

A Denormalization Approach to Answering Join Queries

Mohammed Hamdi1, Kavya Narne2, Hamzah Arishi3, Feng Yu4, and Wen-Chi Hou2
1Department of Computer Science, Najran University,

Najran, Saudi Arabia

E-mail: mahamdi@nu.edu.sa

2Department of Computer Science, Southern Illinois University,

Carbondale, IL, USA

E-mail:{kavya, hou}@cs.siu.edu
3College of Commuting and Informatics, Saudi Electronic University

Riyadh, Saudi Arabia

E-mail: a.hamzah@seu.edu.sa

4Department of Computer Science and Information Systems

Youngstown State University

Youngstown, OH, USA

 E-mail: fyu@ysu.edu

Abstract— Relational databases may not be an efficient solution

to store highly connected data. Graph traversals over high-

connected data require complex join operations. These join

operations are generally very expensive and hard to compute.

In the light of this, a data structure, called Join Core is

emerging. Join Core pre-stores equi-join relationships of tuples

on inexpensive and space abundant devices, such as disks, to

facilitate query processing. The equi-join relationships are

captured, grouped, and stored as various tables on disks. This

methodology assists the join queries to be answered quickly by

merely merging these tables without having to perform

expensive joins. We use Join Core and Neo4j graph database in

our experiments as they deal with highly connected data.

Experiments are performed to compare the query processing

time and space consumptions between them. Preliminary

experimental results showed that Join Core outperforms Neo4j

when complex queries are processed.

 Keywords—Query Processing; Join Queries; Graph Databases;

Equi-Join.

I. INTRODUCTION

 In many applications, such as Semantic Web, Social

and Computer Networks, and in Geographic Applications,

data are highly connected and have a natural representation

as a graph. In these contexts, relational databases may not be

suitable for those highly connected data where data are spread

among relations, and it is hard to capture and group the join

relationships among data over traditional systems [24].

Moreover, graph traversals over high-connected data involve

complex join operations [7][24]. These join operations are

generally very expensive and hard to compute. Complex

queries involving multiple joins of large relations can easily

take minutes or even hours to compute over the target

database. For the above reasons, we previously proposed an

anti-relational approach, called Join Core in [22].

 Here, the paper extends the work of Join Core in [22] and

makes the following contribution:

- Detailed discussions on answering cyclic join queries, and

queries with other joins.

- We analyze the time and space consumption of using Join

Core.

- We propose effective methods that can significantly reduce

the space consumption of the Join Core.

- We implement the Join Core and perform experiments to

compare its performance efficiency with a Neo4j graph

database instead of MySQL.

The technique can ease the job of the query optimizer

because there are fewer or no joins to perform and provide

less resources consumptions, e.g., Central Processing Unit

(CPU) and memory. A number of experiments have been

done to compare the performance of Join Core and Neo4j

[24]. The experimental results show that processing queries

with Join Core is faster than with Neo4j. This is because there

is no need to perform join operations at run time with Join

Core while in Neo4j, the path traversal operations depend

upon the complexities of the relationships of tuples. We

believe the benefits of Join Core, namely instant responses,

fast query processing, and small memory consumptions, are

well worth the additional storage space incurred.

The rest of the paper is organized as follows. Section II

surveys work in materialized views and Section III introduces

the terminology. Section IV shows a sample Join Core and

how it can be used to answer equi-join queries. Section V lays

down the theoretical foundation for answering equi-join

queries using the Join Core. Section VI extends the

framework to queries with other types of joins and set

operations. Section VII analyzes the time and space

17Copyright (c) IARIA, 2019. ISBN: 978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

consumptions of the Join Core, and discusses measures to

reduce the space consumption. Section VII reports

experimental results. Finally, conclusions are presented in

Section VIII.

II. LITERATURE SURVEY

In this section, we discuss briefly the literature survey.

Materialized views, join indices, and graph databases are

related to our work as both attempt to pre-compute data to

facilitate query processing.

Materialized views generally focus on Select-Project-Join

(SPJ) queries and, perhaps, on final grouping and aggregate

functions. The select and project operations in the views

confine and complicate the uses of the views. As a result,

much research has focused on how to select the most

beneficial views to materialize [8][10][15][19] and how to

choose an appropriate set of materialized views to answer a

query [1][9][16].

Materialized views materialize selected query results,

while Join Core materializes selected equi-join relationships.

Therefore, materialized views may benefit queries that are

relevant to the selected queries, while Join Core can benefit

queries that are related to the selected equi-join relationships,

which include queries with arbitrary sequences of equi-,

semi-, outer-, anti-joins and set operators.

A join index [14][21] for a join stores the equi-join result

in a concise manner as pairs of identifiers of tuples that would

match in the join operation. It has been shown that joins can

be performed more efficiently with join indices than the

traditional join algorithms. However, it still requires at least

one scan of the operand relations, writes and reads of

temporary files (as large as the source relations), and

generating intermediate result relations (for queries with

more than one join). On the other hand, with Join Core, join

results are readily available without accessing any source or

intermediate relation. Very little memory and computations

are required. In addition, join indices are not useful to other

join operators, such as outer-joins and anti-joins.

Graph databases use the graph data model to structure and

perform the main database systems operations (Create, Read,

Update, and Delete). The graph data model has two basic

elements: node and relationship. Unlike the relational

databases, the graph databases store the relationships as

entities which make it more flexible and scalable. This is

because when the data model expands or business

requirement changes, it is easier to add connection

(relationship) between entities [7][24].

Graph databases also use the graph model to pre-store the

join relationships of tuples and query connections at creation

time and make them readily available for any later join query

operation [24]. This can result in no penalties for complex

join queries at runtime as the Join Core does. They use the

index- free so that the query processing time depends on the

searched graph length rather than the total size of the graph.

However, the path traversal operations in the complex

relationships of nodes sometimes decelerate the query

processing time. In contrast, the result size of the query, not

the complexity of join query determines the query processing

time with Join Core.

III. TERMINOLOGY

In this paper, we assume all the data model and queries

are based on the set semantics. The equi-join operator is the

most commonly used operator to combine data spread across

relations. Other useful joins, such as the semi-join, outer-join,

and anti-join, are all related to the equi-join. Therefore, we

shall first lay down the theoretical foundation of Join Core

based on the equi-join, and then extend the framework to

other joins in Section VI. Hereafter, we shall use, for

simplicity, a join for an equi-join, unless otherwise stated.

A join graph is commonly used to describe the equi-join

relationships between pairs of relations. These relationships

are generally defined before the database has been created.

Certainly, one can also include other frequently referenced

ad-hoc equi-join relationships in the graph.

For simplicity, we assume there is at most one equi-join

relationship between each pair of relations.

Definition 1. (Join Graph of a Database). Let D be a

database with n relations R1, R2, …, Rn, and G (V, E) be the

join graph of D, where V is a set of nodes that represents the

set of relations in D, i.e., V = {R1, R2, R3, ..., Rn}, and E = {⟨Ri,

Rj⟩ | Ri, Rj ∈ V, i ≠ j)}, is a set of edges, in which each

represents an equi-join relationship that has been defined

between Ri and Rj, i ≠ j.s

If the join graph is not connected, one can consider each

connected component separately. Therefore, we shall assume

all join graphs are connected.

Each join comes with a predicate, omitted in the graph,

specifying the requirements that a result tuple of the join must

satisfy, e.g., R1.attr1=R2.attr2. For simplicity, we shall use a

join, a join edge, and a join predicate interchangeably. We

also assume all relations and join edges are numbered.

Example 1. (Join Graph). Figure. 1(a) shows the join

graph of a database with five relations R1, R2, R3, R4, and R5,

connected by join edges, numbered from 6 to 9.

To round out the theoretical framework, we shall

introduce a concept, called the trivial equi-join. Each tuple in

a relation Ri can be considered as a result tuple of a trivial join

between Ri and itself with a join predicate Ri.key = Ri.key,

where key is the (set of) key attribute(s) of Ri. Trivial join

predicates are not shown explicitly in the join graphs. All join

edges in Figure. 1(a), such as 6, 7, 8, and 9, are non-trivial or

regular joins.

 We have reserved predicate number i, 1≤ i ≤5, for trivial

join predicate i, which is automatically satisfied by every

tuple in relation Ri. The concept of trivial join predicates will

be useful later when we discuss a query that contains outer-

joins, anti-joins, or no joins. Hereafter, all joins and join

predicates refer to non-trivial ones, unless otherwise stated.

18Copyright (c) IARIA, 2019. ISBN: 978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

To conserve space, a database and its join graph refer to

only the parts of the database and join graphs that are of our

interest and for which we intend to build Join Cores. We will

discuss other space conservation measures in Section VII.

Definition 2. (Join Queries). Let ⋈({Ri, …, Rj}, E’) be a

join query, representing joins of the set of relations {Ri, …,

Rj} ⊆ V, 1 ≤ i, …, j ≤ n, with respect to the set of join

predicates E’ ⊆ E among them.

Definition 3. (Join Graph of a Join Query). The join graph

of a join query ⋈({Ri, …, Rj}, E’), denoted by G’(V’, E’), is

a connected subgraph of G (V, E), where V’ = {Ri, …, Rj} ⊆

V, and E’ ⊆ E is the set of join predicates specified in the

query.

 The join graph of a join query is also called a query

graph. We shall exclude queries that must execute Cartesian

products or θ-joins, where θ ≠ “=”, from discussion as Join

Core cannot facilitate executions of such operators.

 Example 2. (Matching of Join Attribute Values). Figure.

1(b) shows the matching of join attribute values between

tuples. Tuples are represented by their IDs in the Figure. That

is, R1 has 3 tuples, A, B, C, i.e., R1 = {A, B, C}. R2 = {a, b, c},

R3 = {I}, R4 = {α, β, γ}, R5 = {μ, λ}.

The edges between tuples represent matches of join

attribute values. For example, tuples A and B of R1 match

tuples a and b of R2, respectively. Tuple a has two other

matches, I of R3 and α of R4. c of R2 matches γ of R4, and α

matches μ of R5.

Definition 4. ((Maximally) Extended Match Tuple).

Given a database D = {R1, …, Rn} and its join graph G, an

extended match tuple (tk, …, tl), where 1≤ k, ..., l ≤ n, tk ∈ Rk,

…, tl ∈ Rl, and Rk, …,Rl are all distinct relations, represents

a set of tuples {tk, …, tl} that generates a result tuple in {tk}

⋈ …⋈ {tl}. A maximally extended match tuple (tk, …, tl), is

an extended match tuple if no tuple tm in Rm (∉ {Rk, …, Rl})

matches any of the tuples tk, …, tl in join attribute values.

It can be observed that in Figure. 1(b), (A, a, I, α, μ) is a

maximally extended match tuple. The same can be said of (B,

b) because the match cannot be extended by any tuple in

relations other than R1 and R2. Similarly, (c, γ), as well as (C),

(β), and (λ), is also a maximally extended match tuple.

IV. JOIN CORE STRUCTURE AND

CONSTRUCTION

In this section, we show an example of a Join Core and

explain how it is structured and used to answer equi-join

queries.

A. Join Core Structure and Naming

Consider Figure. 1 again. The join relationships we wish

to store are (A, a, I, α, μ), (B, b), (c, γ), (C), (β), and (λ), each

representing a maximally extended match tuple. We intend to

store these maximally extended match tuples in various tables

based on the join predicates, both trivial and non-trivial ones,

they satisfy. These tables form the Join Core.

Example 3. (Sample Join Core). Figure. 2 shows the Join

Core for the database in Figure. 1. The attributes of the Join

Core tables, i.e., 1, 2, 3, 4, and 5, represent the sets of

(interesting) attributes of R1, R2, R3, R4, and R5, respectively,

and are called the R1, R2, …, R5 components of the tables.

 (B, b) is stored in J1,2,6 because (B, b) satisfies join

predicate 6, and trivial predicates 1 (B ∈ R1) and 2 (b ∈ R2).

Similarly, (c, γ) is stored in J2,4,8 and (A, a, I, α, μ) is stored in

J1,2,3,4,5,6,7,8,9. C (∈ R1), β (∈ R4), and λ (∈ R5) satisfy only trivial

predicates and thus are stored in J1, J4, and J5, respectively.

Assume join predicate numbers 1, …, n are reserved for

trivial joins between R1, …, Rn and themselves, respectively,

and non-trivial predicates are numbered from n+1 to n+e,

where e is the number of join edges in the join graph.

Definition 5. (Join Core). A join Core is composed of a set

of tables Jk, …, l, 1 ≤ k, …, l ≤ n+e, each of which stores a set

of maximally extended match tuples that satisfy all and only

the join predicates k, …, l. Each table Jk, …, l is called a Join

(a) A Join Graph

(b) Matching of Join Attribute Values

Figure 1. A Join Graph and Matching Tuples

1 4 5 1 2 2 4

C β λ B b c γ

J1 J4 J5 J1,2,6 J2,4,8

 1 2 3 4 5

A a I α μ

J1,2,3,4,5,6,7,8,9

Figure 2. Join Core

R1

R4

7

9

7

8

6

6

8
9

R1

R2

R5

R4

R3

I

C

B

A

R5

R3

R2

c

b

a

γ

β

α

λ

μ

19Copyright (c) IARIA, 2019. ISBN: 978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

Core table (or relation). The indices k, …l of the table Jk, …, l

is called the name of the table for convenience.

For simplicity, we shall call a maximally extended match

tuple in a Join Core table a match tuple, to be differentiated

from a tuple in a regular relation.

B. Answering Queries using Join Core

The name of a Join Core table specifies the join predicates

satisfied by the match tuples stored in it. On the other hand,

a join query specifies predicates that must be satisfied by the

result tuples. Therefore, to answer a query is to look for Join

Core tables whose names contain the predicates of the query.

Consider Figure.1 and 2 and the query ⋈({R1, R2, R3, R4,

R5}, {6, 7, 8, 9}). The components of the result tuples must

satisfy predicates 6, 7, 8, and 9. In addition, the components

themselves also satisfy trivial predicates 1, 2, 3, 4, 5. Thus,

we look for Join Core tables whose names contain predicates

1, 2, 3, 4, 5, 6, 7, 8, and 9. That is, ⋈({R1, R2, R3, R4, R5}, {6,

7, 8, 9}) = J1,2,3,4,5,6,7,8,9.

As for ⋈ ({R1, R2}, {6}), while J1,2,6 certainly contains

some result tuples, J1,2,3,4,5,6,7,8,9 also contains some result

tuples because tuples in J1,2,3,4,5,6,7,8,9 also satisfy 1, 2, and 6.

That is, ⋈({R1, R2}, {6}) = π 1,2 (J1,2,6) ∪ π 1,2 (J1,2,3,4,5,6,7,8,9).

Similarly, ⋈({R2, R4}, {8}) = π 2,4 (J2,4,8) ∪ π 2,4 (J1,2,3,4,5,6,7,8,9);

⋈({R2, R3}, {7}) = π 2,3 (J1,2,3,4,5,6,7,8,9).

It even holds for queries containing no non-trivial joins.

For example, R1 = π1J1 ∪ π1 (J1,2,6) ∪ π1 (J1,2,3,4,5,6,7,8,9), R2 = π2

(J1,2,6) ∪ π2 (J2,4,8) ∪ π2 (J1,2,3,4,5,6,7,8,9), R3 = π3 (J1,2,3,4,5,6,7,8,9),

R4 = π4J4 ∪ π4 (J2,4,8) ∪ π4 (J1,2,3,4,5,6,7,8,9), and R5 = π5J5 ∪ π5

(J1,2,3,4,5,6,7,8,9). It is observed that Ri can be reconstructed from

the Join Core, which implies that a Join Core can itself be the

database, if one wishes to not store the relations in traditional

ways.

Notice that when a non-trivial join predicate, such as 6, is

satisfied by a match tuple, the associated trivial predicates on

its operand relations, i.e., 1 and 2, are also satisfied

automatically. Therefore, there is no need to match the trivial

predicates of a query with the Join Core table names. That is,

given a join query with a non-empty set of predicates {u, …,

v}, the result tuples can be found in Join Core tables whose

names contain u, …, v, without regard to trivial predicates.

Trivial predicates cannot be ignored when a query contains

no non-trivial joins, such as those described above or contains

outer- or anti-joins, discussed later.

Duplicates need not be eliminated in individual π i, …, j(Jk,

…, l) above; they can be eliminated all at once when match

tuples are merged in the final union operations. To identify

duplicate result tuples, a simple hashing scheme is sufficient.

Note that this is the only place that requires major memory

consumption (in building a hash table).

The database system can begin to generate result tuples

once the first block of a relevant Join Core table is read into

memory, that is, instantly. The total computation time is also

drastically reduced because there are no (or fewer) joins to

perform.

C. Join Core Construction

Now, let us discuss how to construct a Join Core for a

database. Tuples that find no match in one join may find

matches in another join. For example, b finds no match in R2

⋈ R3, but finds a match B in R1 ⋈ R2. Unfortunately, such

join relationships can be lost in successive joins, for example,

in (R1 ⋈ R2) ⋈ R3.

Full outer-joins, or simply outer-joins, retain matching

tuples as well as dangling tuples, and thus can capture all the

join relationships. Any graph traversal method can be used

here as long as it incurs no Cartesian products during the

traversal.

For illustrative purpose, we assume a breadth-first

traversal is adopted here. Relations are numbered based on

the order encountered in the traversal. An outer-join is

performed for each join edge. The output of the previous

outer-join is used as an input to the next outer-join. The result

tuples are distributed to Join Core tables based on the join

predicates, both trivial and non-trivial ones, they have

satisfied in the traversal.

Example 4. (Join Core Construction). Assume a breadth-

first traversal of the join graph (Figure. 1(a)) from R1 is

performed. An outer-join is first performed between R1 and

R2. It generates (intermediate) result tuples (A, a), (B, b), (C,

-), and (-, c). The next outer-join with R3 generates (A, a, I),

(B, b, -), (C, -, -) and (-, c, -). Then, the outer-join with R4

generates (A, a, I, α), (B, b, -, -), (C, -, -, -), (-, c, -, γ), and (-,

-, -, β). The final outer-join with R5 generates (A, a, I, α, µ),

(B, b, -, -, -), (C, -, -, -, -), (-, c, -, γ, -), (-, -, -, β, -), and (-, -, -

, -, λ), which are written, without nulls, to J1,2,3,4,5,6,7,8,9, J1,2,6,

J1, J2,4,8, J4, and J5, respectively, based on the join predicates

they satisfy.

 V. ANSWERING EQUI-JOIN QUERIES

In this section, we formally discuss how a join query can

be answered using the Join Core. First, we consider databases

with acyclic join graphs, followed by databases with cyclic

join graphs.

A. Acyclic Join Graph

As illustrated in the previous section, join queries with

acyclic join graphs can be answered by simply extracting

the requested components from Join Core tables whose

names contain the join predicates specified in the queries.

Theorem 1. Let ⋈ ({Ri, …, Rj}, {u, …, v}) be joins of

the set of relations {Ri, …, Rj} with respect to a set of join

predicates {u, …, v}≠ø. Let e be the number of join edges in

the join graph,

⋈ ({Ri, …, Rj}, {u, …, v}) = ∪{k, …, l} ⊇ {u, …, v} π i, …, j (Jk, …, l)

where 1 ≤ i, …, j ≤ n, 1 ≤ k, …, l, u, …, v ≤ n+e.

20Copyright (c) IARIA, 2019. ISBN: 978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

Here, we shall call {k, …, l} ⊇ {u, …, v} or equivalently, k

∈{u, …, v} ˄… ˄ l ∈{u, …, v} shall be called (table name)

selection criteria.

B. Cyclic Join Graph

Figure. 3(a) shows a cyclic join graph. When a relation is

visited in a, for example, breadth-first traversal, its attributes

are added to the resulting schema. In a cyclic join graph

however, a node may be visited more than once. For example,

R4 is visited through edge ⟨R2, R4⟩ for the first time, and then

through ⟨R3, R4⟩ for the second time when the cycle forms.

To differentiate matches associated with different edges, we

shall create two copies of R4, named R4 (the original name)

and R5 (the next available relation number). Note that this is

effectively converting a cyclic graph into an acyclic one. We

shall call all copies of R4, i.e., R4 and R5, alias relations of R4.

Note that a cycle-completing relation, such as R4, may

replicate more than once if it completes more than one cycle

in the traversal. Figure. 3(b) shows the converted graph.

With a cyclic join graph converted into an acyclic one, a

Join Core can be constructed in the same way as before.

However, to determine whether an extended match tuple

contains a cycle or not, we need to check if the alias

components have the same value.

Example 5. (Answering Cyclic Join Queries). Figure. 4

shows the join relationships and the Join Core for Figure 3.

Consider a cyclic join query: ⋈ ({R1, R2, R3, R4}, {6, 7, 8, 9}).

To ensure that it is the same tuple in the cycle-completing

relation that satisfies both predicates 8 and 9, the alias

components R4 and R5 must be the same. That is, a selection

condition, σ4=5, must be imposed. Thus, ⋈({R1, R2, R3, R4},

{6, 7, 8, 9}) = π 1,2,3,4 (σ4=5 (J1,2,3,4,5,6,7,8,9)) = {(A, a, α, I)}. On

the other hand, (B, b, β, II, III) does not contain an answer to

the query because its R4 and R5 components (i.e., II and III)

are not the same.

Consequently, cycles in a query graph can be treated like

ordinary acyclic join predicates, with the exception that

additional constraints on the equalities of alias components

must be added.

Theorem 2. Let ⋈ ({Ri, …, Rj}, {u, …, v}), 1 ≤ i, …, j ≤ n,

be a query contains cycles.

⋈({Ri, …, Rj}, {u, …, v}) = ∪{k, …, l} ⊇ {u, …, v} π i, …, j(σF

(Jk,…,l))

C. Multiple Join Edges Between Relations

 It is possible that there is more than one join edge between

a pair of relations. This situation can be easily resolved by

treating it as a cycle.

 Example 6. (Multiple Edges between Relations) Assume

there are two join edges, e1 and e2, between R1 and R2. Then,

one can pick any relation, say R2, as the cycle completing

relation, replicate it, and call the replica R3. Finally, let e1 be

the edge between R1 and R2, and e2 be the edge between R1

and R3.

VI. QUERIES WITH OTHER JOINS

Now, a join can be an equi-, semi-, outer- or anti-join. A

join generates result tuples dependent upon whether the equi-

join predicate between the operand relations are satisfied (in

an equi- or semi-join) or not satisfied (in an anti-join). A little

deliberation reveals that match tuples that do not satisfy an

equi-join predicate can be found in Join Core tables whose

names do not contain that predicate, recalling that Join Core

table names specify all and only the equi-join predicates

satisfied. An outer-join generates a result tuple no matter

whether the equi-join predicate is satisfied or not.

A join query consisting of a sequence of join operators

has a query predicate that is a logical combination of the

individual predicates of constituent joins. We attempt to

obtain query result tuples from Join Core tables whose names

satisfy the query predicates. Here, we focus on how to

formulate the query predicates as (table name) selection

criteria for Join Core tables that contain the query result

tuples. For example, satisfying predicate p is rewritten as p ∈

{k, …, l}, where {k, …, l} is the set of indices of a Join Core

table name.

Afterward, specific handlings, such as removal of

unwanted attributes, equality checking for alias components

(for cycle-completing relations), and padding null values for

“missing” attributes (for outer-joins), are performed. For

simplicity, we shall only briefly describe these afterward

handlings.

A. Single-Join Queries

We start by deriving the selection criteria, denoted by S,

for queries with only one join operator. Let p be the equi-join

predicate between Ri and Rj. Consider Ri op Rj, where op is

either an equi-join, semi-join, outer-join, or anti-join.

 (a) A Cyclic Join Graph (b) A Converted Join Graph

Figure 3. Converting A Cyclic Graph

1 2 3 4 5

A a α I I

B b β II III

J1,2,3,4,5,6,7,8,9

 (a) Cyclic Join Relationship

Figure 4. Cyclic Join Relationship and Join Core

7

6
9

R5

R2

R3

R4

R1 R3 R1

R4 R2 8

7

8

6
9

R3

R4 R2

R1

 a
b

B

 A
 β

α

I III

II

(b) Join Core Tables

21Copyright (c) IARIA, 2019. ISBN: 978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

1) Equi-Join. As discussed, to compute Ri ⋈ Rj with a

join predicate p, we look for Join Core tables Jk,…,l whose

indices contain p, i.e., S= p ∈ {k, …, l}. As mentioned, trivial

predicates i and j need not, but can, be included in S because

they are satisfied automatically and must have appeared as

part of the names of the tables satisfying p.

2) Semi-Join. The left semi-join Ri ⋉ Rj and right semi-

join Ri ⋊ Rj extract only the Ri and Rj components from Ri ⋈
Rj, respectively. Here, we shall not be concerned about the

projection operations. Consequently, the selection criterion S

for a semi-join is the same as that for an equi-join, that is, S

= p ∈ {k, …, l}.

3) Outer-Join. While computing Ri ⟗ Rj during the

construction of the Join Core, each pair of tuples satisfying

predicate p forms an output tuple. In addition, each non-

matching tuple from either Ri (satisfying the trivial predicate

i) or Rj (satisfying the trivial predicate j) also forms an output

tuple. Consequently, to answer the query Ri ⟗ Rj, we look

for Join Core tables Jk, …, l such that (i ∈ {k, …, l} ˄ (¬ (p ∈

{k, …, l}))) ˅ (j ∈ {k, …, l} ˄ (¬(p ∈ {k, …, l}))) ˅ p ∈ {k,

…, l}, where ¬ is the logical “not” operator and ˅ is the

logical “or” operator. Since p ∈ {k, …, l} implies i ∈ {k, …,

l} ˄ j ∈ {k, …, l}, the selection criteria S can be simplified

to S= i ∈ {k, …, l} ˅ j ∈ {k, …, l}. Trivial predicates i and j

cannot be omitted from S because no non-trivial predicates

that reference i and j are satisfied.

A left outer-join Ri ⟕ Rj asks for matching tuple pairs and

non-matching tuples from Ri. Therefore, S= i ∈ {k, …, l}.
Similarly, for a right outer-join Ri ⟖ Rj, S=j ∈ {k, …, l}.

After identifying the Join Core tables, tuples that do not

find a match in the other operand relation need to be padded

with null values for those attributes of the other relation.

Example 7. (Outer-Join). Let us consider Figure. 1 and 2.

R1 ⟗ R2: S= 1 ∈ {k, …, l} ˅ 2 ∈ {k, …, l}. Only J1, J1,2,6,

J2,4,8, and J1,2,3,4,5,6,7,8,9 satisfy S. The answer is {(C, -), (B, b),

(-, c) (A, a)}. Note that tuples in J1 and J8 need to be padded

with null values for the set of attributes of the other operand

relations, while unwanted components 3, 4, and 5 need to be

removed from J1,2,3,4,5,6,7,8,9.

R1 ⟕ R2: S= 1 ∈ {k, …, l}. Only J1, J1,2,6, J1,2,3,4,5,6,7,8,9

satisfy S, and the result is {(C, -), (B, b), (A, a)}.

R1 ⟖ R2: S= 2 ∈ {k, …, l}. Only J1,2,6, J2,4,8, J1,2,3,4,5,6,7,8,9

satisfy S, and the result is {(B, b), (-, c) (A, a)}.

4) Anti-Join. An anti-join Ri ⊳ Rj, defined as Ri – (Ri ⋉
Rj), returns tuples in Ri that do not find a match in Rj. When

the outer-join for the edge p was performed during the

construction of the Join Core, such tuples (from Ri) must have

found no match in Rj and were stored in tables whose names

contain i, but not p. Therefore, to answer the query Ri ⊳ Rj,

we look for Jk, …, l, i ∈ {k, …, l} ˄ ¬ (p ∈{k, …, l}), namely,

S= i ∈ {k, …, l} ˄ ¬ (p ∈{k, …, l}). Trivial predicate i cannot

be omitted.

Example 8. (Anti-Join).

R1 ⊳ R2: S= 1 ∈ {k, …, l} ˄ ¬ (6 ∈ {k, …, l}). Only J1

satisfies and the answer is {C}.

R2 ⊳ R4: S= 2 ∈ {k, …, l} ˄ ¬ (8 ∈ {k, …, l}). Only J1,2,6

satisfies and the answer is {b}.

B. Multi-Join Queries

A Join Core consists of regular and extended Join Core

tables. For simplicity, we shall not mention explicitly what

types of Join Core tables the query predicates are applied to.

Readers are advised that if the query is of Type (i), then the

selection criteria should be applied to both types of Join Core

tables; otherwise, they should only be applied to regular Join

Core tables.

Let E = E1 op E2, where E, E1, and E2 are expressions that

contain arbitrary legitimate sequences of equi-, semi, outer-

and anti-join operators, and op is one of these join operators

with a join predicate p. We assume the query graphs for E,

E1, and E2 are all connected subgraphs of G. Let S1 and S2 be

the selection criteria on the Join Core tables for E1 and E2,

respectively, and S the criteria for E. We discuss how to

derive S from S1 and S2.

1) Equi-Join. Consider E = E1 ⋈ E2. Each tuple in E is a

concatenation of a pair of extended matches in E1 and E2 that

satisfy p, and such “longer” extended matches must have

been captured by successive outer-joins (and complementary

joins for cycle-completing relations) performed during the

Join Core construction and stored in Join Core tables whose

names satisfy S1 ˄ S2 ˄ p∈ {k, …, l}. On the other hand, the

components of each tuple in such Join Core tables that satisfy

S1 and S2 must be result tuples of E1 and E2, respectively. In

addition, the two components satisfy the join predicate p and

thus can generate a result tuple in E. Thus, S = S1 ˄ S2 ˄ p ∈

{k, …, l}.

2) Semi-Join. E = E1 ⋉ E2 and E = E1 ⋊ E2. As explained,

a semi-join is basically an equi-join, except that only the

attribute values of one of the operands is retained. Thus, S =

S1˄S2˄p∈{k,…,l}.

 3) Outer-Join. E = E1 ⟗ E2. Tuples in E represent

extended matches that come from non-matching tuples of E1

and E2, and matching pairs of E1 and E2. All these extended

match tuples in E were captured by successive outer-joins

(and complementary joins for cycle-completing relations)

performed during construction of the Join Core and stored in

tables whose names satisfy (S1 ˄ (¬p∈ {k, …, l})) ˅ (S2 ˄

(¬p∈ {k, …, l})) ˅ (S1 ˄ S2 ˄ p∈ {k, …, l}), which can be

simplified to S1 ˅ S2 because p∈ {k, …, l} implies S1 ˄ S2. On

the other hand, each tuple in a Join Core table whose name

satisfies S1 ˅ S2 must provide a result tuple to E1, E2, or E.

Thus, S = S1 ˅ S2. Similarly, for E1 ⟕ E2, S = S1; for E1 ⟖ E2,
S = S2.

22Copyright (c) IARIA, 2019. ISBN: 978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

4) Anti-Join. E = E1 ⊳ E2. Tuples in E are extended

matches in E1 that do not find matches in E2. Thus, tuples in

E must have been captured by successive outer-joins (and

complementary joins) performed and stored in Join Core

tables whose names satisfy S1 but not (S2 ˄ p∈ {k, …, l}). On

the other hand, Join Core tables whose names satisfy S1 but

not (S2 ˄ p∈ {k, …, l}) contain tuples of E1 that do not join

with tuples in E2, which are exactly the result tuples of E.

That is, S = S1 ˄ ¬(S2 ˄ p ∈ {k, …, l}).

Example 9. (Multi-Anti-Join Queries).

(R1 ⋈ R2) ⊳ R3: S= 6 ∈ {k, …, l} ˄ ¬ (7 ∈ {k, …, l}). Only

J1,2,6 satisfies S and the answer is {(B, b)}.

(R2 ⊳ R1) ⊳ (R4 ⋈ R5): S=(2 ∈ {k, …, l} ˄ ¬ (6 ∈ {k, …,

l})) ˄ ¬ (9 ∈ {k, …, l} ˄ 8∈ {k, …, l}). Only J2,4,8 satisfies S,

and the answer is {(c)}.

Theorem 3. Let E = E1 op E2, where E, E1, and E2 are

arbitrary legitimate expressions that contain equi-, semi-,

outer- and anti-joins, and op is one of these join operations

with a join predicate p. Let S1 and S2 be the selection criteria

for identifying Join Core tables from which the resulting

tuples of E1 and E2 can be derived, respectively. Then, the

selection criteria S for E is (i) if op = ⋈, S = S1 ˄ S2 ˄ p∈ {k,

…, l}; (ii) if op = ⋉ or ⋊, S = S1 ˄ S2 ˄ p∈ {k, …, l}; (iii) if

op = ⟗, S = S1 ˅ S2; if op = ⟕; S = S1; if op = ⟖, S = S2; (iv)

if op = ⊳, S = S1 ˄ ¬(S2 ˄ p∈ {k, …, l}).

C. Join Queries with Intersections, Unions, and Differences

 Here, we consider join queries with commonly

encountered set operators, intersections, unions, and

differences. Note that an intersection can be treated as an

equi-join in which the join attribute is the primary key. Here,

we assume that the join graph includes edges specifying the

equalities of primary keys between two schema compatible

relations.

 Let p be a join predicate specifying the equality of primary

key attributes of two schema compatible relations. The

intersection operation requires matches in the key values.

Consequently, the resulting tuples of Ri ∩ Rj can only be

found in Join Core tables Jk, …, l whose names contain

predicate p, i.e., S = p ∈ {k, …, l}. This is exactly the same

selection criterion as that for an equi-join or a (left or right)

semi-join. As for the union operation, the resulting tuples of

Ri U Rj can be found in Join Core tables whose names contain

trivial predicate i or j, i.e., S = i ∈ {k, …, l} ˅ j ∈{k, …, l},

the same selection criteria as for a full outer-join. Similarly,

for the difference operation, the resulting tuples of Ri – Rj can

be found in Join Core tables whose indices contain the trivial

predicate i, but not j, i.e., S = i ∈ {k, …, l} ˄ ¬ (j ∈ {k, …,

l}), the same selection criteria as for an anti-join.

 By the same reasoning as presented in the previous

section (B) and Theorem 3, we can extend the usage of Join

Core tables to queries with arbitrary legitimate sequences of

unions, differences, and intersections, in addition to equi-,

semi-, outer- and anti-joins. The theorem follows.

 Theorem 4. Let E = E1 op E2, where E, E1, and E2 are

arbitrary legitimate expressions that contain equi-joins, semi-

joins, outer-joins, anti-joins, unions, differences, and

intersections, and op is one of these operations with a join

predicate p. Let S1 and S2 be the selection criteria for

identifying Join Core tables from which the result tuples of

E1 and E2 can be derived, respectively. Then, the selection

criteria S for E is (i) if op = ⋈ or ∩, S = S1 ˄ S2 ˄ p∈ {k, …,

l}; (ii) if op = ⋉ or ⋊, S = S1 ˄ S2 ˄ p∈ {k, …, l}; (iii) if op =

⟗ or U, S = S1 ˅ S2; if op = ⟕, S = S1; if op = ⟖, S = S2; (iv)

if op = ⊳ or –, S = S1 ˄ ¬(S2 ˄ p ∈ {k, …, l}).

VII. COST ANALYSIS

In this section, we analyze the time and space

consumption of using Join Core. In addition, we also discuss

measures to reduce the size of Join Core.

A) Time Consumptions

1) Disk Accesses Time

 To answer a query, Join Core tables containing the result

tuples are read into memory. Thus, the total number of disk

accesses is dependent upon the size of the query result, not

the complexity of the query.

2) CPU Time

 Once desired Join Core tables are read into memory, all

that is remaining is to perform equality checking between

alias components (of cycle-completing relations), pad

“missing” attributes with null values (for outer-join

operations), and eliminate unwanted attributes and

duplicates. All these tasks should take only a very small

amount of CPU time.

B) Space Consumptions

 To simplify discussions, we assume no dangling tuple

exists in any of the equi-joins in the graph, which represents

a worst case space consumption scenario since dangling

tuples can shorten the matches. We further assume that in

each join, all tuples of a relation find exactly the same number

of matches in the other relation, namely a uniformity

assumption on the matching of a join.

 Consider a join between Ri (with Ti tuples), and Rj (with

Tj tuples). We shall call Tj/Ti, denoted as rij, the join ratio of

Ti with respect to Tj, that is, the average number of matches

found in Rj for each tuple in Ri. In a one-many relationship

from Ri to Rj, rij ≥1. On the other hand, in a many-one

relationship from Ri to Rj, Tj/Ti ≤ 1. Since each tuple in Ri still

can find one match in Rj, as we have assumed no dangling

tuples exist in the joins, rij is set to 1 (i.e., rij=1) when Tj/Ti ≤

1.

 To estimate the size of a Join Core, we first estimate the

total number of match tuples, denoted by M, in the Join Core,

and multiply it by the length of each match tuple.

23Copyright (c) IARIA, 2019. ISBN: 978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

 To estimate the number of different matches, we can start

from any relation, say Ri, by setting M = Ti, and then marking

Ri as visited. For each edge ⟨Ri, Rj⟩, where Ri is a visited node

while Rj is not, M=M ×rij. Once all relations are visited, the

final M is the estimate.

 Now, let us compute the length of each match tuple. Let e

be the number of join edges and n the number of relations in

the join graph. Each outer-join adds the set of attributes of

one relation to the schema of the output, recalling the

construction of a Join Core. Therefore, the final output of the

outer-joins consists of the values of the attributes of e+1

relations, e+1 ≥ n. For simplicity of analysis, we assume

tuples in all relations have the same or a similar length L.

Therefore, the size the Join Core is

 M×(e+1)×L (1)

 As compared to the database size Tavg×n×L, where

Tavg=Avg{T1, …, Tn} is the average number of tuples in a

relation.

 Note that when all relations are of similar sizes, i.e.,

Tavg≈T1 ≈…≈ Tn, all rij’s ≈1 and M≈Tavg. In addition, if the

graph has no (or few) cycles, i.e., e+1=(≈) n, the Join Core

size would be close to the database size, that is, M× (e+1)×

L≈ Tavg×n× L, which is the best case scenario.

C) Space Reduction Methods

Many data compression techniques [4][5][13] can be used

to compress the Join Core. Here, we shall only discuss

methods that are specifically related to the reduction of the

Join Core structure.

Storing all join relationships of a complex graph can

consume large amounts of space. Here, we discuss heuristics

that can significantly reduce the space consumption of the

Join Cores, however, at the price of incurring additional join

operations. Further research is still needed to analyze the cost

and benefits of these heuristics.

(H1). Store only useful relations, relationships, and

attribute values. Statistics and knowledge on the usages of

relations, relationships, and attributes may be available or can

be collected to assist in making such decisions.

 (H2). Remove smaller relations from a join graph. Smaller

relations, in terms of the numbers of tuples in the relations,

need replicate their tuples more times to generate M match

tuples, which will make updates (on smaller relations) more

expensive. In addition, if a removed relation is referenced in

a join query, then a join operation must be performed.

Removing smaller relations incurs less penalty because joins

with smaller relations are faster to perform. Moreover,

smaller relations have better chances of fitting in memory to

make the joins faster.

 (H3). Remove cycle-completing relations. Removal of a

cycle-completing relation from a graph implies removal of all

its aliases too, which can significantly reduce the storage

consumption. Since any graph traversal method can be used

in construction a Join Core, one is given the opportunity to

select “good” relations to be cycle-completing relations.

Here, we recommend relations that are small (following H2)

and, if possible, complete multiple cycles.

 1) Constructing Join Core with Space Constraint

 Without detailed cost-benefit measures, here is a simple

way to construct a Join Core that satisfies a given space limit.

First, one can, following (H1), remove unwanted relations,

relationships, and attributes if a priori knowledge or statistics

are available. If the Join Core is still too large, one can

consider removing a smallest relation, following (H2), or a

cycle-completing relation, following (H3), until the desirable

size is met.

VI. NEO4J GRAPH DATABASE

 In this section, we discuss Neo4j in details as it will be

used in later performance evaluation against Join Core.

Neo4j is most popular graph databases according to [24].

It is an open-source graph database management system that

provides high scalability and read/write performance [24].

The high performance is mainly owing to the use of both a

native processing and storage model. Native processing

model is referred to the leverage of index-free adjacency

(where related nodes are physically connected to each other)

in graph database. The use of index- free means that the query

time depends on the searched graph length rather than the

total size of the graph [4]. On the other hand, native storage

model refers to the underlying physical structure of the

database, where nodes and relationships are stored in a graph

structure. This technology ensures that the graph database is

optimized by storing related entities close to each other [24].

Neo4j employs the property graph data model [24].

Property graph model consists of nodes, relationship,

properties and labels [7]. Both node and relationship hold a

number of properties that are stored in the form of key-value

pairs. Relationship links nodes to each other and each

relationship has a name, direction and start and end nodes.

Labels tag nodes to group them, and to identify their role in

the dataset. Figure. 5 explains the consumer complaints

against the company’s products and sub-products, and issues

that rose and the company’s responses to. Each and every

node is associated with the labels and the properties.

 In Neo4j, each type of element is stored in a separate data

store. For instance, physical file neostore.nodestore.db

contains all nodes in the dataset where

neostore.propertystore.db and neostore. relationshipstore.db

stores properties and relationship, respectively [7]. Records

inside node and relationship data store are fixed in size which

accelerates record lookups in the file, as any known record

ID can be used compute the record’s location in the file.

 Neo4j can be queried in many ways, such as Traverser

API and Cypher query language [17]. Cypher is a declarative

graph query language provides an efficient way to create,

update and query the graph database [3]. It is considered as a

24Copyright (c) IARIA, 2019. ISBN: 978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

Figure 5. The labelled property graph Model

powerful language that focuses on what to get rather than

how to get it. Cypher’s structure is inspired by SQL to make

it easier and more familiar for the SQL users, although it

focuses on finding and describing patterns in the graph.

Cypher uses clauses (like most query languages) to query

from the graph, a simple read query would be consist of

MATCH, WHERE and RETURN clauses. Cypher execution

engine optimizes and turn each query into an execution plan.

The plan is a pattern of number of connected operators, where

each operator is responsible for a small section of the query

execution.

VII. EXPERIMENTAL RESULTS

A) Space Consumptions

 We have performed experiments on the graph database

NEO4J 3.0.6 community edition along with the Join Core to

compare their performance efficiency. We have performed

all experiments on a laptop computer with a 2.40 GHz CPU,

8GB RAM, and a 1 TB hard drive. 1.2GB consumer

complaint dataset was generated. Consumer Complaints

dataset has 4 relations, i.e. Product table, Issue table,

Response table and Complaint table. The dataset which we

took was from the Neo4j dataset. After processing the dataset

in the join core tables, we get 3 GB dataset. These tables are

stored in the hard disk. The larger size of Join Core is due to

replications of tuples of relations. Similarly, after loading all

the data and the relationships between them in the Neo4j

database we get a data size of 2.4GB. The data is stored in the

disks. The increase in the size of the database is due to

summation of actual size of database, ratio of size of graph.db

to index and ratio of size of graph.db to schema [24]. Table 1

shows the size of Join Core and Neo4j.

 B) Query Processing Time

 We measure the elapsed time of the test queries. In Neo4j,

the consumer complaint dataset has some cypher queries in

[23]. We use the same queries and modify them to be worked

in Join Core. While keeping (most of) the selections and

projections, we remove any “group by”, “order by”, “limit”,

aggregate functions, from the queries so that we can focus

mainly on the join query processing. We add “distinct” to the

queries as we have implicitly assumed the set semantics in

the paper.

 Join Core tables are read from disks into memory for

processing, and the result tuples are written back to the disks.

Elapsed time measures the time from beginning to end, after

writing all result tuples to the disks.

 Table 2 shows the query processing time. In the first

column, the ID of the consumer complaint query is shown

first, followed by the relations involved in the join operations.

For simplicity, relations are referenced by the numbers

assigned to them in Figure. 6. All times are measured in

milliseconds.

 With Join Cores, all queries saw their first responses

instantly. As explained, all it takes is the retrieval of a block

of a relevant Join Core table into memory and simple

manipulations before output it after simple manipulations.

 The result size of the query, not the complexity

determines the query processing time because the join result

is readily available in the Join Core. Queries 2 and 3 best

illustrate this characteristic of Join core. Query 2 has only one

join but generates large numbers of result tuples. On the other

hand, Query 3 has two joins, but generates much smaller

numbers of result tuples. Therefore, it took much longer to

process Query 2 than Query 3. As shown in Table 2, in Join

Core, it took 253milliseconds to process Query 2 for 1.2 GB

dataset, but it took only 13milliseconds, respectively, to

process Query 3. Since there were no joins to perform in the

Join Core, many queries completed instantly. Whereas in

Neo4j, path traversal operations in the complex relationships

of nodes determines the query processing time because in

Neo4j, it first travels through the relationship table and then

retrieves the resultant tuples from the disk. Queries 1 and 6

are best to illustrate this characteristic of Neo4j. Both queries

1 and 6 have no joins. But the complexities of relationships

involved in the query makes to retrieve small number of

result tuples in more time compared to query 1, which

TABLE 1. SPACE CONSUMPTIONS

Consumer Complaint

Dataset
Join Core Neo4j

1.2 GB 3 GB 2.4 GB

 Figure 6. Consumer Complaints Join Graph

1. Product

4. Response

3. Complaint

2. Issue

25Copyright (c) IARIA, 2019. ISBN: 978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

retrieved large number of result tuples in less time compared

to query 6.

 From the results, it can be inferred that, if the query has

the complex relationships in it then Neo4j takes more time

than the join core. From the above experimental results, it can

be observed that when the queries require large joins one can

use join core, which is portable and can be used for any

application domain irrespective of the API. Join Core retrieve

results instantly when compared to the Neo4j. From this

study, it can be concluded that to process complex queries

join core is the best option irrespective of the size of the data.

 Another advantage of the proposed methodology is that it

does not consume much memory. All it needs is to build a

hash table for the final duplicate elimination.

 We believe the instant responses, fast query processing,

and small memory consumption of the Join Core are well

worth its required additional storage space.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, an anti-relational approach, called Join

Core, has been presented. Join Core technique stores the equi-

join relationships of tuples on various tables. The join queries

can be answered quickly by merely merging these tables

without having to perform expensive joins. We use Neo4j as

graph database to perform experiments and compare its time

and space consumptions with a Join Core. Preliminary

experimental results showed that Join Core outperforms

Neo4j when complex join queries are processed. This is

because in Join Core, there was no need to perform join

operations at run time while in Neo4j, the path traversal

operations depend upon the complexities of the relationships

of tuples. In the future work, we will implement all possible

scenarios discussed in the above sections, such as the semi-

join, outer- or anti-join. We will also perform experiments in

the SSD and compare the performance with the hard disk.

Furthermore, we will assess the impact of the page cache size

used in Neo4j.

REFERENCES

[1] A. Levy, A. Mendelzon, Y. Sagiv, and D. Srivastava,
“Answering queries using views”, In ACM PODS Conf., 1995,
pp. 95-104.

[2] B. He, K. Yang, R. Fang, M. Lu, N. Govindaraju, Q. Luo, and
P. Sander, “Relational joins on graphics processors”, In ACM
SIGMOD Conf., 2008, pp. 511-524.

[3] B. Kenny, Understanding How Neo4j Cypher Queries are
Evaluated:
http://www.kennybastani.com/2014/07/understanding-how-
neo4j-cypher-queries.html, [retrieved: 12, 2017].

[4] C. Kim, E. Sedlar, and J. Chhugani, “Sort vs. Hash Revisited:
Fast Join Implementation on Modern Multi-Core CPUs”, In
VLDB Conf., 2009, pp. 1378-1389.

[5] D. Abadi, S. Madden, and M. Ferreira, “Integrating
Compression and Execution in Column-Oriented Database
Systems”, In SIGMOD, 2006, pp. 671–682.

[6] D. DeWitt and R. Gerber, “Multiprocessor hash-based join
algorithms”, In VLDB, 1985, pp. 151–164.

[7] E. Eifrem, J. Webber and I. Robinson, Graph Databases. 2nd
Edition “O’Reilly Media, Inc.", 2015

[8] H. Karloff and M. Mihail, “On the complexity of the view-
selection problem”, In ACM PODS Conf., 1999, pp. 167-173.

[9] J. Goldstein and P.-A. Larson, “Optimizing queries using
materialized views: a practical, scalable solution”, In ACM
SIGMOD, 2001, pp. 331-342.

[10] J. Yang, K. Karlapalem, and Q. Li, “Algorithms for
materialized view design in data warehousing environment”, In
VLDB, 1997, pp. 25-29.

[11] M. Kitsuregawa, H. Tanaka, and T. Moto-Oka, “Application
of hash to data base machine and its architecture”, New
Generation Computing 1(1), 1983, pp. 63-74.

[12] M. W. Blasgen and K. P. Eswaran, “Storage and access in
relational data bases”, IBM Systems Journal 16.4, 1977, pp.
363-377.

[13] M. Zukowski, S. Héman, N. Nes, and P. Boncz, “Super-scalar
RAM-CPU cache compression”, In ICDE, 2006,
- http://doi.org/10.1109/ICDE.2006.150.

[14] P. Valduriez, “Join indices”, ACM Transactions on Database
Systems (TODS), 1987, 12(2), pp. 218-246.

[15] R. Derakhshan, F. Dehne, O. Korn, and B. Stantic, “Simulated
Annealing for Materialized View Selection in Data
Warehousing Environment”, In Databases and applications,
2006, pp. 89-94.

[16] R. Pottinger and A. Levy, “A scalable algorithm for answering
queries using views”, In VLDB Conf., 2000, pp. 484-495.

[17] R. Kaliyar, Graph Databases: A Survey, International
Conference on Computing, Communication and Automation
(ICCCA2015), p785-790

[18] R. De Virgilio, A. Maccioni, and R. Torlone, Converting
Relational to Graph Databases. In First International Workshop
on Graph Data Management Experiences and Systems
(GRADES ’13), 2013, pp. 1–6, New York, New York, USA,
ACM Press.

[19] S. Agarawal, S. Chaudhuri, and V. Narasayya, “Automated
Selection of Materialized Views and Indexes for SQL
Databases”, In VLDB , 2000, pp. 496-505.

[20] S. Chu, M. Balazinska, and D. Suciu, “From Theory to
Practice: Efficient Join Query Evaluation in a Parallel Database
System”, In ACM SIGMOD Conf., 2015, pp. 63-78.

 TABLE 2. TIME CONSUMPTIONS

Query

Join Core Neo4j

Result

Tuples

Elapsed

Time (ms)

Elapsed

Time (ms)

1 R2 18 714 68

2 ⋈ {R1, R4} 253 31,824 1,976

3 ⋈ {R1, R2, R3} 13 262 18

4 ⋈ {R1, R2, R4} 49 317 447

5 R2 19 319 95

6 R3 18 130 5

7 R4 17 860 7

8 ⋈ {R2, R3, R4} 19 752 84

9 ⋈ {R2, R4} 19 856 106

26Copyright (c) IARIA, 2019. ISBN: 978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

http://doi.org/10.1109/ICDE.2006.150

[21] Z. Li, and K. A. Ross, “Fast joins using join indices”, The
VLDB Journal—The International Journal on Very Large Data
Bases”, 1999, 8(1), pp. 1-24.

[22] M. Hamdi, F. Yu, S. Alswedani, and W.C. Hou, “Storing Join
Relationships for Fast Join Query Processing”. In International
Conference on Database and Expert Systems Applications
(DEXA), 2017, pp. 167-177. Springer, Cham..

[23] Importing CSV Data into Neo4j,
https://neo4j.com/developer/guide-import-csv/#load-csv-
webinar , [retrieved: 1, 2018].

[24] Graph database (Neo4J): https://neo4j.com, , [retrieved: 1,
2018].

27Copyright (c) IARIA, 2019. ISBN: 978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

https://neo4j.com/developer/guide-import-csv/#load-csv-webinar
https://neo4j.com/developer/guide-import-csv/#load-csv-webinar
https://neo4j.com/

