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Abstract — This paper presents the Partial Order Multi 

Version Concurrency Control (POMVCC), which is a 

concurrency control technique based on partial ordering of 

transactions. We claim that timestamp generation can be a 

bottleneck in multicore, high-throughput systems and 

POMVCC can execute multiple transactions using same 

timestamp without losing the consistency level. In this paper, 

we change the ordering of transaction processing from total 

order to partial order and propose partial order transaction 

processing on Multi Version Concurrency Control (MVCC), 

which numbers a timestamp in partial order per N 

transactions. This helps the system to reduce the overall 

number of increments to the timestamp and therefore 

improves the overall performance of the system. We claim that 

POMVCC achieves as high as 1.74 times the throughput of the 

conventional MVCC based system. We implemented a lock-

free version of POMVCC in MPDB, which is their under 

development database system. 

Keywords – Partial Order Transaction Proccessing; In-

memory DB; timestamp; Concurrency Control. 

I.  INTRODUCTION 

In recent years, the number of CPU cores and the size of 
memory have increased owing to the progress of hardware 
technology. In the case of DataBase Management Systems 
(DBMSs), scalability technology for multicore CPUs [7] 
[12][15] and large-scale and non-volatile in-memory 
technology [14][16] are advancing rapidly, and the 
performance of DBMS is close to reaching one million 
Transactions Per Second (tps) [3][12]. 

DBMS must guarantee ACID properties to maintain data 
consistency [22]. However, strictly doing so prevents a 
DBMS from improving performance because it needs to 
process Transactions (Tx) as serial processing in strict total 
order [13]. To increase performance, a DBMS generally uses 
the isolation level, which mitigates ACID properties step by 
step, performance in parallel processing is improved. 

Recently, Multi Version Concurrency Control (MVCC) 
has been used for controlling the isolation level. It manages 
timestamps of both before and after updating a record and 
enables records to be referenced and updated simultaneously. 
As a result, it increases the performance of OnLine 
Transaction Processing (OLTP) and OnLine Analytical 
Processing (OLAP). Also, recent research has clarified how 
SERIALIZABLE can be implemented. Therefore, DBMSs 
with MVCC are thought to prevail in the near future [23][24]. 

 
 
 

There are two types of Timestamps (Ts) for MVCC, that is, 
a physical clock and a logical clock. The physical clock is 
the time used in the real world, such as Coordinated 
Universal Time (UTC). The Network Time Protocol (NTP) 
is prevailingly used as a protocol for synchronizing UTC 
among servers. However, the logical clock is not related to 
time in the real world, such as UTC and is a counter that 
determines the order, in which events occur. The Lamport 
method is known as a mechanism for sharing this counter 
among servers [28]. 

The logical clock implementation in DBMSs is common 
[5]. Spanner implemented a physical clock for DBMSs, but 
such an example is rare [29]. In recent years, the 
performance of DBMSs is close to reaching one million tps 
owing to in-memory technology, multicore technology, and 
improved transaction management methods [3][12]. In 
addition, the size of memory and the number of CPU cores, 
e.g., Hewlett Packard’s Memory-Driven Computing, will be 
increasing more and more [32]. The bigger the system is, the 
more difficult the conventional timestamp management 
becomes. For example, in recent computers, it is mandatory 
for timestamps to be numbered every 1 us. In such an 
environment, large-scale mutual exclusion with a high CPU 
clock frequency may be problematic. 

Silo is proposed for this problem [3]. Silo is the timestamp 
based on Epoch. It periodically updates the high-order bits of 
the timestamp. Transaction threads update low-order bits 
under the condition that they satisfy the order of dependence. 
As a result, Silo can reduce the number of updates for the 
timestamp. However, it cannot be easily adapted for the 
conventional MVCC-based DBMS because it needs lock 
processing and management of the Read-Set and Write-Set 
for concurrency control. 

In this paper, we propose Partial Order Multi Version 
Concurrency Control (POMVCC). POMVCC is technology 
based on the reduction of the conflict rate, which is caused 
by a large-scale DB. It mitigates the problems with 
simultaneous executable transactions. Specifically, it updates 
the timestamp at an abort. Thus, multiple transactions can be 
processed at the same timestamp, and the number of 
timestamp updates can be reduced. 

In summary, our contributions are the following. 
1. We propose partial order transaction control based on 

reconsidering the isolation level of MVCC. To update a 
timestamp at an abort, POMVCC can process multiple 
transactions at the same timestamp and reduce the 
number of timestamp updates. In addition, POMVCC is 
easily implementable for DBMS based on MVCC. 
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2. We show the cause and the solution of a new anomaly 
named “HISTORICAL READ” caused by POMVCC. 

3. We also show a lock-free implementation of POMVCC. 
4. Finally, we implement POMVCC on an in-memory 

DBMS and evaluate the performance. 
 
The rest of this paper is organized as follows. In Section 2, 

we introduce research on concurrency control for DBMS. In 
Section 3, we reconsider the requirement of concurrency 
control for DBMS and show a problem with performance 
and scalability. In Section 4, we propose POMVCC. We also 
show the cause and the solution of a new anomaly named 
“HISTORICAL READ” with POMVCC. In Section 5, we 
describe a method for implementing POMVCC that is lock-
free. In Section 6, we evaluate the performance and consider 
the results. Finally, in Section 7, we give concluding remarks 
and our future work. 

II. RELATED WORK 

In this section, we show work related to concurrency 
control for DBMSs. The most notable viewpoint of 
concurrency control is the persistence of an execution result 
and the concurrency control of transactions. 

Algorithms for Recovery and Isolation Exploiting 
Semantics (ARIES) is a general persistence processing [17]. 
ARIES is composed of analysis, REDO, and UNDO. 
Analysis pinpoints the starting point of a recovery. REDO 
re-executes a transaction on the basis of a REDO log. UNDO 
deletes an uncommitted transaction on the basis of an UNDO 
log. During logging, Write-Ahead Logging (WAL), which 
can restore logs safely in the case of failure, is used. WAL 
has a problem in that the speed of writing a log to a storage 
device is slow. However, in recent years, speedup 
technology that uses distributed logging with non-volatile 
memory has been proposed for WAL [14]. 

Research on the concurrency control of transactions has 
been made since the 1980s. There are two types of 
concurrency control, that is, Pessimistic Concurrency 
Control (PCC) and Optimistic Concurrency Control (OCC) 
[4][6][1]. For PCC, concurrency control with a 2 Phase Lock 
(2PL) is mainly used. DORA, PLP, and Shore-MT are 
proposed as lock-based DBMSs [8][9][11][19]. However, in 
recent years, DBMSs with MVCC, which enables OCC, 
have been proposed because the processing cost of locks and 
latches is high [13][25][26][27]. 

In past research, it was stated that an isolation level for 
SERIALIZABLE cannot be realized [2]. However, the 
proposal of SERIALIZABLE SNAPSHOT ISOLATION 
enabled this [23] [24]. Using this technology, H-
Store/VoltDB [10][18], Hekaton [7][15], and SAP HANA 
[16] were proposed as MVCC-based DBMS. H-Store creates 
transaction sites whose number is the same as the number of 
CPUs, and transaction threads that stick to the logical sites 
execute SQL. Such a mechanism enables in-memory and 
lock-free fast processing. To reduce the number of responses 
between interfaces, Hekaton compiles stored procedures into 
native codes. SAP HANA manages both the row store whose 
update efficiency is high and column store whose reference 

efficiency is high. A lot of MVCC-based DBMSs whose 
characteristics are diverse are proposed like these examples. 

In addition, a Silo in-memory DBMS that manages Epoch-
based timestamps as a concurrency control was proposed [3]. 
In Silo, updates of timestamps are removed from the 
concurrency control of a transaction. Silo uses a special-
purpose thread for managing timestamps. As a result, it 
achieves high performance. In addition, it creates temporary 
areas per transaction for references (Read-Set) and updates 
(Write-Set). Concurrency control with the Read-Set and 
Write-Set can use cache and memory efficiently. Using these 
technologies, Silo achieves 700,000 tps for the industry 
standard benchmark TPC BenchmarkTM C (TPC-C) [20]. 
Moreover, Silo-based transaction control is adopted by 
Intel’s Rack-Scale Architecture, which has become popular 
these days, and in-memory DBMS Foedus [12], which 
supposes Hewlett Packard’s Memory-Driven Computing 
[32]. Silo-based concurrency control has become popular. 

Research on MVCC-based DBMSs is now advancing. 
Silo-like concurrency control enables further speedup. 
However, it is difficult to adopt it for MVCC-based DBMSs 
because many components, such as thread management, 
transaction control, and data management must be modified. 
There, we propose an easier method that is equivalent to 
Silo’s concurrency control for MVCC-based DBMSs. 

III. RECONSIDERING ANOMALIES AND CONCURRENCY 

CONTROL ON MVCC 

In this section, we outline concurrency control on MVCC, 
and we reconsider the update conflict of timestamps, which 
are a problem in Silo, and clarify the problem. 

A DBMS must keep ACID properties, but to do so strictly, 
transactions must be serialized, and this degrades 
performance. To avoid this phenomenon, an isolation level, 
in which ACID properties are mitigated gradually is used. 
The isolation level is defined as the allowable range for an 
anomaly, which occurs when transactions are executed in 
parallel. This mitigation achieves high scalability enabled by 
the highly parallel and high performance transactions of 
DBMSs. 

The isolation level is different between lock-based control 
and MVCC-based control [2]. In this paper, we outline the 
relationship of the isolation level for MVCC and anomalies, 
and we clarify the order of transactions and the problem with 
scalability. 

In the following, we define Begin (B) as the start of a 
transaction, Commit (C) as the commit of the transaction, 
Abort (A) as the abort of the transaction, Read (R) as the 
reference in the transaction, and Write (W) as the update in 
the transaction. We also define TX1, TX2, etc., as identifiers 
of the transaction, X, Y, etc., as a set of records, and i, j, etc., 
as integers. The time at which commit is completed is the 
Committed Time (CT). The attribute of transaction type is 
defined as Type. For Type, Read represents read only, and 
Write includes write. 
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A. Relationship between Isolation Level and Anomalies 

WRITE SKEW (WS), FUZZY READ (FR), READ 
SKEW (RS), and LOST UPDATE (LU) are general 
anomalies [2]. Examples of anomalies are shown in Table 1. 

For example, LOST UPDATE happens when Tx1 and Tx2 
update record X simultaneously and both are successful. This 
is a problem because the value of the record is either X' or X'', 
and the update history of the record is not uniquely 
determined. In the case of one-side failure (W1 W2 C2 A1), 
LOST UPDATE may occur when Tx2 updates record X to 
X' and then Tx1 aborts and the record X' is roll-backed to X. 

The isolation level is defined as the allowable range for 
anomalies. SERIALIZABLE SNAPSHOT ISOLATION has 
the strictest requirement of consistency. The second strictest 
is READ COMMITTED. READ UNCOMMITED is the 
least strict. Table 2 shows the relationship between the 
isolation level and anomalies. For example, in the case of 
READ COMMITED, WRITE SKEW or FUZZY READ 
may occur. READ UNCOMMITTED is hardly used because 
user-unallowable anomalies occur. 

TABLE I.  ANOMALIES ON MVCC 

Anomaly Formula

LOST UPDATE W2[X→X’] W1[X→X”]

READ SKEW W2[X→X’, Y→Y’] R1[X, Y’]

FUZZY READ R1[X] W2[X→X’] R1[X’]

WRITE SKEW R1[X] R2[Y] W1[Y→Y’] W2[X→X’]
 

TABLE II.  ISOLATION LEVEL ON MVCC 

Isolation Level Anomaly

SERIALIZABLE -

SNAPSHOT ISOLATION WS

READ COMMITTED WS, FR

READ UNCOMMITTED WS, FR, RS, LU
 

B. Concurrency Control 

MVCC controls records and transactions by using 
timestamps. MVCC manages the update history of records 
by giving Timestamps at Commit (CTs) to the records. 
Transactions refer to Timestamps at Begin (BTs) or when 
SQL executes. They update timestamps at Commit. They 
refer to the latest record whose timestamp is smaller than 
BTs. The references of transactions maintain consistency 
with this method. How BTs are treated is different among the 
isolation level. SERIALIZABLE and SNAPSHOT 
ISOLATION use a timestamp that is referred to at Begin. 
READ COMMITTED uses a timestamp that is referred to at 
SQL execution. Figure 1 shows the difference between 
SNAPSHOT ISOLATION and READ COMMITTED. Tx2 
and Tx3 are assumed to be SNAPSHOT ISOLATION and 
READ COMMITTED, respectively. They execute the SQL 
at the same time. However, Tx2.SQL2 sees record X, but 
Tx3.SQL2 sees record X'. Such concurrency control protects 
SNAPSHOT ISOLATION from FUZZY READ. Similarly, 
READ SKEW is prevented. 

Update conflicts at the Commit of transactions generally 
use First Committer Win, which is optimistic concurrency 
control. It executes transactions in the order, in which 

Commits are executed. It keeps consistency by aborting 
subsequent conflicting transactions. 

The concurrency control explained above cannot prevent 
WRITE SKEW from occurring. It happens when references 
and updates of multiple transactions mutually conflict (RW-
Conflict). Serializable Snapshot Isolation (SSI) was proposed 
to find such a condition and avoid WRITE SKEW [23][24]. 
SSI adds a read flag and write flag to the conventional 
MVCC algorithm and detects RW-Conflict. SSI aborts at 
least one of the RW-Conflict transactions and avoids WRITE 
SKEW. Therefore, SERIALIZABLE is enabled. SSI can 
realize SERIALIZABLE with the same performance of 
SNAPSHOT ISOLATION [23][24]. 

We can prevent anomalies from occurring by using these 
concurrency controls on MVCC. 

Tx1.SQL1

Tx2

SQL1 SQL2

Tx3

SQL1 SQL2

Formula

Tx1.SQL1 B1 [BTs=10] W1 [X→X’] C1 [CTs=10, Ts=11]

Tx2.SQL1 B2 [BTs=10] R2 [X]

Tx2.SQL2 R2 [X] C2

Tx3.SQL1 B3 [BTs=10] R3 [X]

Tx3.SQL2 B3 [BTs=11] R3 [X’] C3Time
 

Figure 1.  Difference between SNAPSHOT ISOLATION (Tx2) and 

READ COMMITTED (Tx3) 

C. Problem of Scalability 

To keep ACID properties strictly, it is necessary for 
transactions to be processed in strict total order. In this case, 
scalability is low. To the contrary, MVCC enables high 
scalability by parallel execution in total order. Table 3 
defines D1 as strict total order, D2 as the total order, and D3 
as the order of transactions for MVCC. 

The CTs of MVCC must be different between the two 
transactions shown in D3.I, or one of the transactions must 
be the reference transaction shown in D3.II. That is, multiple 
update transactions cannot be committed at the same time 
due to D3.II. Thus, the transactions of MVCC are in strict 
total order in the case of update transactions only, or it is in 
total order when transactions include reference transactions. 

As described above, MVCC allows D3.II, instead of D1 
only, and scalability increases. However, D3.II is applicable 
only for transactions including reference transactions. In the 
case of update transactions only, scalability is low, because 
the conditions of the order are the same as D1. Therefore, 
mitigating the order of update transactions under D3.II is a 
problem. 

TABLE III.  DEFINITION OF MVCC 

D1.   Definition of Strict Total Order

i < j   < = = >   i ≦ j AND i ≠ j

D2.   Definition of Total Order

i ≦ j   < = = >   i < j OR i = j

D3.   Definition of Committed Tx. Order for MVCC

CTs (Tx i) ⊴ CTs (Tx j)   < = = > Ⅰ OR Ⅱ
Ⅰ CT (Tx i) < CT (Tx j)

Ⅱ CT (Tx i) = CT (Tx j) AND Type (Tx i) = Read
 

15Copyright (c) IARIA, 2018.     ISBN:  978-1-61208-637-8

DBKDA 2018 : The Tenth International Conference on Advances in Databases, Knowledge, and Data Applications



IV. PROPOSAL OF POMVCC 

In this section, we propose POMVCC, which mitigates the 
order of update transactions and realizes high scalability. In 
addition, a new anomaly caused by POMVCC is considered. 

In the following, DB is defined as the content of a database, 

and the execution order of transactions is shown as →. 

A. Basic Idea 

On the basis of the consistency of a database, transactions 
can be controlled in partial order. For example, if the 
concurrency control of DBMS exchanges the execution order 
of one transaction with other transaction and the result is not 
changed, these transactions can be executed in non-order, 
and consistency is kept. Thus, we do not need to update 
timestamps per update transaction, and we can share one 
timestamp among multiple update transactions. Therefore, 
we propose POMVCC as new concurrency control focused 
on the partial order of transactions. POMVCC gives a same 
timestamp to two update transactions if they have no 
dependency. This method mitigates condition D3.II, so 
scalability can increase. 

The concept and definition of POMVCC are shown in 
Figure 2 and Table 4. By controlling the partial order of 
transaction processing, POMVCC eliminates the need to 
update the timestamp every time Tx. process is ended. 
POMVCC updates the timestamp when it detects Anomaly. 
For example, in Figure 2, since LOST UPDATE occurred 
between Tx1 and Tx3, POMVCC will update timestamp. 
Even if the execution order of all Tx. processes within the 
same timestamp is changed, POMVCC permits simultaneous 
execution if the contents of the database same. Then we also 
show the allowable conditions of transaction processing on 
the same timestamp for MVCC (D3.II) and POMVCC 
(D4.II) in Table 5, which shows POMVCC has more 
conditions that can be executed simultaneously than MVCC. 
Therefore, POMVCC can reduce the update frequency of 
timestamps. This means that the scalability of POMVCC is 
better than that of MVCC. 

 

Tx3

W[X’→X”]

Tx1

W[X→X’]

Tx2

W[Y→Y’]

Tx4

W[Z→Z’]

MVCC

Ts1

Ts2

Ts3

Ts4

Ts5

Tx1

W[X→X’]

Tx2

W[Y→Y’]

Tx3

W[X’→X”]

Tx4

W[Z→Z’]

POMVCC
 

Figure 2.  Difference between MVCC and POMVCC 

TABLE IV.  DEFINITION OF POMVCC 

D4.   Definition of Committed Tx. Order for POMVCC

CTs (Tx i) ≤ CTs (Tx j)   < = = > Ⅰ OR Ⅱ
Ⅰ CT (Tx i) < CT (Tx j)

Ⅱ
CT (Tx i) = CT (Tx j) AND

DB( Tx i → Tx j ) = DB( Tx j → Tx i )
 

TABLE V.  ALLOWABLE RANGE OF TRANSACTIONS FOR D3.II AND D4.II 
ON THE SAME TIMESTAMP 

# Formula D3.Ⅱ D4.Ⅱ
1 R1[X] R2[X] Success Success

2 R1[X] W2[X→X’] Success Success

3 W1[X→X’] R2[X] Success Success

4 W1[X→X’] W2[Y→Y’] Failure Success

5 W1[X→X’] W2[X→X’’] Failure Failure
 

B. How to Control POMVCC 

The trigger to update a timestamp of POMVCC is different 
from that of MVCC. MVCC updates a timestamp at the 
Commit of a transaction, but POMVCC updates it at the 
Abort of a transaction. Thus, multiple update transactions 
can be executed at one timestamp. 

A schematic diagram of POMVCC is shown in Figure 3. 
Tx1 and Tx3 have the update conflict of record X. In the 
case of MVCC, a timestamp is updated at the Commit of 
Tx1, but in the case of POMVCC, a timestamp is not 
updated. Therefore, Tx3 refers to old record X, and an 
update conflict happens. POMVCC updates a timestamp at 
the Abort of Tx3. Record X can be updated when Tx3 is re-
executed. Because a timestamp is updated at the Abort of a 
transaction caused by an anomaly, partial order transaction 
control can be realized. 

Tx

Get

Commit

begin

update

commit X→X’

Get
begin

update

X→X”

Get
begin

・
・
・

Tx1

Tx2

Tx3

Retry

Ts Record

adopt

Conflict
commit

abort
Update

update

X’→X’’
Tx3

commit adopt
Commit

time

abort

 
Figure 3.  Concurrency Control of POMVCC 

C. New Anomaly: HISTORICAL READ 

The partial order transactions of POMVCC enable highly 
scalable concurrency control. However, the execution order 
of transactions is limited by the APplication (AP) or user. 
For example, consider that the succeeding transaction refers 
to the result of the preceding transaction. In this case, a 
HISTORICAL READ (HR), in which the succeeding 
transaction cannot refer to the result of the preceding 
transaction, occurs. It is necessary for POMVCC to provide 
the result of the preceding transaction to the succeeding 
transaction when AP requires the result of the preceding 
transaction. 
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Table 6 shows the definition of HISTORICAL READ. 
Tx2 cannot refer to record X', which Tx1 updates after the 
Commit of Tx1. This is the anomaly. If Tx1 and Tx2 are 
independent transactions, this does not happen. However, 

when AP assumes that the execution order is Tx1→Tx2, 

such an unexpected response occurs. 

TABLE VI.  DEFINITION OF HISTORICAL READ 

Anomaly Formula

Historical Read W1[X→X’] C1 B2 R2[X]
 

D. How to Avoid HISTORICAL READ 

HISTORICAL READ is avoidable if the BTs of a 
succeeding transaction is bigger than the CTs of the 
preceding transaction. That is, when the same user (DB 
connection) or the same AP executes transactions, the value 
that is bigger than the CTs of the preceding transaction is 
given to the BTs of the succeeding transaction. Therefore, 
HISTORICAL READ can be avoided. 

The avoidance method for the same user (User Approach) 
may include false positives. In the worst case, timestamps 
are updated at every Commit. For example, the independent 
transactions that the same user issues do not need timestamp 
updates. However, in the User Approach, timestamps are 
always updated at the Begin of the transactions. As a result, 
performance degradation is a concern due to there being a lot 
of false positive cases. 

In the avoidance method for the same AP (AP Base 
Method), minimum timestamps which would preferably be 
referred to, are set when the AP issues transactions. This 
method can avoid HISTORICAL READ efficiently because 
false positives are excluded. However, the DB interface, 
such as Commit and Begin, must be modified, and this is a 
downside of this method. 

Figure 4 shows the solution of the AP Base Method. 
POMVCC returns CTs at the Commit of Tx1, and BTs 
(=CTs) is set at the Begin of Tx2. As a result, Tx1.CTs < 
Tx2.BTs is established, and Tx2 can refer to the execution 
result of Tx1. 

Tx

Get
begin

update

commit X→X’

・
・
・

Tx1

Tx2

Ts Record

adapt

update

X’→X’’

t ime

CTs
Commit

begin

BTs = CTs Check

(Update)

commit adapt

CTs
Commit

 
Figure 4.  Solution for HISTORICAL READ 

V. IMPLEMENTATION OF POMVCC 

The lock used in parallel processing may degrade 
scalability [15]. In this section, to avoid this degradation, we 
introduce a lock-free implementation for scalable POMVCC. 

However, in POMVCC, the implementation related to 
general DMBS is not different from the MVCC 
implementation of other pieces of literature [3][7][10][12] 
[15][18][24]. Therefore, in the following, we focus on the 
extension of MVCC, that is, the concurrency control of 
transactions and timestamps. 

In POMVCC, timestamps are divided into reference 
timestamps (RTs) and commit timestamps (WTs). Figure 5 
shows the data structure of POMVCC. It has RTs, WTs, 
monotonically increasing timestamps, and the number of 
transactions at commit per timestamp. RTs are the 
timestamps that are used for referring to a record. WTs are 
the timestamps for a Commit. In addition, the state of 
Commit processing is divided into PreCommit and Commit. 
The PreCommit state includes the success of solving a 
conflict and the transfer to the Commit state. The Commit 
state includes giving CTs to all updated records and the 
completion of issuing a log. That is, if the timestamp of a 
PreCommit Counter and the Commit Counter is the same, 
the record can be referred to by using this timestamp while 
keeping consistency. 

Figure 6 describes the control of POMVCC. In POMVCC, 
after the state is transferred to the PreCommit, CTs (= WTs) 
is obtained, and the PreCommit Counter of the CTs is 
incremented. After the state is transferred to the Commit, the 
Commit Counter of the CTs is incremented, and the 
transaction is completed. In case of Abort, WTs is 
incremented. If the timestamp (ATs) that causes the abort is 
known, RTs is incremented to ATs+1. At the re-execution of 
the transaction, this prevents the next abort, which has the 
same abort reason as the previous abort. RTs can be 
incremented if the PreCommit Counter and Commit Counter 
are the same and RTs < WTs. Finally, at Begin, RTs tries to 
be updated. If BTs is specified as the Begin interface, RTs is 
incremented till BTs < RTs is satisfied. 

These controls enable POMVCC. They can be 
implemented without a lock by using atomic instructions, 
such as Compare-And-Swap (CAS). 

 

RTs WTs

10 12

Ts PreCommit Counter Commit Counter

9 14 14

10 3 3

11 6 2

12 1 0

13 0 0
 

Figure 5.  Data Structure of POMVCC 
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Tx.Begin ( TmpTs = CTs or ATs) {

WTs = Get.WTs ( ) ;

while ( WTs ≦ TmpTs ) {

WTs = Increment.WTs ( ) ;

}

do {

BTs = Check.RTs ( ) ;

} while ( BTs ≦ TmpTs ) ;

return ( ) ;

}

Tx.Commit ( ) {

// PreCommit Process

if ( Tx.Judgement = Success ) {

CTs = GetWTs ( ) ;

Increment.PreCommitCnt ( CTs ) ;

・・・Commit Completion・・・
Increment.CommitCnt ( CTs ) ;

} else if ( Tx.Judgement = Failure) {

Tx.Abort ( ) ;

｝
return ( CTs  or ATs) ;

}

Tx.Abort ( ) {

// Abort Process

IncrementWTs ( ) ;

return ( ) ;

}

Check.RTs ( ) {

RTs = Get.RTs ( ) ;

WTs = Get.WTs ( ) ;

if ( Diff.Commit.Counter ( RTs ) = 0 and RTs < WTs )

RTs = Increment.RTs ( ) ;

return ( RTs ) ;

}
 

Figure 6.  Schematic Timestamp Control 

VI. EVALUATION OF PROTOTYPE IMPLEMENTATION 

In this section, we compare the performance of MVCC and 
POMVCC. We implemented MVCC and POMVCC on an 
in-memory DBMS named “MPDB”, which we are 
developing, and evaluated their performance. MPDB is an 
MVCC-based, lock-free, in-memory DBMS that is 
characterized by parallel logs and PCC/OCC mixed control 
[30] [31]. 

In this experiment, we use the industry standard 
benchmark TPC-C and repeatedly execute stored procedure 
calls that model NewOrder [20]. 

 
 
 

A. Experimental Environment 

Figure 7 depicts the system configuration. Four blade 
servers were used. They were Symmetric MultiProcessors 
(SMP) and had 8 CPUs (80 cores), 1 TB of memory, and 8 
ports of an 8-Gb Fiber Channel (FC). Servers and storage 
were connected via an FC switch and communicate with FC 
communication. 

In the OS (CentOS 6.5) settings, FC ports were assigned to 
each CPU to distribute the interrupt overhead of FC 
communication. Hyper-threading was disabled. 

In the MPDB settings, one thread was assigned to one core. 
This means that MPDB uses a maximum of 80 threads. One 
log file is assigned to one CPU to load balance logs. The 
isolation level was SNAPSHOT ISOLATION. 

The DB was created on the basis of TPC-C. The number of 
warehouses was 16 and the size of database was 0.72 GB. 
The item table, stock table, and order_line table were used in 
TPC-C. In addition, indexes were created for the i_id of the 
item table, s_w_id and s_i_id of the stock table, and ol_o_id 
and ol_w_id of the order_line table. 
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Blade BS2000

CPU Xeon(R) E7 8870 x 2

Memory 256GB (16GB x 16)

PCIe 2 Port HBA (8Gb)

Storage
Hitachi Unified

Storage VM (HUS-VM)

Cache 54GB

Disk
6.4TB (1.6TB x 4)

Hitachi Accelerated Flash

RAID RAID5(3D + 1P)

System Configuration

 
Figure 7.  System Configuration 

B. Workload 

The workload shown in Figure 8 was created on the basis 
of TPC-C’s New Order. The workload simulates the 
repeatedly executing part of the New Order. The processing 
in Figure 8 was repeated 10 times per transaction on average. 

1 SELECT i_price, i_name, i_data

INTO :i_price, :i_name, :i_data

FROM item

WHERE i_id = :ol_i_id

2 SELECT s_quantity, s_data, s_dist_...

INTO :s_quantity, :s_data, :s_dist_...

FROM stock

WHERE
s_i_id = :ol_i_id AND

s_w_id = :ol_supply_w_id

3 UPDATE stock

SET s_quantity = :s_quantity

WHERE
s_i_id = :ol_i_id AND

s_w_id = :ol_supply_w_id

4 INSERT

INTO order_line (,,,,,)

VALUES (,,,,,,)

While ( Repeats 5 ~ 15 times, Ave. 10)
 

Figure 8.  Experiment Workload 

18Copyright (c) IARIA, 2018.     ISBN:  978-1-61208-637-8

DBKDA 2018 : The Tenth International Conference on Advances in Databases, Knowledge, and Data Applications



C. Experimental Results and Consideration 

The experiments were done to compare the performance of 
MVCC and POMVCC corresponding to the number of 
threads. In Figure 9, the x-axis means the number of threads, 
and the y-axis means the transactional performance (tps). 
The performance of both MVCC and POMVCC increased as 
the number of threads increased. POMVCC ran 1.36-1.60 
times faster than MVCC. 

To investigate scalability more precisely, we made an 
experiment, in which the number of warehouses changed 
corresponding to the number of threads. That is, the number 
of warehouses was 10 (DB size was 0.45 GB) when the 
number of threads is 10. The number of warehouses was 80 
(DB size was 3.61 GB) when the number of threads was 80. 
Figures 10 and 11 are the experimental results. From Figure 
10, the performance of POMVCC was 1.63 - 1.74 times 
better than that of MVCC. From Figure 11, the scalability 
coefficient of MVCC was 87.98 - 97.96 [%], and that of 
POMVCC was 94.02 –98.32 [%]. This experiment says that 
the scalability coefficient of POMVCC is greater than that of 
MVCC. 

From these experiments, the scalability coefficients of 
POMVCC and MVCC depended on the size of the DB and 
the number of threads. If the size of the DB was large and the 
conflict rate of the transaction was low, the scalability 
coefficient of POMVCC was high, and in all experiments, 
POMVCC ran faster than MVCC. 
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Figure 9.  Performance Evaluation 
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Figure 11.  Scalability Coefficient when Number of Warehouses Changes 

VII. CONCLUSION 

In this paper, we proposed and evaluated POMVCC, 
which keeps the consistency of MVCC and improves 
performance and scalability. POMVCC is technology that 
focuses on the partial order of transactions. The conventional 
method gives a timestamp to a transaction, but POMVCC 
gives a timestamp to multiple transactions. POMVCC 
reduces the number of timestamps that are updated and 
improves performance and scalability. We show the 
difference of Isolation Level between MVCC and POMVCC 
in Figure 12. 

We implemented and evaluated POMVCC on an in-
memory DBMS named “MPDB” that we are developing. 
From experiments, the performance of POMVCC was 1.30 - 
1.74 times better than that of MVCC. The scalability of the 
POMVCC was higher than that of the MVCC. Every 
experiment showed that the performance of POMVCC was 
1.30 - 1.74 times higher than that of the MVCC. 

We implemented the POMVCC on the MPDB and 
evaluated it by using SNAPSHOT ISOLATION, for which 
POMVCC had higher performance than MVCC. However, 
with SERIALIZABLE, the performance trend was unclear 
because the probability of WRITE SKEW increased. This 
occurs when reference and update transactions are executed 
at the same timestamp. POMVCC increases the number of 
transactions at the same timestamp. As a result, the number 
of WRITE SKEWs increases. In addition, it is possible that 
RW-CONFLICT GRAPH will grow and a large cyclic graph 
will be created. Therefore, our future work is to implement 
and evaluate POMVCC by using SERIALIZABLE. 

SERIALIZABLE

MVCC

Snapshot Isolation

Read Committed

Read Uncommitted

RS, LU

FR

WS

Snapshot Isolation

Read Committed

FR
HR

HR

WS,

HR

POMVCC

RS,

LU
 

Figure 12.  A Diagram of the Isolation Levels and Relationships 
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