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Abstract—Data is central to decision-making in enterprises and
organizations (e.g., smart factories and predictive maintenance),
as well as in private life (e.g., booking platforms). Especially
in artificial intelligence applications, like self-driving cars, trust
in data-driven decisions depends directly on the quality of
the underlying data. Therefore, it is essential to know the
quality of the data in order to assess the trustworthiness and
to reduce the uncertainty of the derived decisions. In this
paper, we present QuaIIe (Quality Assessment for Integrated
Information Environments, pronounced [’kvAl@]), a Java-based
tool for the domain-independent ad-hoc measurement of an
information system’s quality. QuaIIe is based on a holistic
approach to measure both schema and data quality and covers
the dimensions accuracy, correctness, completeness, pertinence,
minimality, and normalization. The quality measurements are
presented as machine- and human-readable reports, which can
be generated periodically in order to observe how data quality
evolves. In contrast to most existing data quality tools, QuaIIe
does not necessarily require domain knowledge and thus offers
an initial ad-hoc estimation of an information system’s quality.

Index Terms—Data Quality; Information Integration; Estima-
tion; Measurement; Trust.

I. INTRODUCTION

Decision-making is usually based on data. Applications are
process data in industry, sales, weather forecast, search en-
gines, self-driving cars, or booking platforms. In order to trust
such data-driven decisions, it is necessary to know the quality
of the underlying data. Despite the clear correlation between
data and decision quality, 84 % of the CEOs in the US are
concerned about their data quality [1]. In addition to incorrect
decision making, poor Data Quality (DQ) may cause effects
like cost increase, customer dissatisfaction, and organizational
mistrust [2]. According to an estimation by IBM, the total
financial impact of poor quality data on business in the US was
$3.1 trillion [3] in 2016. Thus, DQ is no longer a question of
”hygiene”, but has become critical for operational excellence
and is perceived as the greatest challenge in corporate data
management [4].

In practice, data of enterprises and organizations are of-
ten stored in Integrated Information Systems (IISs), which
gather data from different and often heterogeneous information
sources [5]. If such a system is queried, it is desirable to select
the most appropriate and most trustworthy source with respect
to query. Thus, an automated on-the-fly estimation of the eli-
gible Information Sources (ISs) is necessary to judge weather
an IS is complete or accurate enough to answer the query

sufficiently. For this purpose, we developed QuaIIe (Qual-
ity Assessment for Integrated Information Environments), a
modular Java-based tool that automatically performs quality
measurement at the data-level and the schema-level. QuaIIe
offers metrics for the quality dimensions accuracy, correctness,
completeness, pertinence, minimality, and normalization.

Although the most frequently used definition of data quality
is ”fitness for use” [6], which expresses the high subjec-
tivity and context-dependency of this concept, we aim at a
domain-independent measurement of the quality of ISs. QuaIIe
performs an automated ad-hoc estimation of the qualitative
condition of multiple information sources within an IIS and
generates a machine- and human-readable XML (extensible
markup language) quality report. Such a report can be gen-
erated periodically in order to observe how DQ evolves. Our
focus is the quality measurement of an IIS in productive use,
and automatic data cleansing activities are therefore outside
the scope of this research work. In a first step, it is essential
to know the quality of the data in order to define goals and to
verify the effectiveness of data cleansing activities.

The main contribution of this paper is the presentation of a
novel tool that implements automated DQ measurement and
estimation, covering the most important dimensions for both,
data- and schema-level. To the best of our knowledge, there
exists no tool that offers DQ metrics for such a large number of
different DQ dimensions in a single application and comprises
both data and schema quality. Therefore, we developed QuaIIe
to fill this gap. The advantage of the presented approach is a
long term observation of the DQ development, which provides
indicators for further DQ improvements and thus, increases
trustworthiness for data-driven decisions.

This paper is organized as follows: in Section 2 we discuss
existing DQ tools and highlight their differences to QuaIIe.
Section 3 covers the data and schema quality measurement,
which was applied in this research. The implementation of
QuaIIe is described, demonstrated and discussed in Section 4.

II. RELATED WORK

Although the interest into DQ, from both research and
industry, has increased over the last decade, it is still an
underestimated topic in operational information systems. This
fact is also reflected by the current market of DQ tools, which
is considered a niche market despite its continuous growth
[7]. In the following paragraphs, we give a short overview on
existing DQ tools and discuss their differences to QuaIIe.
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Gartner lists 39 commercial DQ tools by 16 vendors in
their ”Magic Quadrant of Data Quality Tools 2017” [7]. Most
of the tools offer functionalities to investigate the qualitative
condition of different data sources, manage DQ rules, resolve
DQ issues, enrich data quality by integrate external data, val-
idate addresses, standardize and cleanse data, and link related
data entries using a variety of techniques. The aim of these
commercial tools is usually the support of a comprehensive
DQ program that involves management, IT, and business users.
Thus, the application of such a tool usually requires a domain
expert and preparatory work to be effective.

In addition to commercial DQ tools, a number of scientific
tools has been proposed over the years, where the most impor-
tant ones are compared and discussed in [8][9]. Both surveys
make clear that the focus of those tools is on the detection and
cleansing of specific DQ problems (e.g., name conflicts, miss-
ing data). QuaIIe, in contrast, focuses on the pure measurement
(detection) of DQ problems and does not cleanse data, but with
the advantage to be unsupervised, domain-independent and
applicable for ad-hoc analysis. Additionally, and in contrast to
most existing DQ tools, QuaIIe addresses the DQ topic from
the dimension-oriented view. While a lot of research on DQ
dimensions and their definition has been proposed in literature
[2][6][10], there is no tool that implements metrics for such a
broad number of dimensions. QuaIIe fills this gap and can thus
be considered a vital complement in the section of research-
oriented DQ tools. The main contributions in QuaIIe are (1)
the combination of data and schema quality measurement and
(2) the implementation of such a wide spectrum of different
quality dimensions. Of course, more specialized tools might
outperform QuaIIe in specific implementations, like distance
calculation or string matching.

III. DATA AND SCHEMA QUALITY MEASUREMENT

Data quality is usually described as multidimensional con-
cept, which is characterized by different aspects, so called
dimensions [6]. Those dimensions can either refer to the data
values (i.e., extension of the data), or to their schema (i.e.,
the intension or data structure) [11]. While the majority of
research into DQ focuses on the data values, QuaIIe covers
dimensions for both schema and data quality. In fact, schema
quality has a strong impact on the quality of the data values
[11]. An example are redundant schema elements, which can
lead to data inconsistencies. Thus, it is essential to consider
both topics in order to provide holistic DQ measurement.

Since a wide variety of quality dimensions has been pro-
posed over the years, we focus in the following paragraphs on
accuracy, correctness, completeness, pertinence, minimality,
and normalization. Each dimension can be quantified using one
or several metrics, which capture the fulfillment of a dimension
in a numerical value [12]. Some metrics require a reference or
benchmark (gold standard) for their calculation. According to
the Oxford Dictionary, a Gold Standard (GS) is ”the best, most
reliable, or most prestigious thing of its type” [13]. In the vast
majority of cases a gold standard does not exist, but if there

is one, it would be used in place of the IS under investigation.
Thus, in practice, an existing benchmark is employed as gold
standard, e.g., a single IS can be compared to the integrated
data from the complete IIS. Although in practice, there is
usually no complete gold standard for large data sets available,
there are often reference data sets of good quality for a subset
of the data. Examples are purchased reference data sets for
customer addresses or a manually cleaned part of the original
data. The quality estimation in QuaIIe (cf. Section III-F)
allows to extrapolate the exact measurement for a part of the
data to other parts that are required for a query but have not
been yet measured. For more details to the schema quality
dimensions applied in this paper, we refer to [14] and more
information on the DQ dimensions can be found in [15].

A. Accuracy and Correctness

The terms accuracy and correctness are often used synony-
mously in literature and a number of different definitions exist
for both terms [6][11][16]. In the DQ literature, accuracy can
be described as the closeness between an information system
and the part of the real-world it is supposed to model [11].
From the natural sciences perspective, accuracy is usually
defined as the magnitude of an error [16]. In this research
work, we refer to correctness for a calculation, which has
been presented by Logan et al. [17], who distinguish between
correct (C), incorrect (I), extra (E) and missing (M ) elements
after comparing a data set to its reference:

Cor(c, c′) =
C

C + I + E
. (1)

Here, the data correctness of, for instance, a relational table
or class in an ontology, denoted as concept c, is measured by
comparing it to its ”correct” version c′. In this notion, C is
the number of elements that correspond exactly to an element
from the reference c′. The incorrect elements I have a similar
element in the gold standard, but are not identical. While M
describes the number of missing elements in the IS under
investigation that exist in the gold standard, its complement E
is the number of extra elements that exist in the investigated
IS, but have no corresponding element in the gold standard.
We refer to the values as CIEM counts.

In QuaIIe, however, an accuracy metric is implemented,
which has its origins in the field of machine learning and
is usually used to measure the accuracy of classification
algorithms [18]. This accuracy metric can also be mapped to
the notion by Logan et al. [17]:

Acc(c, c′) =
|c|
|c ∪ c′|

=
C

C + I + E +M
(2)

where |c| gives the number of records in a data set or
concept c. In the rest of this paper, we refer to accuracy when
discussing quality metrics for data values (since QuaIIe imple-
ments the metric for accuracy on data-level), and to correctness
when discussing the corresponding schema dimension.
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On the schema-level, Vossen [19] describes a database (DB)
schema as correct, if the concepts of the related data model
are applied in a syntactically and semantically appropriate way.
Thus, he considers the model (e.g., Entity-Relationship model)
as reference, which is assumed to be correctly available. In
[11], the authors distinguish between correctness with respect
to the model and with respect to the requirements. The correct
representation of the schema requirements are considered a
manual task, because requirements are rarely available in
machine-readable form. Despite unknown quality, the content
of an IS can be added as third possibility to validate a schema,
in order to measure whether a schema fits its values. This
includes for instance the correct usage of attributes (e.g., an
attribute first_name actually contains a person’s first name
and no numeric value).

In QuaIIe, the formula by Logan et al. [17] for data cor-
rectness is also employed as a metric for schema correctness
with Cs, Is, Es, and Ms denoting the correct, incorrect, extra,
and missing elements of a schema s:

Cor(s, s′) =
Cs

Cs + Is + Es
. (3)

B. Completeness

Completeness is broadly defined as the breadth, depth, and
scope of information contained in the data [10]. A number of
authors [6][11] calculate data completeness according to:

Com(c, c′) =
|c|
|c′|

. (4)

Despite differences in expressions, most existing complete-
ness metrics are correspondent to (4) and compare the number
of elements in a data set |c| to the number of elements in
the gold standard |c′|. In this metric, scope for interpretation
lies in selecting the gold standard or reference c′ and in the
similarity calculation (i.e., determining whether an element has
a reference element in c′). In QuaIIe however, extra records,
which exist in the gold standard, but have no counterpart in the
data set under investigation are excluded and therefore have no
influence on the completeness calculation. We use the formula
presented by Logan et al. [17]:

Com(c, c′) =
C + I

C + I +M
. (5)

Schema completeness describes the extent to which real-
world concepts of the application domain and their attributes
and relationships are represented in the schema [11]. The
metric for schema completeness in QuaIIe corresponds to the
metric for data completeness in (5):

Com(s, s′) =
Cs + Is

Cs + Is +Ms
. (6)

Batista and Salgado [20] applied a schema completeness
metric, which is equivalent to the data completeness in (4).

In the calculation, the number of elements in the reference
schema |s′| is determined by counting the number of distinct
elements in all schemas of an IIS. While the authors in [20]
assume pre-defined schema mappings to be provided, QuaIIe
implements the distance or similarity calculation between the
schema elements on-the-fly.

In addition, Nauman et al. [21] proposed a comprehensive
IIS completeness metric, which incorporates the coverage (i.e.,
data completeness of the extension of an IS), and density (i.e.,
schema completeness of the intension of an IS). The authors
use the entire IIS as gold standard. The density of a schema is
calculated according to the population of attributes with non-
null values [21]. In contrast, the schema completeness metric
in QuaIIe implements a data-value-independent calculation,
which considers the existence of specific schema elements
(e.g., relations in a relational DB).

C. Pertinence

Pertinence on the data-level equates to the notion of preci-
sion (in contrast to recall [18]) from the information retrieval
field and complements data completeness. Data pertinence
describes the prevalence of unnecessary records in the data.
The classic precision metric is defined as the probability to
select a correct element from a list [18] and in terms of correct,
incorrect, extra, and missing records, is defined as:

Per(c, c′) =
C + I

C + I + E
. (7)

Schema pertinence describes a schema’s relevance, which
means that a schema with low pertinence has a high number
of unnecessary elements [11]. A schema that is perfectly
complete and pertinent represents exactly the reference schema
(i.e., its real world representation), which means that the
two dimensions complement each other. In accordance to (7),
schema pertinence is calculated in QuaIIe as

Per(s, s′) =
Cs + Is

Cs + Is + Es
, (8)

where the number of schema elements with a (correct or
incorrect) correspondence in the gold standard is divided by
the total number of elements in the schema under investigation.

D. Minimality

Information sources are considered minimal if no parts
of them can be omitted without losing information, that
is, the IS is without redundancies and no duplicate records
exist [11]. The detection of duplicate records is a widely
researched field that is also referred to as record linkage, data
deduplication, data merging, or redundancy detection [22]. In
order to determine which records of a data set are duplicates,
different approaches exist. The most prominent approaches can
be assigned to one of the following types [22]: (1) probabilistic
assignment using the Fellegi-Sunter model [23], (2) machine
learning techniques like support vector machines, clustering
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algorithms, or decision trees, (3) distance-based methods,
which are based on a function that calculates the distance
between two objects, and (4) rule-based methods, which are
usually based on the work of domain experts.

In QuaIIe, duplicate detection is done by hierarchical clus-
tering, which requires a distance function between the records.
A distance function δ : o × o → [0, 1] is a function from
a pair of elements to a normalized real number expressing
the distance or dissimilarity between the two elements [24].
Analogous, some techniques calculate the similarity σ : o ×
o → [0, 1] between two elements, which can be transformed
to a distance value using the formula δ = 1− σ.

Since each data record consists of multiple attribute
values, the distance function is a weighted-average
of individual attribute distance functions. QuaIIe
offers the following distance functions for data
values: AffineGapDistance, CosineDistance,
LevenshteinDistance, and SubstringDistance
for strings, AbsoluteValueDistance for double values,
EqualRecordDistance for entire records, as well as
EnsembleDistance for any data type. The latter one
combines an arbitrary number of other distances and a weight
for each one. Thus, it allows the creation of distances that are
adjusted to a specific IS schema, for example, to calculate the
distance between persons by applying a string distance to the
first and last name and a distance for numeric attributes to
the age, and giving higher weights to the name than the age.

The main advantage of clustering in our approach is the
automatic resolution of multiple correspondences. It thus,
however, requires a threshold to be defined. QuaIIe sets a
predefined clustering threshold which has been evaluated in
experiments presented in [14]. In an automated test run,
similarity matrices with different parameter combinations have
been compared to a similarity matrix created by a domain
expert using the mean squared error (MSE). The parameter
combination yielding the closest similarity results (having a
MSE of 0.0102) were used as standard parameters. However,
QuaIIe also allows to overwrite those values by the user to
adjust for specific domains. Hierarchical clustering initially
creates one cluster for each observed record and continuously
combines different clusters until all records are subsumed into
one large cluster. QuaIIe offers seven different linkage strate-
gies (single linkage, complete linkage, median linkage, mean
linkage, pair group method with arithmetic mean, centroid
linkage, and Ward’s method). We refer to [25] for in-depth
information on hierarchical clustering.

Following, the minimality metric in QuaIIe is based on a
three-step approach, which is used for the data values and
the schema elements likewise. Consequently, we refer to the
observed objects as ”elements”, using the more generic term
for both, records, as well as schema elements.

1) Element-wise distance calculation. All elements are
compared to each other, which yields a distance matrix.

2) Clustering. All elements are hierarchically clustered
according to their distance values. In a perfectly minimal

IS, the number of elements |c| should be equal to the
number of clusters |clusters|. If two or more elements are
grouped together into one cluster, the minimality score
drops to a value below 1.0.

3) Minimality calculation. Finally, the minimality can be
calculated according to

Min(c) =

{
1.0, if |c| = 1
|clusters|−1
|c|−1 , else

. (9)

Schema minimality is of particular interest in the con-
text of IIS, where redundant representations are com-
mon. The minimality of a schema is an important in-
dicator to avoid redundancies, anomalies and inconsis-
tencies. QuaIIe calculates schema minimality according
to the three-step approach described above. For the
schema similarity, the following distance functions are
available: DSDAttributeDistance on attribute-level,
DSDConceptAssocDistance on concept- or association-
level, and SimilarityFloodingDistance on schema-
level. DSD (data source description) is a vocabulary to se-
mantically describe IS schemas [26] and is explained in more
detail in Section IV-B. The first two distances are ensemble
distances, which are adjusted to the DSD representation of
attributes or concepts and associations respectively. In addi-
tion, we implemented the Similarity Flooding (SF) algorithm
proposed in [27], which calculates the similarity between
nodes in a graph-based schema representation, and can thus
only be applied to a complete DSD schema (in contrast to
single concepts). Subsequently, (9) can be reformulated for
schema minimality according to

Min(s) =

{
1.0, if |s| = 1
|clusters|−1
|s|−1 , else

, (10)

where |s| is the number of elements (concepts and associ-
ations) in a schema s.

E. Normalization

Normal Forms (NFs) can be used to measure the quality of
relational DBs, with the aim of obtaining a schema that avoids
redundancies and resulting inconsistencies as well as insert,
update, and delete anomalies [19]. In contrast to all other
schema quality dimensions listed in this paper, normalization
requires access to the extension of the information source, i.e.,
the data values themselves. Although this quality dimension
refers to relational data only, it is included in QuaIIe, because
of the wide spread use of relational DBs in enterprises. Several
modern DBs use denormalization deliberately to increase read
and write performance. Hence, depending on the type of IS,
a NF evaluation is not always helpful in deducing the quality
of its schema. It can however, serve as checking mechanism
to ensure that only controlled denormalization exists.

Identifying functional dependencies (FDs) forms the basis
for determining the NF of a relation. A FD α→ β, where α
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and β are two attribute sets of a relation R, describes that two
tuples that have the same attribute values in α must also have
the same attribute values in β. Thus, the α-values functionally
determine the β-values [28].

In QuaIIe, the second, third, and Boyce Codd normal form
(2NF, 3NF, and BCNF, respectively) can be determined. The
applied algorithm can be classified as a bottom-up method
[29], in which the FDs of a relation are analyzed by comparing
all attributes’ tuple values with all other attributes’ tuple
values. Then, the minimal cover is determined by performing
left- and right-reduction so that all FDs are in canonical
form and without redundancies [19]. Following, all attributes
are classified as key or non-key attributes and based on all
information gathered, the correct NF is determined. Each
schema element is annotated with quality information about
its NF, key attributes, and minimal cover.

F. Estimation of Integrated Quality Values

In Big Data applications there is usually no gold standard
for the entire data set, which makes it impossible to calculate
DQ metrics that require a GS in the formula. However, there
exist often reference data sets of good quality, for example,
purchased customer addresses or a manually cleaned subset of
the data. In such cases, DQ can be estimated by extrapolating
exact measurements for parts of the data to the entire data
set. An estimated quality rating allows to draw conclusions
whether to include a data source in a query result or not.

QuaIIe provides a heuristic estimation of DQ values for a
number of query results, views, and integrated record sets.
Assuming a composite record set can be defined by applying
only relational algebra operators (projection π, selection σ,
rename ρ, union ∪, set difference −, and cross product × [28])
to existing data, queries can be treated as relational syntax
trees. From these trees, estimations about the DQ metrics of
the composite set can be made without actually evaluating DQ
again. Hence, a gold standard is only required for the exact
measurement of the leaf components and the DQ estimation
for larger (integrated) data is possible without further need
of a gold standard [15]. Currently, estimates for the DQ
dimensions accuracy, completeness, and pertinence have been
implemented in QuaIIe. The DQ metrics of the composite set
are estimated by traversing the relational algebra syntax tree
in a bottom up fashion utilizing the formulas we present in
Tables I and II. Here, D(c) is the proportion of records in a
data set c, for which at least one duplicate entry exists in c,
and p is a selection-specific factor denoting |selected records|

|original records| .

IV. IMPLEMENTATION ARCHITECTURE AND
DEMONSTRATION

Fig. 1 shows the architecture of our modular Java-based
tool QuaIIe (pronounced [’kvAl@]) for measuring IIS data and
schema quality. The tool consists of three main components:
(a) data source connectors to establish an IS connection and
load schema information, (b) quality calculators that store
information about the schema and data quality in the DQ

Store, and (c) reporters to generate a human- and machine-
readable quality report. The tool has been implemented with a
focus on maximum flexibility and extensibility, which makes
it easy to add new connectors, calculators, or reporters, due to
a standardized interface for each component. In addition to a
pre-configured automatic execution, it also allows user input in
form of rules and parameters for specific quality calculations.

In the following paragraphs, each component as well as the
DSD Environment and the Data Quality Store are described
in more detail and are underpinned with code examples.
Fundamentals on the DSD vocabulary are provided in Section
IV-B. Recently, a call for more empiricism in DQ research
has been proposed in [30], promoting both, (1) the evaluation
on synthetic data sets to show the reproducibility of the
measurements, and (2) evaluations on large real-world data
sets. In this paper, we target the first part since the main
contribution is an introduction of QuaIIe and how it can
actually be used. We plan to extend the evaluation on real-
world data in future work.

Data
Sources

(a) Data Source 
Connectors

(b) Data Quality 
Calculators (c) Reporters

Data
Quality
Report

Rules and 
Parameters

DSD
Elements

Data Quality Store
Quality Annotations
Quality Ratings

DSD Environment

DSD Elements

Fig. 1. Implementation Architecture of QuaIIe

A. Demonstration Data Sources

Three different data sources have been employed for this
demonstration: employees DB, Sakila DB, and a Comma-
Separated Values (CSV) file “Department”. We selected those
data sources because of their manageable size and well-
known qualitative condition, which allows manual tracking
and verification of the calculated quality ratings, cf. [30] (in
contrast to large real-world data sets with unknown quality).

a) Employees: The employees DB contains six tables
with about three million records in total and models the
administrations of employees in a company [31]. We employ
the Datasource object dsEmpGS as gold standard for our
demonstration, which represents the original employees DB. In
addition, we created two variants that have been automatically
populated with randomly inserted errors in the original data:
dsEmp1 (501 records in the main table ”employees”) and
dsEmp2 (4,389 records in the ”employees” table). Table III
shows the error types that were used in the script. The added
noise n is an absolute error that is normally distributed.
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TABLE I. DATA QUALITY ESTIMATION - COMPLETENESS AND PERTINENCE

Operator Composite Completeness of Composite Pertinence of Composite

Projection π(c) Com(c) Per(c)
Selection σ(c) p ∗ Com(c) Per(c)

Union c1 ∪ c2 Com(c1) + Com(c2) − D(c1 ∪ c2) ∗
Com(c1) + Com(c2)

2

Per(c1) ∗ |c1|+ Per(c2) ∗ |c2|
|c1|+ |c2|

Set Difference c1 − c2 Com(c1)−D(c1∪c2)∗
Com(c1) + Com(c2)

2

2 ∗ Per(c1) ∗ |c1| −D(c1 ∪ c2) ∗ (Per(c1) ∗ |c1|+ Per(c2) ∗ |c2|)
2 ∗ |c1| −D(c1 ∪ c2) ∗ (|c1|+ |c2|)

Cross Product c1× c2 Com(c1) ∗ Com(c2) Per(c1) ∗ Per(c2)

TABLE II. DATA QUALITY ESTIMATION - ACCURACY

Operator Composite Accuracy of Composite

Projection π(c) Acc(c)

Selection σ(c)
Com(c) ∗ p ∗Acc(c)

Com(c) ∗ p+ (1− p) ∗Acc(c)

Union c1 ∪ c2

(
1−

D(c1 ∪ c2)
2

)
∗ (Com(c1) + Com(c2))

1 +

(
1−

D(c1 ∪ c2)
2

)
∗
(
Com(c1) ∗

( 1

Acc(c2)
− 1

)
+ Com(c2) ∗

( 1

Acc(c2)
− 1

)
− 1

)
Set Difference c1 − c2

2 ∗ Com(C1)−D(c1 ∪ c2) ∗ (Com(c1) + Com(c2))

2 ∗
Com(c1)

Acc(c1)
−D(c1 ∪ c2) ∗

(
Com(c1)

Acc(c1)
−
Com(c2)

Acc(c2)

)
Cross Product c1× c2

Com(c1) ∗ Com(c2)

1 + Com(c1) ∗
(
Com(c2)

Acc(c2)
− 1

)
+ Com(c2) ∗

(
Com(c1)

Acc(c1)
− 1

)
+

(
Com(c1)

Acc(c1)
− 1

)
∗
(
Com(c2)

Acc(c2)
− 1

)

TABLE III. ERROR TYPES

Error type Domain Example

LetterSwap String ”Bernhard” → ”Bernhrad”
LetterInsertion String ”Bernhard” → ”Bernnhard”
LetterDeletion String ”Bernhard” → ”Bernhrd”
LetterReplacement String ”Bernhard” → ”Burnhard”
AddedNoise Numeric a→ a+ n, where n ∼ N(0, 1)
NullFault Any ”Bernhard” → NULL
RecordDuplication Record {(”Werth”, 9)} → {(”Werth”, 9),

(”Werth”, 9)}
RecordDeletion Record {(”Werth”, 9)} → ∅
RecordInsertion Record {(”Werth”, 9)} → {(”Werth”, 9),

(”Ehrlinger”, 5)}
RecordCrossOver Record {(”Werth”, 9), (”Wöß”, 2)} →

{(”Werth”, 2), (”Wöß”, 9)}

b) Sakila: The Sakila DB has 16 tables and models the
administration of a film distribution [32]. While the employees
DB contains a large number of records for quality measure-
ment on the data-level, Sakila consists of a more advanced
schema for schema quality measurement. We employed the
Datasource object dsSakilaGS, which represents the orig-
inal Sakila DB, as gold standard. In addition, we created
dsSakila1, dsSakila2, and dsSakila3, which are excerpts of
Sakila including schema modifications to downgrade correct-
ness, completeness, and pertinence respectively.

c) Department CSV: Additionally, a CSV file that
contains a list of people affiliated to the department of
”Application-oriented Knowledge Processing” at Johannes Ke-
pler University was used.

As supplement to the demonstration in this paper, we

published an executable (QuaIIe.jar) on our project web-
site [33], which allows to reconstruct the schema quality
measurement described in this section. The program takes one
mandatory and one optional command line parameter: (1) the
path to the DSD schema to be observed and (2) the path to
the gold standard schema, and generates a quality report in
XML format. Schema descriptions for all four versions of the
Sakila DB, as well as a description for the employees DB are
provided in form of DSD files.

B. Data Source Connectors and DSD Environment

A connector’s task is to guarantee data model independence
by accessing a data source and transforming its schema into a
harmonized schema description, which is based on the the
DSD vocabulary. The transformation process from various
data models and details of the DSD vocabulary are described
in [26]. The transformation from schema elements to DSD
elements is a prerequisite for performing cross-schema calcu-
lations and obtaining information about a schema’s similarity
to other schemas in the IIS. In QuaIIe, DSD elements are
represented as dynamically created objects in the Java envi-
ronment. Below we list the most important terms of the DSD
vocabulary that are used in this paper.

• A Datasource s represents one schema in an IIS
and has a type (e.g., relational DB, spreadsheet) and an
arbitrary number of concepts and associations, which are
also referred to as schema elements.
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• A Concept c is a real-world object and is usually
equivalent to a table in a relational DB or a class in an
object-oriented DB.

• An Association is a relationship between two or
more concepts. There are three types of association: (i)
a reference association describes a general relationship
between two concepts (e.g., employment of a person with
a company); (ii) an inheritance association represents an
inheritance hierarchy (e.g., specific types of employees
are inherited from a general employee concept); and (iii)
an aggregation association describes the composition of
several concepts (components) to an aggregate.

• An Attribute is a property of a concept or an asso-
ciation; for example, the column ”first name” provides
information about the concept ”employees”.

Fig. 2 shows an example transformation of two relations
from the employees DB: employees {emp_no: int,
birth_date: date, first_name: string,
last_name: string} and dept_emp {emp_no:
int, dept_no: int, from_date: date, to_da-
te: date} into a DSD file in Turtle syntax (cf. [34]). The
attribute descriptions are omitted for brevity. The example
shows that a relational table can be transformed into a concept
or an association, for example, dept_emp is a reference
association since it models the assignment of an employee to
a department.

1 ex:employees a dsd:Concept ;
2 rdfs:label "employees" ;
3 dsd:hasAttribute ex:employees.emp_no, ex:employees

.birth_date, ex:employees.first_name, ex:
employees.last_name;

4 dsd:hasPrimaryKey ex:employees.pk .
5

6 ex:dept_emp a dsd:ReferenceAssociation ;
7 rdfs:label "dept_emp" ;
8 dsd:hasAttribute ex:dept_emp.emp_no, ex:dept_emp.

dept_no, ex:dept_emp.from_date, ex:dept_emp.
to_date;

9 dsd:hasPrimaryKey ex:dept_emp.pk ;
10 dsd:referencesTo ex:employees, ex:departments .

Fig. 2. Example Schema Description

While this harmonization step enables comparability and
quality measurement of schemas from different data models, it
does not guarantee access to the original information sources’
content after transformation. Consequently, the schema quality
metrics in QuaIIe primarily use the schema’s metadata instead
of the IS content. An exception is the determination of the
normal form, which is impossible without considering the
semantics of the attributes that can be derived from the content.

There are two different types of connectors in QuaIIe: (1)
data source connectors (DSConnector), which load the meta
data of an IS to describe its schema, and instance connec-
tors (DSInstanceConnector), which additionally provide
access to the data values of an IS. The interface-oriented
design of QuaIIe allows new connectors to be added by
implementing one of the two abstract classes DSConnector

or DSInstanceConnector. Currently, three different con-
nectors are supported:

• ConnectorMySQL creates a connection to a MySQL
DB as representative for relational DBs by using the
functionality of the MySQL Java Connector (cf. [35]).
This connector allows access to the DB data values.
Information on the selected DB schema is retrieved from
the data dictionary, including all tables, columns, foreign
keys and column properties.

• ConnectorCSV allows to access CSV files and is
also is a subclass of DSInstanceConnector. Due
to little meta data available in plain CSV files, schema
information is solely extracted from the given file (i.e.,
column headers as attribute names).

• ConnectorOntology uses the Apache Jena frame-
work (cf. [36]) to access a DSD file. Since DSD files
hold only schema information and not a connection to
the original database, this connector does not provide any
possibilities for accessing the DB content and can be used
for schema quality measurement only.

Fig. 3 shows an example instantiation for each of the
connector types. In addition to opening a connection, it is
necessary to load the schema and thus trigger the conversion
of schema elements to DSD elements in the Java DSD
environment. For our demonstration, we created a connection
to all data sources described in Section IV-A, adhering to the
same naming standard. For example, for the employees DB
we created the connectors connEmp1 and connEmp2 to access
the MySQL databases with the inserted errors, and load their
schema in form of two Datasource objects dsEmp1 and
dsEmp2 into the DSD environment.

1 // Opening and loading a MySQL data source
2 DSInstanceConnector connEmpGS = ConnectorMySQL.

getInstance("jdbc:mysql://localhost:3306/", "
employees", "user", "pw");

3 Datasource dsEmpGS = connEmpGS.loadSchema();
4

5 // Opening and loading a DSD schema description
6 DSConnector connSakilaGS = new ConnectorOntology("

filepath/sakila_gs.ttl", "Sakila_Goldstandard");
7 Datasource dsSakilaGS = connSakilaGS.loadSchema();
8

9 // Opening and loading a CSV file
10 DSInstanceConnector connDept = new ConnectorCSV("

filepath/department.csv", ",", "\n", "
FAW_Department");

11 Datasource dsDept = connDept.loadSchema();

Fig. 3. Data Source Connectors

In QuaIIe, each data source connectors also offers at least
one gold standard implementation, in order to allow the calcu-
lation of reference-based DQ dimensions (e.g., completeness).
Fig. 4 shows the creation of two different gold standards:
(1) empGS, which can be used for quality measurement at
the data-level, and (2) hsGS1, a HierarchicalSchemaGS
that is solely used for schema quality measurement. Since
specific gold standard implementation might have different
tasks, each implementation requires a different set of pa-
rameters. However, all gold standards in QuaIIe inherit from
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the abstract class GolStandard, which offers methods to
retrieve referenced records or schema elements. The object
empGS in Fig. 4 shows the instantiation of a gold standard
object for a single concept (table), for DQ calculations on
different aggregation levels (i.e., when only parts of the content
of a data source should be analyzed).

The HierarchicalSchemaGS for schema quality cal-
culations extends the idea of simply representing a perfect
reference to an information source; rather it is a ”container”
that holds the reference to another information source and cal-
culates the similarity or dissimilarity between schema elements
on-the-fly. Thus, it is, for example, possible to compare one
MySQL DB schema to a DSD description as shown in Fig. 4,
to overcome data model heterogeneity.

1 // Creation of a gold standard from a single concept
2 GoldStandard empGS = new StrictConceptMySQLGS(

dsEmpGS.getConcept("employees"), connEmpGS);
3

4 // Creation of a schema gold standard
5 GoldStandard hsGS1 = new HierarchicalSchemaGS(

dsSakila1, dsSakilaGS);

Fig. 4. Gold Standards

C. Data Quality Calculators and DQ Store

Each DQ calculator is dedicated to one of the quality di-
mensions described in Section III and links the measurements
to the corresponding DSD elements in the DQ store. Quality
measurements in the DQ store can be used for reporting
or reused by other calculators, and can be divided into two
different types: quality ratings or quality annotations. A rating
is a double value between 0.0 and 1.0, which is calculated
by a specific metric that is assigned to a quality dimension.
An example would be a value of 0.85 for the dimension
”completeness” on data-level using the metric ”ratio”. A
quality annotation can be an arbitrary object that is linked to
a DSD element in the DQ store in order to provide additional
information about the quality. An example would be the
annotation of functional dependencies to a concept.

Fig. 5 shows the application of all non-time-related DQ
calculators that are implemented in the current version of
QuaIIe. Initially, the concept ”employees” from the erroneous
Datasource dsEmp1 is selected for closer investigation.
As an example for a distance function, which is required
for the minimality calculation, line 5-7 cover the creation of
an EnsembleDistance, which is a weighted combination
of an arbitrary number of specific distance functions. In
the demo, we use a combination of two string distances
for the attributes first_name and last_name in the
”employees” table. However, QuaIIe allows the creation of
arbitrary complex distance functions for each record. Finally,
ratings for the DQ dimensions accuracy, completeness, per-
tinence, and minimality are calculated. Line 16 shows how
to programmatically retrieve those stored DQ values from the
DQ store. One data quality rating or annotation is uniquely
identifiable in the DQ store by a reference to the DSD element

(e.g., a reference to the concept ”employees” in dsEmp1),
the DIMENSION_LABEL of the measured quality dimension
(e.g., ”completeness”) as well as a METRIC_LABEL (e.g.,
”ratio”), which describes the metric used for calculating the
dimension.

1 // Select concept "employees" from employees DB
2 Concept c = dsEmp1.getConcept("employees");
3

4 // Create a custom distance measure
5 EnsembleDistance<Record> dist = new EnsembleDistance

<Record>();
6 dist.addDistance(new StringRecordDistance(c.

getAttribute("first_name"), new
LevenshteinDistance()), 0.5);

7 dist.addDistance(new StringRecordDistance(c.
getAttribute("last_name"), new
LevenshteinDistance()), 0.5);

8

9 // Perform quality calculations
10 RatioAccuracyCalculator.calculate(c,empGS,connEmp1);
11 RatioCompletenessCalculator.calculate(c,empGS,

connEmp1);
12 RatioPertinenceCalculator.calculate(c, empGS,

connEmp1);
13 RecordMinimalityCalculator.calculate(c, dist, 0.1,

connEmp1);
14

15 // Retrieve DQ measurements from the DQ store
16 DataQualityStore.getDQValue(c,

RatioPertinenceCalculator.DIMENSION_LABEL,
RatioPertinenceCalculator.METRIC_LABEL)

Fig. 5. Data Quality Calculations

In addition to the measurement of dsEmp1 (501 records),
we applied the same calculations on the ”employees” table of
dsEmp2 (4,389 records). The results can be compared in Table
IV. The low quality values for accuracy and completeness are
due to the small subsets of the erroneous tables in contrast to
the original employees table with 30,0024 records.

TABLE IV. DQ MEASUREMENT OF ERRONEOUS DATA SOURCES

Dimension dsEmp1 dsEmp1

Accuracy 0.0013 0.0116
Completeness 0.0013 0.0116
Pertinence 0.7725 0.7938
Minimality 0.7180 0.7532

For the schema quality calculations, we employed a DSD
description of the original Sakila DB as gold standard and
accessed the three additional data sources (dsSakila1, dsSak-
ila2, dsSakila3) through the MySQL connector. Each data
source contains schema modifications that tackle one of the
schema quality dimensions correctness, completeness, and
pertinence, and are justified in the following paragraphs. For
the demonstration using QuaIIe.jar on our project website
[33], we provided all four schemas as DSD files in order to
facilitate data exchange and reproduction.

The 16 tables from Sakila were transformed into 14
DSD concepts and two DSD reference associations (film_-
category and film_actor). For the hierarchical schema
similarity, standard parameters have been used with a less re-
strictive attribute similarity threshold of 0.8. The determination
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and evaluation of the schema similarity standard parameters is
justified in [14]. Fig. 6 shows the application of the schema
quality calculators.

1 HierarchicalSchemaCorrectness.calculate(dsSakila1,
hsGS1);

2 HierarchicalSchemaCompleteness.calculate(dsSakila2,
hsGS2);

3 HierarchicalSchemaPertinence.calculate(dsSakila3,
hsGS3);

4 RatioMinimalityCalculator.calculate(dsEmpGS);
5 NormalFormCalculator.calculate(dsEmpGS, connEmpGS);

Fig. 6. Schema Quality Calculations

The schema quality measurements that have been generated
in Fig. 6, are 0.8125 for correctness, 0.8125 for completeness,
0.8824 for pertinence, and 0.8 for minimality. The results are
discussed in more detail in the following subsections.

a) Schema Correctness: In order to demonstrate the
correctness dimension, we performed changes in the ob-
served schema but did not remove or add new schema
elements. The corresponding DQ report can be gener-
ated by executing java -jar QuaIIe.jar sakila_-
correctness.ttl sakila_gs.ttl. First, the concept
film was renamed to ”movie”, which did not change the
ratings for pertinence and completeness, but decreased cor-
rectness slightly to 0.9375 due to the additional incorrect
element. Second, all occurrences of film (e.g., film_id)
in the DB were replaced with ”movie”. While completeness
and pertinence retained a rating of 1.0, because all concepts
and associations were assigned (even if incorrectly) to their
original correspondences in the GS, correctness achieved only
a rating of 13

13+3+0 = 0.8125.

b) Schema Completeness: The completeness calcula-
tion was demonstrated by removing schema elements. The
DQ report for this demo can be generated by assessing
sakila_completeness.ttl. Initially, the two tables
category and film_category were removed, which
resulted in a completeness rating of 14+0

14+0+2 = 0.875 because
two elements were classified as missing. Then, the attribute
picture was deleted from the table staff. Removals at
the attribute level did not directly affect the result of the com-
pleteness calculation, since staff is still correctly assigned to
its gold standard representation due to the tolerance of the dis-
tance calculation. Concluding, three additional attributes were
removed from staff, which resulted in a similarity rating
of 0.6923 between staff and its correspondence in the GS.
Consequently, both tables were not mapped because they were
too different and completeness dropped to 13+0

13+0+3 = 0.8125.

c) Schema Pertinence: For the demonstration of per-
tinence, we added additional elements to the schema and
the quality report can be generated by assessing the file
sakila_pertinence.ttl. In a first step, the ”employ-
ees” table from the employees DB was added to dsSakila3,
dropping pertinence to 0.9412. This demo correctly classifies
the concept employees as an extra element, although the
new concept has a relatively low distance to the concept

actor. Second, we modified the concept actor in dsSak-
ila3, such that no assignment to its corresponding concept
in the GS was created and the pertinence rating dropped to
15+0

15+0+2 = 0.8824. Following, the newly added employees
table was aligned with the actor concept in the GS by
removing and altering attributes. This resulted in a similarity
value of 0.8333 between employees and the concept actor
from the GS and increased completeness to 1.0 (all elements
could be assigned to the GS). However, the pertinence di-
mension (0.9412) indicated the extra actor concept in the
observed schema, which did not match any of the GS elements.

We conclude that an examination of all three dimensions
(correctness, completeness, and pertinence) is advisable when
measuring the quality of a schema. Note that the correctness
metric is particularly strict, because it is decreased by every
incorrect element in the schema, whereas completeness and
pertinence do not distinguish between correct and incorrect.

d) Schema Minimality: Analogous to the data minimal-
ity, schema minimality requires a distance function. Currently,
two schema distance functions are offered: the similarity
flooding algorithm introduced in [27] and hierarchical schema
similarity, which we use in the following calculations with
standard parameters that have been evaluated in [14]. First, we
observed the Sakila DB schema (sakila_gs.ttl), which
achieves an ideal minimality rating of 16−1

16−1 = 1.0, because
all schema elements are sufficiently different to each other.

Second, we evaluated the employees schema, which yields
the similarity matrix in Table V. Interestingly, the two as-
sociations dept_emp and dept_manager achieve a very
high similarity of 0.875, which reduces the minimality rating
to 5−1

6−1 = 0.8. In practice, this rating indicates an IS architect
that the two associations should be further analyzed. However,
in our case, no further action is required since the employees
schema contains a special modeling concept of parallel as-
sociations (i.e., two different roles) which does not represent
semantic redundancy, but leads to very similar relations in the
schema model (cf. [31]). Since it is known that this modeling
construct yields high similarity values (e.g., also for schema
matching applications), it was specially suited to demonstrate
our minimality metric. The full quality report for this demo
can be generated by executing ”java -jar QuaIIe.jar
employees.ttl”.

TABLE V. SIMILARITY MATRIX FOR EMPLOYEES SCHEMA

depts* dept emp dept mgr* employees salaries titles

depts* 1.0 0.125 0.125 0.1 0.125 0.125
dept emp 0.125 1.0 0.875 0.1818 0.2222 0.1
dept mgr* 0.125 0.875 1.0 0.1818 0.2222 0.1
employees 0.1 0.1818 0.1818 1.0 0.1818 0.1818
salaries 0.125 0.2222 0.2222 0.1818 1.0 0.375
titles 0.125 0.1 0.1 0.1818 0.375 1.0

*Departments is abbreviated with “depts” and dept manager with “dept mgr”.

e) Normal Form Calculation: The NF calculator was
applied to the employees DB and yields BCNF for each
concept. The minimal cover of the FDs is shown in Table VI.

29Copyright (c) IARIA, 2018.     ISBN:  978-1-61208-637-8

DBKDA 2018 : The Tenth International Conference on Advances in Databases, Knowledge, and Data Applications



Due to the large number of records in the employees database,
calculating these results took about 22 minutes and 45 seconds
on a Macbook Pro with an Intel Core i7 processor with 2,2
GHz and 16 GB main memory. In addition to FDs, candidate
keys are also annotated to the observed schema elements, and
attributes are annotated with a Boolean value that indicates
whether they are classified as key or non-key. Note that, par-
ticularly in terms of performance, more sophisticated methods
of discovering FDs exist [29]. However, since the main aim
of our work was to provide a comprehensive approach to data
and schema quality measurement, the normalization dimension
was included for completeness to support full FD discovery
(i.e., without approximation).

TABLE VI. NF CALCULATION - EMPLOYEES SCHEMA

Concept Functional Dependencies

departments {dept no}→{dept name}, {dept name}→{dept no}
dept emp {emp no, dept no}→{from date, to date}
dept manager {emp no}→{dept no, from date, to date}
employees {emp no}→{first name, last name, gender, birth date,

hire date}
salaries {emp no, from date}→{to date, salary}
titles {emp no, title, from date}→{to date}

D. Data Source Integration

In IIS, it is often necessary to estimate the quality
of data stemming from different IS. QuaIIe supports the
virtual integration of different concepts, which is real-
ized with the Java classes IntegratedDatasource and
IntegratedConcept. Fig. 7 shows an example integra-
tion, where all records from the table ”employees”, which is
present in both erroneous data sources dsEmp1 and dsEmp2,
are unified. The data is stored in form of a virtual integrated
data source (ids), which exists only during runtime.

1 IntegratedDatasource ids = DSDFactory.
makeIntegratedDatasource("integratedEmp");

2

3 ISQLIntegrator integrator = new ISQLIntegrator(ids);
4 integrator.add(dsEmp1, connEmp1);
5 integrator.add(dsEmp2, connEmp2);
6

7 IntegratedConcept ic = integrator.
makeIntegratedConceptFromString("SELECT * FROM
dsEmp1.employees UNION SELECT * FROM dsEmp2.
employees", "integratedEmployees");

Fig. 7. Data Integration

An integrated concept contains an operator tree, which
specifies the data sources, concepts, connectors, and integra-
tion transformations that are required for its creation. After
generating such an integrated concept, it can be assessed
likewise to an ordinary concept from a single data source in
QuaIIe (cf. lines 3-6 in Fig. 8). Additionally, it is possible to
estimate the quality (cf. Section III-F), which is not a complete
measurement of the new integrated concept, but is based
on the prior quality ratings of each IS. Thus, an estimation
requires the prior measurement of each IS that takes part in
the integration.

1 DSInstanceConnector integrConn = new
IntegratedInstanceConnector(ic);

2

3 RatioCompletenessCalculator.calculate(ic, gsEmp,
integrConn);

4 RatioAccuracyCalculator.calculate(ic, gsEmp,
integrConn);

5 RatioPertinenceCalculator.calculate(ic, gsEmp,
integrConn);

6 RecordMinimalityCalculator.calculate(ic, dist, 0.1,
integrConn);

7

8 RatioCompletenessCalculator.estimate(ic);
9 RatioAccuracyCalculator.estimate(ic);

10 RatioPertinenceCalculator.estimate(ic);

Fig. 8. DQ Estimation of an integrated Concept

The ratings for the DQ calculations and estimations from
Fig. 8 are compared in Table VII and show high conformance.
In the current version of QuaIIe, quality estimation is only
available for the dimensions accuracy, completeness, and per-
tinence. However, an extension of the DQ estimators to other
dimensions, like minimality, is planned as future work.

TABLE VII. DQ CALCULATION OF AN INTEGRATED CONCEPT

Dimension Measurement Estimation

Accuracy 0.0129 0.0130
Completeness 0.0129 0.0128
Pertinence 0.7916 0.7916
Minimality 0.7494 -

E. Data Quality Report

In order to present the quality ratings and annotations
contained in the DQ store in a human- and machine-readable
way, QuaIIe offers several reporter classes that generate a
quality report. The most comprehensible end-user report is
XMLTreeStructureDQReporter, which is created in
Fig. 9 and exports a description of all connected data sources
with their DSD elements, quality ratings and annotations.
Since such a report tends to be large and verbose for large
IIS, the hierarchical structure of the XML document allows to
drill-down and roll-up on different aggregation levels by using
a suitable viewer. In addition, languages like XSLT, XQuery,
or XPath allow a user to search within such a report. The
advantage of an XML report in our use case is however the
fact that it can be reused automatically for further analysis
and benchmarking (e.g., for data quality monitoring). When
measuring the quality of the published DSD schemas with
QuaIIe.jar (cf. [33]), the output is such a report.

1 XMLTreeStructureDQReporter reporter = new
XMLTreeStructureDQReporter();

2 reporter.buildReport();
3 reporter.writeReport("path/DQReport.xml");

Fig. 9. Data Quality Report Generation

V. CONCLUSION AND FUTURE WORK

In this paper, we have described QuaIIe, a tool to esti-
mate and measure the data and schema quality of an IIS.
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QuaIIe generates a machine- and human-readable quality
report, which allows for repetitive quality measurement and
comparison of different reports from the same IIS. The DQ
measurement covers the dimensions accuracy, correctness,
completeness, pertinence, minimality, and normalization for
both, the schema and the data of an IS. To the best of our
knowledge, there exists no tool that measures such a large
number of different DQ dimensions in a single application.
However, our major contribution is the unsupervised and
automated ad-hoc analysis of both data and schema quality.

Our ongoing and future work focuses on a practical evalu-
ation of QuaIIe on real-world data with respect to the benefits
of the measured DQ metrics. Coupled to the evaluation, we
plan to extend the theoretical foundations by more deeply
considering research from related fields, like data cleansing
and integration. In addition, several implementation extensions
like a calculator for the readability dimension as well as a
connector for Oracle DBs and a connector for Apache Cas-
sandra are currently under development. An implementation of
a graphical user interface to visualize the DQ measurements
is also planned.
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