides extensibility for
adding complex components in a hierarchical manner. Our
approach separates the conceptualization from knowledge base
(KB) integration. So, we start by the conception of the knowledge
model and we finish by building the KB through instantiating
the knowledge model from the last version of the standard.
The knowledge base consists of a triple stores, publicly available
through a SPARQL endpoint. We have developed some services
for exploiting the KB and discussed some future applications.

Keywords–Ontology; EDI; EDIFACT; SPARQL-Endpoint.

I. INTRODUCTION

Generally, E-commerce is associated with buying and sell-
ing operations that are carried out via the Internet. This is a
very biased view because E-commerce includes any transaction
in which, the parties interact electronically. Electronic Data
Interchange (EDI) [1][2][3] enables the exchange of structured
business documents (purchase orders, invoices, etc.) between
IT systems of trading partners. The use of a structured and
readable format allows transferring of documents from one
application to another located in a different locations, without
any human interpretation and/or intervention. The EDI was
designed to replace the transmission of information through
paper and to overcome inefficient manual document exchange.
Basically, EDI is designed with respect to the principle that
the data should be entered once into the system, then it can
be transmitted electronically among interested parties. In the
most common scenario, the cycle starts when a buyer sends
an EDI purchase order to a seller. The latter, first sends an
acknowledgement to the buyer, then at the time of shipment,
he sends a shipping notice followed by an invoice. All these
documents are transmitted through EDI. Finally, the buyer
sends his bank account information for the payment of the
invoice, and funds are electronically transferred to the seller’s
bank account.

The design of EDI seems to be simple, but its imple-
mentation requires a thorough consensus on data elements,
codes, rules of syntax and format. The exchange of electronic
information is built on a common, universal, multi-sector
language allowing an open and easy communication between
all economic stakeholders. In other words, we can transfer
data between heterogeneous systems to the extent that we use
a common format. There are various standards that constitute
the basis for a specific-area data exchange. A few examples are
NIEM, AINSI X12, EDIFACT and XBRL. Each standard is

characterized by its scope of use (North of America for AINSI
X12 and NIEM, EDIFACT for the international).

UN/EDIFACT is the international EDI standard developed
by the United Nations. This standard specifies a set of interna-
tional standards, directories and guidelines for the electronic
interchange of structured data. UN/EDIFACT provides a set
of data structures (called MESSAGES) each of which, serves
to transmit a particular message (Purchase order, Invoice,
etc.). Each of these structures is an aggregate of content
items (SEGMENTS and ELEMENTS). UN/EDIFACT does
not define the medium by which the message is sent, or the
protocols used in any particular form of communication. The
standard is completely neutral in this aspect. It focuses only
on the content of messages.

The UN/EDIFACT is a standard for EDI trading widely
recognized by both commercial and non-commercial sectors.
Recently, organizations have a tendency to adopt UN/EDI-
FACT to the long term for a structured governance with an
international visibility. An example (taken from Wikipedia [4])
of an EDIFACT message used to answer to a flight ticket
(FRA-JFK-MIA) availability request is presented below:

UNA:+.? ’
UNB+IATB:1+6XPPC+LHPPC+940101:0950+1’
UNH+1+PAORES:93:1:IA’
MSG+1:45’
IFT+3+XYZCOMPANY AVAILABILITY’
ERC+A7V:1:AMD’
IFT+3+NO MORE FLIGHTS’
ODI’
TVL+240493:1000::1220+FRA+JFK+DL+400+C’
PDI++C:3+Y::3+F::1’
APD+74C:0:::6++++++6X’
TVL+240493:1740::2030+JFK+MIA+DL+081+C’
PDI++C:4’
APD+EM2:0:1630::6+++++++DA’
UNT+13+1’
UNZ+1+1’

Beside the widespread adoption of the UN/EDIFACT, the
standard suffers from its poor design, confusing or a lack of
semantics and its complicated formatted text which is non-
understandable for a non-specialist. Those difficulties pushed
us to propose an ontology to unambiguously specify the
meaning of components of the UN/EDIFACT standard and
relationships among them.
This paper is organized as follows. Section 2 provides a
detailed description of the OntoEDIFACT ontology. Section
3 presents the software architecture of our prototype, freely

91Copyright (c) IARIA, 2017. ISBN: 978-1-61208-558-6

DBKDA 2017 : The Ninth International Conference on Advances in Databases, Knowledge, and Data Applications

Figure 1. EDIFACT messages structure.

accessible via the Web. Section 4 briefly discusses some related
works. Finally, we give our conclusions and outline future
works in Section 5.

II. DESIGNING THE ONTOEDIFACT ONTOLOGY

This section describes the approach used to design the On-
toEDIFACT ontology, as well as the four main components of
OntoEDIFACT, namely simple elements, composite elements,
segments and messages. We have defined several requirements
to which our ontology must answer. First, we want to develop
a general ontology in order to (i) be apprehended by the EDI
community without the need to be an expert of UN/EDIFACT
standard, (ii) to be independent of the version of the UN/EDI-
FACT standard and (iii) the structure of our ontology must also
facilitate its settlement and its evolution by using possibilities
of expression offered by the description languages (in terms
of knowledge representation and reasoning). During the design
of our ontology, we have endeavored to apply the commonly
recommended techniques of the community [5][6]. Finally,
since the OntoEDIFACT is described in OWL2 [7], we have
taken advantage of possibilities offered by this language in
terms of expressiveness.

A. The structure of EDIFACT Messages

A in EDIFACT format is structured as depicted in Figure 1.
A message is composed of an ordered set of segments. Seg-
ments can be grouped in groups which comprises an ordered
set of segments. Furthermore, the message structure defines
whether data segments and segment groups are mandatory or
optional, and indicates how many times a particular segment or
a group can be repeated. A segment comprises an ordered list
of stand-alone data elements and/or composite data elements.
The segment definition indicates the data elements to be
included in the segment, the sequence of the data elements
and whether each data element is mandatory or optional. A
composite data element comprises an ordered list of two or
more component data elements. The composite data element
definition specifies the component data elements to be included
in the composite data element, the sequence of the component
data elements and whether each component data element is
mandatory or optional.

SimpleDataElement

Class ObjectTypeProperty

hasRepresentation
Representation

Class

DataTypeProperty

type

DataTypeProperty

length

xsd:String xsd:Integer

domain range

domain

range

domain

range

ObjectTypeProperty

hasCodeList

CodeList

Class

ObjectTypeProperty

containsCode

DataTypeProperty

value

DataTypeProperty

interpretation

Code

Class

DataTypeProperty

hasDescription

DataTypeProperty

name

DataTypeProperty

hasIdentifier

xsd:String

xsd:Integer

range domain

domain

range

range

domain

range

domain
domain

domain

rangerange

domain

range

Figure 2. Simple Element Modeling.

B. Modeling of Simple Data Elements
Simple Data Elements are the primary unit which, corre-

spond to the lowest level of data in EDIFACT standard. They
represent data types and contain single data element value. A
simple data element is defined by:

• Its EDIFACT identification code number.
• Its name and its description.
• Its structure that defines its type and length.
• Eventually a predefined code list that it can take.

Figure 2 shows the OWL serialization of simple data elements.
The model is structured around a set of abstract entities, each
describing a conceptual object (Code, Representation, etc.).
Each entity is associated with its attributes (represented by
owl:DatatypeProperty) and relations with other entities
(represented by owl:ObjectProperty).
A simple data element is modeled by an OWL class
SimpleDataElement. A set of data properties have
been introduced to express the relationship between ob-
jects and their data values, such as numerical values (i.e.,
hasIdentifier to represent the identification) and textual
values (i.e., hasDescription for the description and name
for the name of the simple data element). We have also in-
troduced two data object properties (hasRepresentation
and hasCodeList) to express respectively, the relationship
between a simple data element and its representation or its
code list. There are two kinds of simple data elements:

1) Simple data elements with free values (e.g., the
simple data element account name1): in order to
model valid formats of data elements values, an OWL
class Representation and two data properties

1http://www.unece.org/fileadmin/DAM/trade/untdid/d16b/tred/tred1146.htm

92Copyright (c) IARIA, 2017. ISBN: 978-1-61208-558-6

DBKDA 2017 : The Ninth International Conference on Advances in Databases, Knowledge, and Data Applications

CompositeDataElement

Class ObjectTypeProperty

isComposedOf
Component

Class

DataTypeProperty

hasDescription

DataTypeProperty

name

DataTypeProperty

hasIdentifier

xsd:String

xsd:Integer

DataTypeProperty

hasStatus

DataTypeProperty

hasPosition

DataTypeProperty

hasRepeatability

xsd:String xsd:Integer

ObjectTypeProperty

containsComponent

SimpleDataElement

Class

ObjectTypeProperty

hasNext

ObjectTypeProperty

hasPrevious

domain range

domain

domain

rangerange

domain

range

domain

range

domain
range domainrange

domain

range

domain

range

domain

range

Figure 3. Composite Element Modeling.

are introduced. The first one (type), is used to
define whether the characters used for representing
the simple data element are numeric, alphabetic or
alphanumeric. The second one (length) is used to
represent the maximum number of characters allowed
to represent the simple data element.

2) Simple data elements with predefined values (e.g.,
the simple data element geographic area code2):
the particularity of this kind is that, values have
to be taken from an agreed list of code values.
To model the list of predefined codes, we used
an OWL class CodeList and an object property
(containsCode) to specify codes belonging to the
codes list. Furthermore, an OWL class Code and two
data properties (value and interpretation) are
used to specify respectively the value that can take
and the interpretation of each value.

C. Modeling of Composite Data Elements
Composite data elements are concatenations of two or more

simple data elements. A composite data element is defined by:

• Its EDIFACT identification code.
• Its name and its description.
• Its composition.

Figure 3 shows the OWL serialization of composite data
elements. A composite data element is modeled by an
OWL class CompositeDataElement. We reused data
properties which have been introduced previously (i.e.,
hasIdentifier,hasDescription and name), and we

2http://www.unece.org/fileadmin/DAM/trade/untdid/d16b/tred/tred3279.htm

have introduced one object property (isComposedOf) to
express the relationship between a composite data element
and its components (simple data elements). An OWL class
Component is introduced to specify the component data
elements to be included in the composite data element. Fur-
thermore, some properties are also introduced:

1) containsComponent: an object property that
specifies the simple data element to be included into
the composite data element.

2) hasStatus: a data property to specify whether the
simple data element is mandatory or optional.

3) hasPosition: a data property to specify the se-
quence of components (simple data elements) in the
composite data element.

4) hasRepeatability: a data property specifying
the repeatability of the component (the maximum
number of occurrence).

5) hasPrevious and hasnext: object properties
that specifies respectively, the previous and the next
component.

D. Modeling of Segments
A segment is an ordered list of related data components

(simple and/or composite) usually associated in a functional
way and thus manipulated as such by the partners of the ex-
change (the sender and the receiver). For instance, consider the
segment address 3 which contains, information about the road,
postal code, town, country, etc. Each segment is standardized
and is reproduced identically in all messages which use it. A
segment is defined by:

• Its EDIFACT code (a three capital letters abbreviation
of its name).

• Its name and its function.
• Its composition.

Figure 4 shows the OWL serialization of a segment. A seg-
ment is modeled by an OWL class Segment. We reused
data properties which have been introduced previously (i.e.,
hasIdentifier and name), and we have introduced a
data property (hasFunction) to express the function for
which it was defined. We also reused concepts (Component),
object and data properties defined in the previous subsection
to indicate the data element (simple and/or composite) to be
included in the segment, the sequence of the components,
to indicate whether they are mandatory or optional, and to
indicate how many times a particular simple or composite
element can be repeated.

E. Modeling of Messages
Messages are the main structure of the EDIFACT exchange

standard. They correspond to specific business messages and
cover the needs of different sectors of economic activity (order,
invoice, payment order, etc.). A message is defined by:

• Its EDIFACT code (a six capital letters abbreviation
of its name).

• Its name and its composition.

Figure 5 shows the OWL serialization of a message. A
message is modeled by an OWL class Message. We reused

3http://www.unece.org/fileadmin/DAM/trade/untdid/d16b/trsd/trsdadr.htm

93Copyright (c) IARIA, 2017. ISBN: 978-1-61208-558-6

DBKDA 2017 : The Ninth International Conference on Advances in Databases, Knowledge, and Data Applications

Segment

Class ObjectTypeProperty

isComposedOf
Component

Class

DataTypeProperty

hasFunction

DataTypeProperty

name

DataTypeProperty

hasIdentifier

xsd:String

xsd:Integer

DataTypeProperty

hasStatus

DataTypeProperty

hasPosition

DataTypeProperty

hasRepeatability

xsd:String xsd:Integer

ObjectTypeProperty

containsComponent

SimpleDataElement

Class

ObjectTypeProperty

hasNext

ObjectTypeProperty

hasPrevious

ObjectTypeProperty

containsComponent

CompositeDataElement

Class

domain range

domain

domain

rangerange

domain

range

domain

range

domain
range domainrange

domain

range

domain

range

domain

range

domain

range

Figure 4. Segment Modeling.

Message

Class ObjectTypeProperty

isComposedOf
Component

Class

DataTypeProperty

name

DataTypeProperty

hasIdentifier

xsd:String

xsd:Integer

DataTypeProperty

hasStatus

DataTypeProperty

hasPosition

DataTypeProperty

hasRepeatability

xsd:String xsd:Integer

ObjectTypeProperty

containsComponent

Segment

Class

ObjectTypeProperty

containsComponent

ObjectTypeProperty

isComposedOf

ObjectTypeProperty

hasNext

SegmentGroup

Class

ObjectTypeProperty

hasPrevious

DataTypeProperty

hasIdentifier

domain range

domain

range

domain

range

domain

range

domain

range

domain

range

domain

range

domain

range

domain

range

domain

range

range

domainrange

domain

Figure 5. Message Modeling.

data properties which have been introduced previously (i.e.,
hasIdentifier and name), and we also introduced an
OWL class SegmentGroup to represent group of segments.
The possibility of grouping segments comes from the need to
gather logical sets of information, or to repeat these logics
of sets (simple or grouped). Thus, we can constitute groups
of hierarchically dependent segments with the possibility that
a segment group may contain other groups. We also reused
concepts (Component), object and data properties defined
previously to indicate the segments and/or groups of segments
to be included into the message or into the group of segments,
the sequence of the components, whether they are mandatory
or optional, and to indicate how many times a particular
segment or a group can or have to be repeated.

III. IMPLEMENTATION AND APPLICATION

Figure 6 shows the high-level architecture of our proto-
type. Two main steps have oriented our software development
process: the conversion of UN/EDIFACT Messages into RDF
triplets format and the development of tools to interrogate
and visualize the results. The results are represented as a
knowledge base (an RDF dataset) which can then be queried
using SPARQL queries.

A. Populating the Ontology
Ontology population is the task of creating individuals

(instances) in each class in the OntoEDIFACT ontology, adding
data properties between the instances and their literal values,
as well as establishing object properties between instances in
different classes. The objective of this step is to convert the
entire content, syntax and data structures of the EDIFACT
standard in order to produce RDF triplets format. To carry out
this step, we have developed parsers that apply the strategy
defined below and we have used the following frameworks:

• The Jena API [8], which is a free and open source Java
framework for building Semantic web applications.

• The Jena TDB triplestore [9], which provides several
methods for large scale storage and queries of RDF
datasets.

• The JSoup [10] parser, which provides a very conve-
nient Java library for extracting and manipulating data
from HTML documents.

All the specifications of the UN/EDIFACT standard are avail-
able on the official website [11] of the UNECE. From this
website our parsers have extracted the necessary information to
populate our ontology. Each year, the UN/EDIFACT standard
is reviewed and updated twice. In our prototype, we used
the last version (D.16B), which is the second update of the
year 2016. Each version of UN/EDIFACT is grouped in four
directories:

1) The directory of simple data element4: This directory
contains 646 HTML pages. Our program start by pop-
ulating the ontology with simple data elements. For
each HTML page specifying a simple data element,
an individual ’SE’ of class SimpleDataElement
is created. Afterward, the HTML content is parsed to
extract the identifier, the name and the description.
These values are associated to the individual ’SE’
through data properties (hasIdentifier, name
and hasDescription).
If the simple data element has a list of predefined
codes, an individual ’CL’ of class CodeList is also
created and linked to the individual ’SE’ through the
object property hasCodeList. For each code that
the simple element can take, an individual ’C’ of
class Code is created and linked to the individual
’CL’ through the object property containsCode.
Finally, the value and the interpretation of the cor-
responding code are extracted and associated to the
individual ’C’ through the data properties (value
and interpretation).
For simple data elements with free values, an indi-
vidual ’R’ of class Representation is created

4http://www.unece.org/fileadmin/DAM/trade/untdid/d16b/tred/tredi2.htm

94Copyright (c) IARIA, 2017. ISBN: 978-1-61208-558-6

DBKDA 2017 : The Ninth International Conference on Advances in Databases, Knowledge, and Data Applications

and linked to the individual ’SE’ through the object
property hasRepresentation. The type and the
maximum length are then extracted and associated to
the individual ’R’ through data properties (type and
length).

2) The directory of composite data element5: This di-
rectory contains 198 HTML pages. For each HTML
page specifying a composite data element, an in-
dividual ’CE’ of class CompositeDataElement
is created. Then, the HTML content is parsed to
extract the identifier, the name and the description.
These values are associated to the individual ’CE’
through data type properties (hasIdentifier,
name and hasDescription). For each compo-
nent of the composite elements, an individual ’C’
of class Component is also created and linked
to the individual ’CE’ through object type property
(isComposedOf. The repeatability, the position and
the status are extracted and associated to the in-
dividual ’C’ through data properties (hasStatus,
hasPosition and hasRepeatability). At
last, an object property (containsComponent) is
used to link the individual ’C’ to the simple data
element composing the individual ’CE’.

3) The directory of segments6: This directory contains
156 HTML pages. For each HTML page specifying
a segment, an individual ’S’ of class Segment is
created. Then, the HTML content is parsed to ex-
tract the identifier, the name and the function. These
values are associated to the individual ’S’ through
data type properties (hasIdentifier, name and
hasFunction). For each component of the seg-
ment, an individual ’C’ of class Component is
created and linked to the individual ’S’ through
object type property (isComposedOf). The re-
peatability, the position and the status are ex-
tracted and associated to the individual ’C’ through
data properties (hasStatus, hasPosition and
hasRepeatability). At last, an object property
(containsComponent) is used to link the indi-
vidual ’C’ to the simple or the composite element
composing the individual ’S’.

4) The directory of messages7: This directory contains
195 HTML pages. For each HTML page specifying
a message, an individual ’M’ of class Message
is created. Then, the HTML content is parsed to
extract the name and the identifier. These values are
associated to the individual ’M’ through data type
properties (hasIdentifier and name). For each
component of the message, an individual ’C’ of class
Component is created and linked to the individual
’M’ through the object property (isComposedOf.
The repeatability, the position and the status are
extracted and associated to the individual ’C’ through
data properties (hasStatus, hasPosition and
hasRepeatability). At last, an object property
(containsComponent) is used to link the indi-
vidual ’C’ to the segment or the group of segments

5http://www.unece.org/fileadmin/DAM/trade/untdid/d16b/trcd/trcdi2.htm
6http://www.unece.org/fileadmin/DAM/trade/untdid/d16b/trsd/trsdi2.htm
7http://www.unece.org/fileadmin/DAM/trade/untdid/d16b/trmd/trmdi2.htm

composing the individual ’M’. We notice that an
individual of class SegmentGroup is created for
each new group segment encountered, and handled
as a component of the message as the same way of
segments.

Figure 6. Architecture.

B. Querying and visualization of the data-set
Once the data set is populated automatically, we have

exposed it through three intuitive ways.
The first one is simple Java Web-based 8 application deployed
on a WildFly9 application server (a set of Servlets and JSP
pages). It provides a user-friendly interface that helps users to
view all the necessary information for designing and creating
EDIFACT components by selecting the suitable classes, objects
and properties.
The second one is through the Fuseki web user interface10. It
offers an easy-to-use querying interface that incorporates a lot
of functionality. A user can specify SPARQL SELECT queries
to directly manipulate the designated components and to view
or to download sets of results in several formats (JSON, XML,
CSV, etc.).
Finally, for external users applications using traditional frame-
work for querying and analyzing RDF data(Jena [8], Mulgara
11 and Sesame 12 for Java developers or CubicWeb 13 for
Python developers).

IV. RELATED WORK

Despite the exhaustive list of tools proposed by several
companies to create XML schema and to convert between EDI
standards or formats ([12][13][14]), very few works deal with
the issues of ontologization of EDI standard, as illustrated
by the research works in [15][16][17]. The authors of [16]
propose an ontology for specifying ANSI X12 format. Using
this ontology, they encoded the entire version of January
2005 (Data Elements, Composite Data Elements, Segments,
and most used Transaction). In order to build this ontology,
authors start by specifying the format of X12 components
as a classes (Transactions, Segment Groups, etc.), data and

8http://realgrain.litislab.fr/EDIFACT-PROJECT/ServletMainEDIFACT
9http://wildfly.org/
10http://realgrain.litislab.fr:3030/sparql.tpl
11http://mulgara.org/
12http://rdf4j.org/
13https://www.cubicweb.org/

95Copyright (c) IARIA, 2017. ISBN: 978-1-61208-558-6

DBKDA 2017 : The Ninth International Conference on Advances in Databases, Knowledge, and Data Applications

object properties. The process of creation of individuals for
each class from HTML files of the X12 specification, is
done semi-automatically. In [15], authors propose an ontology
codified in OWL to conceptualize the EDIFACT standard.
First, authors start by creating classes for each of EDIFACT
standard component. Then, they introduce data and object
properties to link objects belonging to classes with their values.
To populate the ontology, authors developed custom parsers
for the (D.97A) version. Comparing with the work of [15], our
approach has several advantages. Particularly, that our ontology
is generic and can be used to populate the knowledge base
with any version of the standard. Parsers for the last version
(D.16B) are developed and can be customized for any anterior
or future version. Also, in [15] all individual are grouped in
one OWL file and this fact can weigh down applications that
use this ontology. In our approach, users can choose (through
SPARQL requests) only EDIFACT messages that they need in
their applications.

V. CONCLUSION AND FUTURE WORKS

In this paper, we have presented an ontology OntoED-
IFACT (publicly available online [18]) which, has given a
semantic representation to the UN/EDIFACT standard. This
Ontology has been designed following best practices in ontol-
ogy engineering. Then, we briefly discuss the functionalities of
tools that automatically populate the ontology with instances
from the last version of the standard (D.16B). These tools
are able to parse HTML web pages containing specifica-
tions of UN/EDIFACT components to RDF triples. Finally,
a SPARQL endpoint has been implemented and some services
have been designed to consume these triples. Of course some
improvements can be made to our ontology. For instance,
an enrichment phase with external ontologies is underway
development. So far, we are aware of the following practical
applications that can make use of OntoEDIFACT:

• Indexing UN/EDIFACT documents [19][20] to search
efficiently for specific contents inside a large docu-
ment base.

• Interoperability between the several EDI standards
using techniques of ontologies alignment [21]. An
investigation work to interoperate the ANSI X12 on-
tology [16] with the OntoEDIFACT is ongoing.

• Generating XML schema for UN/EDIFACT messages
from the OWL representation of each message using
straightforward transformation techniques [22].

ACKNOWLEDGMENT

This research is supported by the �CLASSE2� project:
co-financed by the European Union with the European regional
development fund (ERDF) and Normandy Region.

REFERENCES

[1] N. C. Hill and D. M. Ferguson, “Electronic data interchange: A
definition and perspective,” 1989.

[2] S. Sawabini, “Introduction to edi,” Conference Proceedings EDI 2000:
EDI, EC, and You, pp. 1–36.

[3] F. Bergeron and L. Raymond, “The advantages of electronic data
interchange,” SIGMIS Database, vol. 23, no. 4, Oct. 1992, pp. 19–31.
[Online]. Available: http://doi.acm.org/10.1145/146553.146556

[4] Wikipedia. Edifact-wikipedia. [Online]. Available: https://en.wikipedia.
org/wiki/EDIFACT [retrieved: 03, 2017]

[5] A. Gangemi and V. Presutti, “Ontology design patterns,” in
Handbook on Ontologies, 2009, pp. 221–243. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-92673-3 10

[6] T. R. Gruber, “Toward principles for the design of ontologies
used for knowledge sharing,” Int. J. Hum.-Comput. Stud., vol. 43,
no. 5-6, Dec. 1995, pp. 907–928. [Online]. Available: http:
//dx.doi.org/10.1006/ijhc.1995.1081

[7] M. Horridge and P. Patel-Schneider. OWL 2 web ontology
language. manchester syntax (second edition). [Online]. Available:
http://www.w3.org/TR/owl2-manchester-syntax/ [retrieved: Dec., 2012]

[8] J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne,
and K. Wilkinson, “Jena: Implementing the semantic web
recommendations,” in Proceedings of the 13th International World
Wide Web Conference on Alternate Track Papers &Amp; Posters, ser.
WWW Alt. ’04. New York, NY, USA: ACM, 2004, pp. 74–83.
[Online]. Available: http://doi.acm.org/10.1145/1013367.1013381

[9] JenaTDB. Apache jena - tdb. [Online]. Available: https://jena.apache.
org/documentation/tdb/ [retrieved: 03, 2017]

[10] Jsoup. jsoup: a java html parser library. [Online]. Available:
https://jsoup.org/ [retrieved: 03, 2017]

[11] EDIFACT. Edifact directories. [Online].
Available: https://www.unece.org/tradewelcome/
un-centre-for-trade-facilitation-and-e-business-uncefact/outputs/
standards/unedifact/directories/2011-present.html [retrieved: 03, 2017]

[12] Altova. Xml global and altova reduce data integration costs with the
launch of the enterprise-ready xml integration workbench. [Online].
Available: https://www.altova.com/ [retrieved: 03, 2017]

[13] Smooks. The smooks framework. [Online]. Available: http://www.
smooks.org/ [retrieved: 03, 2017]

[14] S. Studio. The stylus studio edi to xml. [Online]. Available:
http://www.stylusstudio.com/edi/ [retrieved: 03, 2017]

[15] R. Engel, C. Pichler, M. Zapletal, W. Krathu, and H. Werthner,
“From encoded edifact messages to business concepts using semantic
annotations,” in Proceedings of the 2012 IEEE 14th International
Conference on Commerce and Enterprise Computing, ser. CEC ’12.
Washington, DC, USA: IEEE Computer Society, 2012, pp. 17–25.
[Online]. Available: http://dx.doi.org/10.1109/CEC.2012.13

[16] D. Foxvog and C. Bussler, “Ontologizing edi: First steps and initial
experience,” in Proceedings of the International Workshop on Data
Engineering Issues in E-Commerce, ser. DEEC ’05. Washington, DC,
USA: IEEE Computer Society, 2005, pp. 49–58. [Online]. Available:
http://dx.doi.org/10.1109/DEEC.2005.13

[17] D. B. Foxvog and Christoph, “Ontologizing edi semantics,” in
Proceedings of the 2006 International Conference on Advances in
Conceptual Modeling: Theory and Practice, ser. CoMoGIS’06. Berlin,
Heidelberg: Springer-Verlag, 2006, pp. 301–311. [Online]. Available:
http://dx.doi.org/10.1007/11908883 36

[18] T. E. Ontology. The edifact ontology. [Online]. Available: http:
//realgrain.litislab.fr/OntoEDIFACT.owl [retrieved: 03, 2017]

[19] E. Desmontils and C. Jacquin, “Indexing a web site with a terminology
oriented ontology,” in Proceedings of the First International Conference
on Semantic Web Working, ser. SWWS’01. Aachen, Germany,
Germany: CEUR-WS.org, 2001, pp. 549–565. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2956602.2956638

[20] F. Fürst and F. Trichet, “Integrating domain ontologies into knowledge-
based systems,” in Proceedings of the Eighteenth International
Florida Artificial Intelligence Research Society Conference, Clearwater
Beach, Florida, USA, 2005, pp. 826–827. [Online]. Available:
http://www.aaai.org/Library/FLAIRS/2005/flairs05-142.php

[21] S. Pavel and J. Euzenat, “Ontology matching: State of the art
and future challenges,” IEEE Trans. on Knowl. and Data Eng.,
vol. 25, no. 1, Jan. 2013, pp. 158–176. [Online]. Available:
http://dx.doi.org/10.1109/TKDE.2011.253

[22] I. Bedini, C. Matheus, P. F. Patel-Schneider, A. Boran, and B. Nguyen,
“Transforming XML schema to OWL using patterns,” in ICSC
2011 - 5th IEEE International Conference on Semantic Computing,
Palo Alto, United States, 2011, pp. 1–8. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-00624055

96Copyright (c) IARIA, 2017. ISBN: 978-1-61208-558-6

DBKDA 2017 : The Ninth International Conference on Advances in Databases, Knowledge, and Data Applications

