
Partial Order Multi Version Concurrency Control

Yuya Isoda, Atsushi Tomoda, Tsuyoshi Tanaka, Kazuhiko Mogi

Hitachi, Ltd. Research & Development Group

1-280, Higashi-koigakubo, Kokubunji-shi, Tokyo, Japan

email: { yuuya.isoda.sj, atsushi.tomoda.nx, tsuyoshi.tanaka.vz, kazuhiko.mogi.uv } @ hitachi.com

Abstract — This paper presents the Partial Order Multi

Version Concurrency Control (POMVCC), which is a

concurrency control technique based on partial ordering of

transactions. We claim that timestamp generation can be a

bottleneck in multicore, high-throughput systems and

POMVCC can execute multiple transactions using same

timestamp without losing the consistency level. In this paper,

we change the ordering of transaction processing from total

order to partial order and propose partial order transaction

processing on Multi Version Concurrency Control (MVCC),

which numbers a timestamp in partial order per N

transactions. This helps the system to reduce the overall

number of increments to the timestamp and therefore

improves the overall performance of the system. We claim that

POMVCC achieves as high as 1.74 times the throughput of the

conventional MVCC based system. We implemented a lock-

free version of POMVCC in MPDB, which is their under

development database system.

Keywords – Partial Order Transaction Proccessing; In-

memory DB; timestamp; Concurrency Control.

I. INTRODUCTION

In recent years, the number of CPU cores and the size of
memory have increased owing to the progress of hardware
technology. In the case of DataBase Management Systems
(DBMSs), scalability technology for multicore CPUs [7]
[12][15] and large-scale and non-volatile in-memory
technology [14][16] are advancing rapidly, and the
performance of DBMS is close to reaching one million
Transactions Per Second (tps) [3][12].

DBMS must guarantee ACID properties to maintain data
consistency [22]. However, strictly doing so prevents a
DBMS from improving performance because it needs to
process Transactions (Tx) as serial processing in strict total
order [13]. To increase performance, a DBMS generally uses
the isolation level, which mitigates ACID properties step by
step, performance in parallel processing is improved.

Recently, Multi Version Concurrency Control (MVCC)
has been used for controlling the isolation level. It manages
timestamps of both before and after updating a record and
enables records to be referenced and updated simultaneously.
As a result, it increases the performance of OnLine
Transaction Processing (OLTP) and OnLine Analytical
Processing (OLAP). Also, recent research has clarified how
SERIALIZABLE can be implemented. Therefore, DBMSs
with MVCC are thought to prevail in the near future [23][24].

There are two types of Timestamps (Ts) for MVCC, that is,
a physical clock and a logical clock. The physical clock is
the time used in the real world, such as Coordinated
Universal Time (UTC). The Network Time Protocol (NTP)
is prevailingly used as a protocol for synchronizing UTC
among servers. However, the logical clock is not related to
time in the real world, such as UTC and is a counter that
determines the order, in which events occur. The Lamport
method is known as a mechanism for sharing this counter
among servers [28].

The logical clock implementation in DBMSs is common
[5]. Spanner implemented a physical clock for DBMSs, but
such an example is rare [29]. In recent years, the
performance of DBMSs is close to reaching one million tps
owing to in-memory technology, multicore technology, and
improved transaction management methods [3][12]. In
addition, the size of memory and the number of CPU cores,
e.g., Hewlett Packard’s Memory-Driven Computing, will be
increasing more and more [32]. The bigger the system is, the
more difficult the conventional timestamp management
becomes. For example, in recent computers, it is mandatory
for timestamps to be numbered every 1 us. In such an
environment, large-scale mutual exclusion with a high CPU
clock frequency may be problematic.

Silo is proposed for this problem [3]. Silo is the timestamp
based on Epoch. It periodically updates the high-order bits of
the timestamp. Transaction threads update low-order bits
under the condition that they satisfy the order of dependence.
As a result, Silo can reduce the number of updates for the
timestamp. However, it cannot be easily adapted for the
conventional MVCC-based DBMS because it needs lock
processing and management of the Read-Set and Write-Set
for concurrency control.

In this paper, we propose Partial Order Multi Version
Concurrency Control (POMVCC). POMVCC is technology
based on the reduction of the conflict rate, which is caused
by a large-scale DB. It mitigates the problems with
simultaneous executable transactions. Specifically, it updates
the timestamp at an abort. Thus, multiple transactions can be
processed at the same timestamp, and the number of
timestamp updates can be reduced.

In summary, our contributions are the following.
1. We propose partial order transaction control based on

reconsidering the isolation level of MVCC. To update a
timestamp at an abort, POMVCC can process multiple
transactions at the same timestamp and reduce the
number of timestamp updates. In addition, POMVCC is
easily implementable for DBMS based on MVCC.

13Copyright (c) IARIA, 2018. ISBN: 978-1-61208-637-8

DBKDA 2018 : The Tenth International Conference on Advances in Databases, Knowledge, and Data Applications

2. We show the cause and the solution of a new anomaly
named “HISTORICAL READ” caused by POMVCC.

3. We also show a lock-free implementation of POMVCC.
4. Finally, we implement POMVCC on an in-memory

DBMS and evaluate the performance.

The rest of this paper is organized as follows. In Section 2,

we introduce research on concurrency control for DBMS. In
Section 3, we reconsider the requirement of concurrency
control for DBMS and show a problem with performance
and scalability. In Section 4, we propose POMVCC. We also
show the cause and the solution of a new anomaly named
“HISTORICAL READ” with POMVCC. In Section 5, we
describe a method for implementing POMVCC that is lock-
free. In Section 6, we evaluate the performance and consider
the results. Finally, in Section 7, we give concluding remarks
and our future work.

II. RELATED WORK

In this section, we show work related to concurrency
control for DBMSs. The most notable viewpoint of
concurrency control is the persistence of an execution result
and the concurrency control of transactions.

Algorithms for Recovery and Isolation Exploiting
Semantics (ARIES) is a general persistence processing [17].
ARIES is composed of analysis, REDO, and UNDO.
Analysis pinpoints the starting point of a recovery. REDO
re-executes a transaction on the basis of a REDO log. UNDO
deletes an uncommitted transaction on the basis of an UNDO
log. During logging, Write-Ahead Logging (WAL), which
can restore logs safely in the case of failure, is used. WAL
has a problem in that the speed of writing a log to a storage
device is slow. However, in recent years, speedup
technology that uses distributed logging with non-volatile
memory has been proposed for WAL [14].

Research on the concurrency control of transactions has
been made since the 1980s. There are two types of
concurrency control, that is, Pessimistic Concurrency
Control (PCC) and Optimistic Concurrency Control (OCC)
[4][6][1]. For PCC, concurrency control with a 2 Phase Lock
(2PL) is mainly used. DORA, PLP, and Shore-MT are
proposed as lock-based DBMSs [8][9][11][19]. However, in
recent years, DBMSs with MVCC, which enables OCC,
have been proposed because the processing cost of locks and
latches is high [13][25][26][27].

In past research, it was stated that an isolation level for
SERIALIZABLE cannot be realized [2]. However, the
proposal of SERIALIZABLE SNAPSHOT ISOLATION
enabled this [23] [24]. Using this technology, H-
Store/VoltDB [10][18], Hekaton [7][15], and SAP HANA
[16] were proposed as MVCC-based DBMS. H-Store creates
transaction sites whose number is the same as the number of
CPUs, and transaction threads that stick to the logical sites
execute SQL. Such a mechanism enables in-memory and
lock-free fast processing. To reduce the number of responses
between interfaces, Hekaton compiles stored procedures into
native codes. SAP HANA manages both the row store whose
update efficiency is high and column store whose reference

efficiency is high. A lot of MVCC-based DBMSs whose
characteristics are diverse are proposed like these examples.

In addition, a Silo in-memory DBMS that manages Epoch-
based timestamps as a concurrency control was proposed [3].
In Silo, updates of timestamps are removed from the
concurrency control of a transaction. Silo uses a special-
purpose thread for managing timestamps. As a result, it
achieves high performance. In addition, it creates temporary
areas per transaction for references (Read-Set) and updates
(Write-Set). Concurrency control with the Read-Set and
Write-Set can use cache and memory efficiently. Using these
technologies, Silo achieves 700,000 tps for the industry
standard benchmark TPC BenchmarkTM C (TPC-C) [20].
Moreover, Silo-based transaction control is adopted by
Intel’s Rack-Scale Architecture, which has become popular
these days, and in-memory DBMS Foedus [12], which
supposes Hewlett Packard’s Memory-Driven Computing
[32]. Silo-based concurrency control has become popular.

Research on MVCC-based DBMSs is now advancing.
Silo-like concurrency control enables further speedup.
However, it is difficult to adopt it for MVCC-based DBMSs
because many components, such as thread management,
transaction control, and data management must be modified.
There, we propose an easier method that is equivalent to
Silo’s concurrency control for MVCC-based DBMSs.

III. RECONSIDERING ANOMALIES AND CONCURRENCY

CONTROL ON MVCC

In this section, we outline concurrency control on MVCC,
and we reconsider the update conflict of timestamps, which
are a problem in Silo, and clarify the problem.

A DBMS must keep ACID properties, but to do so strictly,
transactions must be serialized, and this degrades
performance. To avoid this phenomenon, an isolation level,
in which ACID properties are mitigated gradually is used.
The isolation level is defined as the allowable range for an
anomaly, which occurs when transactions are executed in
parallel. This mitigation achieves high scalability enabled by
the highly parallel and high performance transactions of
DBMSs.

The isolation level is different between lock-based control
and MVCC-based control [2]. In this paper, we outline the
relationship of the isolation level for MVCC and anomalies,
and we clarify the order of transactions and the problem with
scalability.

In the following, we define Begin (B) as the start of a
transaction, Commit (C) as the commit of the transaction,
Abort (A) as the abort of the transaction, Read (R) as the
reference in the transaction, and Write (W) as the update in
the transaction. We also define TX1, TX2, etc., as identifiers
of the transaction, X, Y, etc., as a set of records, and i, j, etc.,
as integers. The time at which commit is completed is the
Committed Time (CT). The attribute of transaction type is
defined as Type. For Type, Read represents read only, and
Write includes write.

14Copyright (c) IARIA, 2018. ISBN: 978-1-61208-637-8

DBKDA 2018 : The Tenth International Conference on Advances in Databases, Knowledge, and Data Applications

A. Relationship between Isolation Level and Anomalies

WRITE SKEW (WS), FUZZY READ (FR), READ
SKEW (RS), and LOST UPDATE (LU) are general
anomalies [2]. Examples of anomalies are shown in Table 1.

For example, LOST UPDATE happens when Tx1 and Tx2
update record X simultaneously and both are successful. This
is a problem because the value of the record is either X' or X'',
and the update history of the record is not uniquely
determined. In the case of one-side failure (W1 W2 C2 A1),
LOST UPDATE may occur when Tx2 updates record X to
X' and then Tx1 aborts and the record X' is roll-backed to X.

The isolation level is defined as the allowable range for
anomalies. SERIALIZABLE SNAPSHOT ISOLATION has
the strictest requirement of consistency. The second strictest
is READ COMMITTED. READ UNCOMMITED is the
least strict. Table 2 shows the relationship between the
isolation level and anomalies. For example, in the case of
READ COMMITED, WRITE SKEW or FUZZY READ
may occur. READ UNCOMMITTED is hardly used because
user-unallowable anomalies occur.

TABLE I. ANOMALIES ON MVCC

Anomaly Formula

LOST UPDATE W2[X→X’] W1[X→X”]

READ SKEW W2[X→X’, Y→Y’] R1[X, Y’]

FUZZY READ R1[X] W2[X→X’] R1[X’]

WRITE SKEW R1[X] R2[Y] W1[Y→Y’] W2[X→X’]

TABLE II. ISOLATION LEVEL ON MVCC

Isolation Level Anomaly

SERIALIZABLE -

SNAPSHOT ISOLATION WS

READ COMMITTED WS, FR

READ UNCOMMITTED WS, FR, RS, LU

B. Concurrency Control

MVCC controls records and transactions by using
timestamps. MVCC manages the update history of records
by giving Timestamps at Commit (CTs) to the records.
Transactions refer to Timestamps at Begin (BTs) or when
SQL executes. They update timestamps at Commit. They
refer to the latest record whose timestamp is smaller than
BTs. The references of transactions maintain consistency
with this method. How BTs are treated is different among the
isolation level. SERIALIZABLE and SNAPSHOT
ISOLATION use a timestamp that is referred to at Begin.
READ COMMITTED uses a timestamp that is referred to at
SQL execution. Figure 1 shows the difference between
SNAPSHOT ISOLATION and READ COMMITTED. Tx2
and Tx3 are assumed to be SNAPSHOT ISOLATION and
READ COMMITTED, respectively. They execute the SQL
at the same time. However, Tx2.SQL2 sees record X, but
Tx3.SQL2 sees record X'. Such concurrency control protects
SNAPSHOT ISOLATION from FUZZY READ. Similarly,
READ SKEW is prevented.

Update conflicts at the Commit of transactions generally
use First Committer Win, which is optimistic concurrency
control. It executes transactions in the order, in which

Commits are executed. It keeps consistency by aborting
subsequent conflicting transactions.

The concurrency control explained above cannot prevent
WRITE SKEW from occurring. It happens when references
and updates of multiple transactions mutually conflict (RW-
Conflict). Serializable Snapshot Isolation (SSI) was proposed
to find such a condition and avoid WRITE SKEW [23][24].
SSI adds a read flag and write flag to the conventional
MVCC algorithm and detects RW-Conflict. SSI aborts at
least one of the RW-Conflict transactions and avoids WRITE
SKEW. Therefore, SERIALIZABLE is enabled. SSI can
realize SERIALIZABLE with the same performance of
SNAPSHOT ISOLATION [23][24].

We can prevent anomalies from occurring by using these
concurrency controls on MVCC.

Tx1.SQL1

Tx2

SQL1 SQL2

Tx3

SQL1 SQL2

Formula

Tx1.SQL1 B1 [BTs=10] W1 [X→X’] C1 [CTs=10, Ts=11]

Tx2.SQL1 B2 [BTs=10] R2 [X]

Tx2.SQL2 R2 [X] C2

Tx3.SQL1 B3 [BTs=10] R3 [X]

Tx3.SQL2 B3 [BTs=11] R3 [X’] C3Time

Figure 1. Difference between SNAPSHOT ISOLATION (Tx2) and

READ COMMITTED (Tx3)

C. Problem of Scalability

To keep ACID properties strictly, it is necessary for
transactions to be processed in strict total order. In this case,
scalability is low. To the contrary, MVCC enables high
scalability by parallel execution in total order. Table 3
defines D1 as strict total order, D2 as the total order, and D3
as the order of transactions for MVCC.

The CTs of MVCC must be different between the two
transactions shown in D3.I, or one of the transactions must
be the reference transaction shown in D3.II. That is, multiple
update transactions cannot be committed at the same time
due to D3.II. Thus, the transactions of MVCC are in strict
total order in the case of update transactions only, or it is in
total order when transactions include reference transactions.

As described above, MVCC allows D3.II, instead of D1
only, and scalability increases. However, D3.II is applicable
only for transactions including reference transactions. In the
case of update transactions only, scalability is low, because
the conditions of the order are the same as D1. Therefore,
mitigating the order of update transactions under D3.II is a
problem.

TABLE III. DEFINITION OF MVCC

D1. Definition of Strict Total Order

i < j < = = > i ≦ j AND i ≠ j

D2. Definition of Total Order

i ≦ j < = = > i < j OR i = j

D3. Definition of Committed Tx. Order for MVCC

CTs (Tx i) ⊴ CTs (Tx j) < = = > Ⅰ OR Ⅱ
Ⅰ CT (Tx i) < CT (Tx j)

Ⅱ CT (Tx i) = CT (Tx j) AND Type (Tx i) = Read

15Copyright (c) IARIA, 2018. ISBN: 978-1-61208-637-8

DBKDA 2018 : The Tenth International Conference on Advances in Databases, Knowledge, and Data Applications

IV. PROPOSAL OF POMVCC

In this section, we propose POMVCC, which mitigates the
order of update transactions and realizes high scalability. In
addition, a new anomaly caused by POMVCC is considered.

In the following, DB is defined as the content of a database,

and the execution order of transactions is shown as →.

A. Basic Idea

On the basis of the consistency of a database, transactions
can be controlled in partial order. For example, if the
concurrency control of DBMS exchanges the execution order
of one transaction with other transaction and the result is not
changed, these transactions can be executed in non-order,
and consistency is kept. Thus, we do not need to update
timestamps per update transaction, and we can share one
timestamp among multiple update transactions. Therefore,
we propose POMVCC as new concurrency control focused
on the partial order of transactions. POMVCC gives a same
timestamp to two update transactions if they have no
dependency. This method mitigates condition D3.II, so
scalability can increase.

The concept and definition of POMVCC are shown in
Figure 2 and Table 4. By controlling the partial order of
transaction processing, POMVCC eliminates the need to
update the timestamp every time Tx. process is ended.
POMVCC updates the timestamp when it detects Anomaly.
For example, in Figure 2, since LOST UPDATE occurred
between Tx1 and Tx3, POMVCC will update timestamp.
Even if the execution order of all Tx. processes within the
same timestamp is changed, POMVCC permits simultaneous
execution if the contents of the database same. Then we also
show the allowable conditions of transaction processing on
the same timestamp for MVCC (D3.II) and POMVCC
(D4.II) in Table 5, which shows POMVCC has more
conditions that can be executed simultaneously than MVCC.
Therefore, POMVCC can reduce the update frequency of
timestamps. This means that the scalability of POMVCC is
better than that of MVCC.

Tx3

W[X’→X”]

Tx1

W[X→X’]

Tx2

W[Y→Y’]

Tx4

W[Z→Z’]

MVCC

Ts1

Ts2

Ts3

Ts4

Ts5

Tx1

W[X→X’]

Tx2

W[Y→Y’]

Tx3

W[X’→X”]

Tx4

W[Z→Z’]

POMVCC

Figure 2. Difference between MVCC and POMVCC

TABLE IV. DEFINITION OF POMVCC

D4. Definition of Committed Tx. Order for POMVCC

CTs (Tx i) ≤ CTs (Tx j) < = = > Ⅰ OR Ⅱ
Ⅰ CT (Tx i) < CT (Tx j)

Ⅱ
CT (Tx i) = CT (Tx j) AND

DB(Tx i → Tx j) = DB(Tx j → Tx i)

TABLE V. ALLOWABLE RANGE OF TRANSACTIONS FOR D3.II AND D4.II
ON THE SAME TIMESTAMP

Formula D3.Ⅱ D4.Ⅱ
1 R1[X] R2[X] Success Success

2 R1[X] W2[X→X’] Success Success

3 W1[X→X’] R2[X] Success Success

4 W1[X→X’] W2[Y→Y’] Failure Success

5 W1[X→X’] W2[X→X’’] Failure Failure

B. How to Control POMVCC

The trigger to update a timestamp of POMVCC is different
from that of MVCC. MVCC updates a timestamp at the
Commit of a transaction, but POMVCC updates it at the
Abort of a transaction. Thus, multiple update transactions
can be executed at one timestamp.

A schematic diagram of POMVCC is shown in Figure 3.
Tx1 and Tx3 have the update conflict of record X. In the
case of MVCC, a timestamp is updated at the Commit of
Tx1, but in the case of POMVCC, a timestamp is not
updated. Therefore, Tx3 refers to old record X, and an
update conflict happens. POMVCC updates a timestamp at
the Abort of Tx3. Record X can be updated when Tx3 is re-
executed. Because a timestamp is updated at the Abort of a
transaction caused by an anomaly, partial order transaction
control can be realized.

Tx

Get

Commit

begin

update

commit X→X’

Get
begin

update

X→X”

Get
begin

・
・
・

Tx1

Tx2

Tx3

Retry

Ts Record

adopt

Conflict
commit

abort
Update

update

X’→X’’
Tx3

commit adopt
Commit

time

abort

Figure 3. Concurrency Control of POMVCC

C. New Anomaly: HISTORICAL READ

The partial order transactions of POMVCC enable highly
scalable concurrency control. However, the execution order
of transactions is limited by the APplication (AP) or user.
For example, consider that the succeeding transaction refers
to the result of the preceding transaction. In this case, a
HISTORICAL READ (HR), in which the succeeding
transaction cannot refer to the result of the preceding
transaction, occurs. It is necessary for POMVCC to provide
the result of the preceding transaction to the succeeding
transaction when AP requires the result of the preceding
transaction.

16Copyright (c) IARIA, 2018. ISBN: 978-1-61208-637-8

DBKDA 2018 : The Tenth International Conference on Advances in Databases, Knowledge, and Data Applications

Table 6 shows the definition of HISTORICAL READ.
Tx2 cannot refer to record X', which Tx1 updates after the
Commit of Tx1. This is the anomaly. If Tx1 and Tx2 are
independent transactions, this does not happen. However,

when AP assumes that the execution order is Tx1→Tx2,

such an unexpected response occurs.

TABLE VI. DEFINITION OF HISTORICAL READ

Anomaly Formula

Historical Read W1[X→X’] C1 B2 R2[X]

D. How to Avoid HISTORICAL READ

HISTORICAL READ is avoidable if the BTs of a
succeeding transaction is bigger than the CTs of the
preceding transaction. That is, when the same user (DB
connection) or the same AP executes transactions, the value
that is bigger than the CTs of the preceding transaction is
given to the BTs of the succeeding transaction. Therefore,
HISTORICAL READ can be avoided.

The avoidance method for the same user (User Approach)
may include false positives. In the worst case, timestamps
are updated at every Commit. For example, the independent
transactions that the same user issues do not need timestamp
updates. However, in the User Approach, timestamps are
always updated at the Begin of the transactions. As a result,
performance degradation is a concern due to there being a lot
of false positive cases.

In the avoidance method for the same AP (AP Base
Method), minimum timestamps which would preferably be
referred to, are set when the AP issues transactions. This
method can avoid HISTORICAL READ efficiently because
false positives are excluded. However, the DB interface,
such as Commit and Begin, must be modified, and this is a
downside of this method.

Figure 4 shows the solution of the AP Base Method.
POMVCC returns CTs at the Commit of Tx1, and BTs
(=CTs) is set at the Begin of Tx2. As a result, Tx1.CTs <
Tx2.BTs is established, and Tx2 can refer to the execution
result of Tx1.

Tx

Get
begin

update

commit X→X’

・
・
・

Tx1

Tx2

Ts Record

adapt

update

X’→X’’

t ime

CTs
Commit

begin

BTs = CTs Check

(Update)

commit adapt

CTs
Commit

Figure 4. Solution for HISTORICAL READ

V. IMPLEMENTATION OF POMVCC

The lock used in parallel processing may degrade
scalability [15]. In this section, to avoid this degradation, we
introduce a lock-free implementation for scalable POMVCC.

However, in POMVCC, the implementation related to
general DMBS is not different from the MVCC
implementation of other pieces of literature [3][7][10][12]
[15][18][24]. Therefore, in the following, we focus on the
extension of MVCC, that is, the concurrency control of
transactions and timestamps.

In POMVCC, timestamps are divided into reference
timestamps (RTs) and commit timestamps (WTs). Figure 5
shows the data structure of POMVCC. It has RTs, WTs,
monotonically increasing timestamps, and the number of
transactions at commit per timestamp. RTs are the
timestamps that are used for referring to a record. WTs are
the timestamps for a Commit. In addition, the state of
Commit processing is divided into PreCommit and Commit.
The PreCommit state includes the success of solving a
conflict and the transfer to the Commit state. The Commit
state includes giving CTs to all updated records and the
completion of issuing a log. That is, if the timestamp of a
PreCommit Counter and the Commit Counter is the same,
the record can be referred to by using this timestamp while
keeping consistency.

Figure 6 describes the control of POMVCC. In POMVCC,
after the state is transferred to the PreCommit, CTs (= WTs)
is obtained, and the PreCommit Counter of the CTs is
incremented. After the state is transferred to the Commit, the
Commit Counter of the CTs is incremented, and the
transaction is completed. In case of Abort, WTs is
incremented. If the timestamp (ATs) that causes the abort is
known, RTs is incremented to ATs+1. At the re-execution of
the transaction, this prevents the next abort, which has the
same abort reason as the previous abort. RTs can be
incremented if the PreCommit Counter and Commit Counter
are the same and RTs < WTs. Finally, at Begin, RTs tries to
be updated. If BTs is specified as the Begin interface, RTs is
incremented till BTs < RTs is satisfied.

These controls enable POMVCC. They can be
implemented without a lock by using atomic instructions,
such as Compare-And-Swap (CAS).

RTs WTs

10 12

Ts PreCommit Counter Commit Counter

9 14 14

10 3 3

11 6 2

12 1 0

13 0 0

Figure 5. Data Structure of POMVCC

17Copyright (c) IARIA, 2018. ISBN: 978-1-61208-637-8

DBKDA 2018 : The Tenth International Conference on Advances in Databases, Knowledge, and Data Applications

Tx.Begin (TmpTs = CTs or ATs) {

WTs = Get.WTs () ;

while (WTs ≦ TmpTs) {

WTs = Increment.WTs () ;

}

do {

BTs = Check.RTs () ;

} while (BTs ≦ TmpTs) ;

return () ;

}

Tx.Commit () {

// PreCommit Process

if (Tx.Judgement = Success) {

CTs = GetWTs () ;

Increment.PreCommitCnt (CTs) ;

・・・Commit Completion・・・
Increment.CommitCnt (CTs) ;

} else if (Tx.Judgement = Failure) {

Tx.Abort () ;

｝
return (CTs or ATs) ;

}

Tx.Abort () {

// Abort Process

IncrementWTs () ;

return () ;

}

Check.RTs () {

RTs = Get.RTs () ;

WTs = Get.WTs () ;

if (Diff.Commit.Counter (RTs) = 0 and RTs < WTs)

RTs = Increment.RTs () ;

return (RTs) ;

}

Figure 6. Schematic Timestamp Control

VI. EVALUATION OF PROTOTYPE IMPLEMENTATION

In this section, we compare the performance of MVCC and
POMVCC. We implemented MVCC and POMVCC on an
in-memory DBMS named “MPDB”, which we are
developing, and evaluated their performance. MPDB is an
MVCC-based, lock-free, in-memory DBMS that is
characterized by parallel logs and PCC/OCC mixed control
[30] [31].

In this experiment, we use the industry standard
benchmark TPC-C and repeatedly execute stored procedure
calls that model NewOrder [20].

A. Experimental Environment

Figure 7 depicts the system configuration. Four blade
servers were used. They were Symmetric MultiProcessors
(SMP) and had 8 CPUs (80 cores), 1 TB of memory, and 8
ports of an 8-Gb Fiber Channel (FC). Servers and storage
were connected via an FC switch and communicate with FC
communication.

In the OS (CentOS 6.5) settings, FC ports were assigned to
each CPU to distribute the interrupt overhead of FC
communication. Hyper-threading was disabled.

In the MPDB settings, one thread was assigned to one core.
This means that MPDB uses a maximum of 80 threads. One
log file is assigned to one CPU to load balance logs. The
isolation level was SNAPSHOT ISOLATION.

The DB was created on the basis of TPC-C. The number of
warehouses was 16 and the size of database was 0.72 GB.
The item table, stock table, and order_line table were used in
TPC-C. In addition, indexes were created for the i_id of the
item table, s_w_id and s_i_id of the stock table, and ol_o_id
and ol_w_id of the order_line table.

Server

BLADE (BS2000)
x8

S
to

ra
g
e

x 4 F
C

S

W
IT

C
H

Blade BS2000

CPU Xeon(R) E7 8870 x 2

Memory 256GB (16GB x 16)

PCIe 2 Port HBA (8Gb)

Storage
Hitachi Unified

Storage VM (HUS-VM)

Cache 54GB

Disk
6.4TB (1.6TB x 4)

Hitachi Accelerated Flash

RAID RAID5(3D + 1P)

System Configuration

Figure 7. System Configuration

B. Workload

The workload shown in Figure 8 was created on the basis
of TPC-C’s New Order. The workload simulates the
repeatedly executing part of the New Order. The processing
in Figure 8 was repeated 10 times per transaction on average.

1 SELECT i_price, i_name, i_data

INTO :i_price, :i_name, :i_data

FROM item

WHERE i_id = :ol_i_id

2 SELECT s_quantity, s_data, s_dist_...

INTO :s_quantity, :s_data, :s_dist_...

FROM stock

WHERE
s_i_id = :ol_i_id AND

s_w_id = :ol_supply_w_id

3 UPDATE stock

SET s_quantity = :s_quantity

WHERE
s_i_id = :ol_i_id AND

s_w_id = :ol_supply_w_id

4 INSERT

INTO order_line (,,,,,)

VALUES (,,,,,,)

While (Repeats 5 ~ 15 times, Ave. 10)

Figure 8. Experiment Workload

18Copyright (c) IARIA, 2018. ISBN: 978-1-61208-637-8

DBKDA 2018 : The Tenth International Conference on Advances in Databases, Knowledge, and Data Applications

C. Experimental Results and Consideration

The experiments were done to compare the performance of
MVCC and POMVCC corresponding to the number of
threads. In Figure 9, the x-axis means the number of threads,
and the y-axis means the transactional performance (tps).
The performance of both MVCC and POMVCC increased as
the number of threads increased. POMVCC ran 1.36-1.60
times faster than MVCC.

To investigate scalability more precisely, we made an
experiment, in which the number of warehouses changed
corresponding to the number of threads. That is, the number
of warehouses was 10 (DB size was 0.45 GB) when the
number of threads is 10. The number of warehouses was 80
(DB size was 3.61 GB) when the number of threads was 80.
Figures 10 and 11 are the experimental results. From Figure
10, the performance of POMVCC was 1.63 - 1.74 times
better than that of MVCC. From Figure 11, the scalability
coefficient of MVCC was 87.98 - 97.96 [%], and that of
POMVCC was 94.02 –98.32 [%]. This experiment says that
the scalability coefficient of POMVCC is greater than that of
MVCC.

From these experiments, the scalability coefficients of
POMVCC and MVCC depended on the size of the DB and
the number of threads. If the size of the DB was large and the
conflict rate of the transaction was low, the scalability
coefficient of POMVCC was high, and in all experiments,
POMVCC ran faster than MVCC.

[tps]

[Threads]
0

50000

100000

150000

200000

250000

300000

10 20 40 60 80

POMVCC

MVCC

Figure 9. Performance Evaluation

0

50000

100000

150000

200000

250000

300000

350000

10 20 40 60 80

POMVCC

MVCC

[tps]

[Threads]
Figure 10. Performance when Number of Warehouses Changes

0

20

40

60

80

100

120

10 20 40 60 80

POMVCC MVCC

[Threads]

[%]

Figure 11. Scalability Coefficient when Number of Warehouses Changes

VII. CONCLUSION

In this paper, we proposed and evaluated POMVCC,
which keeps the consistency of MVCC and improves
performance and scalability. POMVCC is technology that
focuses on the partial order of transactions. The conventional
method gives a timestamp to a transaction, but POMVCC
gives a timestamp to multiple transactions. POMVCC
reduces the number of timestamps that are updated and
improves performance and scalability. We show the
difference of Isolation Level between MVCC and POMVCC
in Figure 12.

We implemented and evaluated POMVCC on an in-
memory DBMS named “MPDB” that we are developing.
From experiments, the performance of POMVCC was 1.30 -
1.74 times better than that of MVCC. The scalability of the
POMVCC was higher than that of the MVCC. Every
experiment showed that the performance of POMVCC was
1.30 - 1.74 times higher than that of the MVCC.

We implemented the POMVCC on the MPDB and
evaluated it by using SNAPSHOT ISOLATION, for which
POMVCC had higher performance than MVCC. However,
with SERIALIZABLE, the performance trend was unclear
because the probability of WRITE SKEW increased. This
occurs when reference and update transactions are executed
at the same timestamp. POMVCC increases the number of
transactions at the same timestamp. As a result, the number
of WRITE SKEWs increases. In addition, it is possible that
RW-CONFLICT GRAPH will grow and a large cyclic graph
will be created. Therefore, our future work is to implement
and evaluate POMVCC by using SERIALIZABLE.

SERIALIZABLE

MVCC

Snapshot Isolation

Read Committed

Read Uncommitted

RS, LU

FR

WS

Snapshot Isolation

Read Committed

FR
HR

HR

WS,

HR

POMVCC

RS,

LU

Figure 12. A Diagram of the Isolation Levels and Relationships

19Copyright (c) IARIA, 2018. ISBN: 978-1-61208-637-8

DBKDA 2018 : The Tenth International Conference on Advances in Databases, Knowledge, and Data Applications

REFERENCES

[1] D. A. Menascé, and T. Nakanishi, “Optimistic versus
pessimistic concurrency control mechanisms in database
management systems,” Information Systems Volume 7, Issue
1, pp. 13-27, 1982.

[2] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O'Neil and,
P. O'Neil, “A Critique of ANSI SQL Isolation Levels,” ACM
SIGMOD '95 Proceedings, pp. 1-10, San Jose, CA, 1995.

[3] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden,
“Speedy Transactions in Multicore In-Memory Databases,”
SOSP '13 Proceedings, pp. 18-32, Farmington, Pennsylvania,
USA, 2013.

[4] H. T. Kung, and J. T. Robinson, “On optimistic methods for
concurrency control,” ACM Transactions on Database
Systems, Volume 6 Issue 2, pp. 213-226, 1981.

[5] P. Larson, S. Blanas, C. Diaconu, C. Freedman, J. M. Patel,
and M. Zwilling, “High-performance concurrency control
mechanisms for main-memory databases,” Proceedings of the
VLDB Endowment Volume 5 Issue 4, pp. 298-309, 2011.

[6] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger, “The
notions of consistency and predicate locks in a database
system,” Communications of the ACM, Volume 19 Issue 11,
pp. 624-633, 1976.

[7] C. Diaconu, C. Freedman, E. Ismert, P. Larson, P. Mittal, R.
Stonecipher, N. Verma, and M. Zwilling, “Hekaton: SQL
server's memory-optimized OLTP engine,” SIGMOD '13
Proceedings, pp. 1243-1254, 2013.

[8] I. Pandis, R. Johnson, N. Hardavellas, and A. Ailamak, “Data-
oriented transaction execution,” Proceedings of the VLDB
Endowment, Volume 3 Issue 1-2, pp. 928-939, 2010.

[9] I. Pandis, P. Tozun, R. Johnson, and A. Ailamaki, “PLP: page
latch-free shared-everything OLTP,” Proceedings of the
VLDB Endowment, Volume 4 Issue 10, pp. 610-621, 2011.

[10] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N.
Hachem, and P. Helland, “The end of an architectural era: (it's
time for a complete rewrite),” VLDB '07 Proceedings, pp.
1150-1160, 2007.

[11] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki, and B.
Falsafi, “Shore-MT: a scalable storage manager for the
multicore era,” EDBT '09 Proceedings, pp. 24-35, 2009.

[12] H. Kimura, “FOEDUS: OLTP Engine for a Thousand Cores
and NVRAM,” SIGMOD '15 Proceedings, pp. 691-706, 2015.

[13] S. Harizopoulos, D. J. Abadi, S. Madden, and M. Stonebraker,
“OLTP through the looking glass, and what we found there,”
SIGMOD '08 Proceedings, pp. 981-992, 2008.

[14] T. Wang, and R. Johnson, “Scalable logging through
emerging non-volatile memory,” Proceedings of the VLDB
Endowment, Volume 7 Issue 10, pp. 865-876, 2014.

[15] P. Larson, S. Blanas, C. Diaconu, C. Freedman, J. M. Patel,
and M. Zwilling, “High-performance concurrency control
mechanisms for main-memory databases,” Proceedings of the
VLDB Endowment, Volume 5 Issue 4, pp. 298-309, 2011.

[16] V. Sikka, F. Färber, W. Lehner, S. K. Cha, T. Peh, and C.
Bornhövd, “Efficient transaction processing in SAP HANA
database: the end of a column store myth,” SIGMOD '12
Proceedings, pp. 731-742, 2012.

[17] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P.
Schwarz, “ARIES: a transaction recovery method supporting
fine-granularity locking and partial rollbacks using write-
ahead logging,” ACM Transactions on Database Systems,
Volume 17 Issue 1, pp. 94-162, 1992.

[18] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S.
Zdonik, and et al., “H-store: a high-performance, distributed
main memory transaction processing system,” Proceedings of
the VLDB Endowment, Volume 1 Issue 2, pp. 1496-1499,
2008.

[19] P. A. Bernstein, V. Hadzilacos, and N. Goodman,
“Concurrency Control and Recovery in Database System,”
1987.

[20] The Transaction Processing Council, “TPC-C Benchmark
(Version 5.11.0),” http://www.tpc.org/tpcc/, March 2018.

[21] G. Weikum, and G. Vossen, “Transactional Information
Systems: Theory, Algorithms, and the Practice of
Concurrency Control and Recovery,” Elsevier, 2001.

[22] J. Gray, and A. Reuter, “Transaction Processing: Concepts
and Techniques,” Elsevier, 1992.

[23] M. J. Cahill, U. Röhm, and A. D. Fekete, “Serializable
isolation for snapshot databases,” ACM Transactions on
Database Systems, Volume 34 Issue 4, Article No.20, 2009.

[24] A. Fekete, D. Liarokapis, P. O'Neil, and D. Shasha, “Making
snapshot isolation serializable,” ACM Transactions on
Database Systems, Volume 30 Issue 2, pp. 492-528, 2005.

[25] ORACLE, “Oracle Database 12c Release 2,” https://docs.
oracle.com/en/database/oracle/oracle-database/12.2/index.
html, March 2018.

[26] MySQL, “MySQL 5.7 Reference Manual,” https://dev.mysql.
com/doc/refman/5.7/en/, March 2018.

[27] PostgreSQL, “PostgreSQL 9.6.8 Documentation,” https://
www.postgresql.org/docs/9.6/static/index.html, March 2018.

[28] L. Lamport, D. Malkhi, and L. Zhou, “Reconfiguring a state
machine,” ACM SIGACT News, Volume 41 Issue 1, pp. 63-
73, 2010.

[29] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J.
Furman, and et al., “Spanner: Google’s Globally Distributed
Database,” ACM Transactions on Computer Systems,
Volume 31 Issue 3, Article No.8, 2013.

[30] Y. Isoda, A. Tomoda, K. Ushijima, T. Tanaka, T. Uemura, T.
Hanai, and et al., “In-Memory Database Engine for Scale-up
System,” Forum on Information Technology '15, D-035, 2015
(in Japanese).

[31] Y. Isoda, K. Ushijima, T. Tanaka, T. Hanai, and K. Mogi,
“Proposal of Multi Version Concurrency Control for Partial
Order Transaction,” Forum on Information Technology '16,
D-015, 2016 (in Japanese).

[32] Hewlett Packard, “Memory-Driven Computing,” https://news.
hpe.com/content-hub/memory-driven-computing/, March
2018.

20Copyright (c) IARIA, 2018. ISBN: 978-1-61208-637-8

DBKDA 2018 : The Tenth International Conference on Advances in Databases, Knowledge, and Data Applications

