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Abstract— Relational databases may not be an efficient solution 

to store highly connected data. Graph traversals over high-

connected data require complex join operations. These join 

operations are generally very expensive and hard to compute. 

In the light of this, a data structure, called Join Core is 

emerging. Join Core pre-stores equi-join relationships of tuples 

on inexpensive and space abundant devices, such as disks, to 

facilitate query processing. The equi-join relationships are 

captured, grouped, and stored as various tables on disks. This 

methodology assists the join queries to be answered quickly by 

merely merging these tables without having to perform 

expensive joins. We use Join Core and Neo4j graph database in 

our experiments as they deal with highly connected data. 

Experiments are performed to compare the query processing 

time and space consumptions between them. Preliminary 

experimental results showed that Join Core outperforms Neo4j 

when complex queries are processed.  

    Keywords—Query Processing; Join Queries; Graph Databases; 

Equi-Join. 

I.   INTRODUCTION 

          In many applications, such as Semantic Web, Social 

and Computer Networks, and in Geographic Applications, 

data are highly connected and have a natural representation 

as a graph.  In these contexts, relational databases may not be 

suitable for those highly connected data where data are spread 

among relations, and it is hard to capture and group the join 

relationships among data over traditional systems [24]. 

Moreover, graph traversals over high-connected data involve 

complex join operations [7][24]. These join operations are 

generally very expensive and hard to compute. Complex 

queries involving multiple joins of large relations can easily 

take minutes or even hours to compute over the target 

database. For the above reasons, we previously proposed an 

anti-relational approach, called Join Core in [22].  

 Here, the paper extends the work of Join Core in [22] and 

makes the following contribution: 

- Detailed discussions on answering cyclic join queries, and 

queries with other joins. 

- We analyze the time and space consumption of using Join 

Core. 

- We propose effective methods that can significantly reduce 

the space consumption of the Join Core. 

- We implement the Join Core and perform experiments to 

compare its performance efficiency with a Neo4j graph 

database instead of MySQL. 

The technique can ease the job of the query optimizer 

because there are fewer or no joins to perform and provide 

less resources consumptions, e.g., Central Processing Unit 

(CPU) and memory. A number of experiments have been 

done to compare the performance of Join Core and Neo4j 

[24]. The experimental results show that processing queries 

with Join Core is faster than with Neo4j. This is because there 

is no need to perform join operations at run time with Join 

Core while in Neo4j, the path traversal operations depend 

upon the complexities of the relationships of tuples. We 

believe the benefits of Join Core, namely instant responses, 

fast query processing, and small memory consumptions, are 

well worth the additional storage space incurred. 

The rest of the paper is organized as follows. Section II 

surveys work in materialized views and Section III introduces 

the terminology. Section IV shows a sample Join Core and 

how it can be used to answer equi-join queries. Section V lays 

down the theoretical foundation for answering equi-join 

queries using the Join Core. Section VI extends the 

framework to queries with other types of joins and set 

operations. Section VII analyzes the time and space 
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consumptions of the Join Core, and discusses measures to 

reduce the space consumption. Section VII reports 

experimental results. Finally, conclusions are presented in 

Section VIII. 

II. LITERATURE SURVEY 

In this section, we discuss briefly the literature survey. 

Materialized views, join indices, and graph databases are 

related to our work as both attempt to pre-compute data to 

facilitate query processing.  

Materialized views generally focus on Select-Project-Join 

(SPJ) queries and, perhaps, on final grouping and aggregate 

functions. The select and project operations in the views 

confine and complicate the uses of the views. As a result, 

much research has focused on how to select the most 

beneficial views to materialize [8][10][15][19] and how to 

choose an appropriate set of materialized views to answer a 

query [1][9][16]. 

Materialized views materialize selected query results, 

while Join Core materializes selected equi-join relationships. 

Therefore, materialized views may benefit queries that are 

relevant to the selected queries, while Join Core can benefit 

queries that are related to the selected equi-join relationships, 

which include queries with arbitrary sequences of equi-, 

semi-, outer-, anti-joins and set operators.  

A join index [14][21] for a join stores the equi-join result 

in a concise manner as pairs of identifiers of tuples that would 

match in the join operation. It has been shown that joins can 

be performed more efficiently with join indices than the 

traditional join algorithms. However, it still requires at least 

one scan of the operand relations, writes and reads of 

temporary files (as large as the source relations), and 

generating intermediate result relations (for queries with 

more than one join). On the other hand, with Join Core, join 

results are readily available without accessing any source or 

intermediate relation. Very little memory and computations 

are required. In addition, join indices are not useful to other 

join operators, such as outer-joins and anti-joins. 

Graph databases use the graph data model to structure and 

perform the main database systems operations (Create, Read, 

Update, and Delete). The graph data model has two basic 

elements: node and relationship. Unlike the relational 

databases, the graph databases store the relationships as 

entities which make it more flexible and scalable. This is 

because when the data model expands or business 

requirement changes, it is easier to add connection 

(relationship) between entities [7][24].   

Graph databases also use the graph model to pre-store the 

join relationships of tuples and query connections at creation 

time and make them readily available for any later join query 

operation [24]. This can result in no penalties for complex 

join queries at runtime as the Join Core does. They use the 

index- free so that the query processing time depends on the 

searched graph length rather than the total size of the graph. 

However, the path traversal operations in the complex 

relationships of nodes sometimes decelerate the query 

processing time. In contrast, the result size of the query, not 

the complexity of join query determines the query processing 

time with Join Core. 

III.   TERMINOLOGY 

In this paper, we assume all the data model and queries 

are based on the set semantics. The equi-join operator is the 

most commonly used operator to combine data spread across 

relations. Other useful joins, such as the semi-join, outer-join, 

and anti-join, are all related to the equi-join. Therefore, we 

shall first lay down the theoretical foundation of Join Core 

based on the equi-join, and then extend the framework to 

other joins in Section VI. Hereafter, we shall use, for 

simplicity, a join for an equi-join, unless otherwise stated. 

A join graph is commonly used to describe the equi-join 

relationships between pairs of relations. These relationships 

are generally defined before the database has been created. 

Certainly, one can also include other frequently referenced 

ad-hoc equi-join relationships in the graph.  

For simplicity, we assume there is at most one equi-join 

relationship between each pair of relations. 

Definition 1. (Join Graph of a Database). Let D be a 

database with n relations R1, R2, …, Rn, and G (V, E) be the 

join graph of D, where V is a set of nodes that represents the 

set of relations in D, i.e., V = {R1, R2, R3, ..., Rn}, and E = {⟨Ri, 

Rj⟩ | Ri, Rj ∈ V, i ≠ j)}, is a set of edges, in which each 

represents an equi-join relationship that has been defined 

between Ri and Rj, i ≠  j.s 

If the join graph is not connected, one can consider each 

connected component separately. Therefore, we shall assume 

all join graphs are connected. 

Each join comes with a predicate, omitted in the graph, 

specifying the requirements that a result tuple of the join must 

satisfy, e.g., R1.attr1=R2.attr2. For simplicity, we shall use a 

join, a join edge, and a join predicate interchangeably. We 

also assume all relations and join edges are numbered.  

Example 1. (Join Graph). Figure. 1(a) shows the join 

graph of a database with five relations R1, R2, R3, R4, and R5, 

connected by join edges, numbered from 6 to 9.  

To round out the theoretical framework, we shall 

introduce a concept, called the trivial equi-join. Each tuple in 

a relation Ri can be considered as a result tuple of a trivial join 

between Ri and itself with a join predicate Ri.key = Ri.key, 

where key is the (set of) key attribute(s) of Ri. Trivial join 

predicates are not shown explicitly in the join graphs. All join 

edges in Figure. 1(a), such as 6, 7, 8, and 9, are non-trivial or 

regular joins.  

      We have reserved predicate number i, 1≤ i ≤5, for trivial 

join predicate i, which is automatically satisfied by every 

tuple in relation Ri. The concept of trivial join predicates will 

be useful later when we discuss a query that contains outer-

joins, anti-joins, or no joins. Hereafter, all joins and join 

predicates refer to non-trivial ones, unless otherwise stated. 
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To conserve space, a database and its join graph refer to 

only the parts of the database and join graphs that are of our 

interest and for which we intend to build Join Cores. We will 

discuss other space conservation measures in Section VII. 

 

Definition 2. (Join Queries). Let ⋈({Ri, …, Rj}, E’) be a 

join query, representing joins of the set of relations {Ri, …, 

Rj} ⊆ V, 1 ≤ i, …, j ≤ n, with respect to the set of join 

predicates E’ ⊆ E among them.  

Definition 3. (Join Graph of a Join Query). The join graph 

of a join query ⋈({Ri, …, Rj}, E’), denoted by G’(V’, E’), is 

a connected subgraph of G (V, E), where V’ = {Ri, …, Rj} ⊆ 

V, and E’ ⊆ E is the set of join predicates specified in the 

query. 

       The join graph of a join query is also called a query 

graph. We shall exclude queries that must execute Cartesian 

products or θ-joins, where θ ≠ “=”, from discussion as Join 

Core cannot facilitate executions of such operators. 

      Example 2. (Matching of Join Attribute Values). Figure. 

1(b) shows the matching of join attribute values between 

tuples. Tuples are represented by their IDs in the Figure. That 

is, R1 has 3 tuples, A, B, C, i.e., R1 = {A, B, C}. R2 = {a, b, c}, 

R3 = {I}, R4 = {α, β, γ}, R5 = {μ, λ}. 

The edges between tuples represent matches of join 

attribute values. For example, tuples A and B of R1 match 

tuples a and b of R2, respectively. Tuple a has two other 

matches, I of R3 and α of R4. c of R2 matches γ of R4, and α 

matches μ of R5. 

Definition 4. ((Maximally) Extended Match Tuple). 

Given a database D = {R1, …, Rn} and its join graph G, an 

extended match tuple (tk, …, tl), where 1≤ k, ..., l ≤ n, tk ∈ Rk, 

…,  tl ∈ Rl, and Rk, …,Rl are all distinct relations, represents 

a set of tuples {tk, …, tl} that generates a result tuple in {tk} 

⋈ …⋈ {tl}. A maximally extended match tuple (tk, …, tl), is 

an extended match tuple if no tuple tm in Rm (∉ {Rk, …, Rl}) 

matches any of the tuples tk, …, tl in join attribute values.  

It can be observed that in Figure. 1(b), (A, a, I, α, μ) is a 

maximally extended match tuple. The same can be said of (B, 

b) because the match cannot be extended by any tuple in 

relations other than R1 and R2. Similarly, (c, γ), as well as (C), 

(β), and (λ), is also a maximally extended match tuple.  

IV.    JOIN CORE STRUCTURE AND 

CONSTRUCTION 

In this section, we show an example of a Join Core and 

explain how it is structured and used to answer equi-join 

queries. 

A. Join Core Structure and Naming 

Consider Figure. 1 again. The join relationships we wish 

to store are (A, a, I, α, μ), (B, b), (c, γ), (C), (β), and (λ), each 

representing a maximally extended match tuple. We intend to 

store these maximally extended match tuples in various tables 

based on the join predicates, both trivial and non-trivial ones, 

they satisfy. These tables form the Join Core. 

Example 3. (Sample Join Core). Figure. 2 shows the Join 

Core for the database in Figure. 1. The attributes of the Join 

Core tables, i.e., 1, 2, 3, 4, and 5, represent the sets of 

(interesting) attributes of R1, R2, R3, R4, and R5, respectively, 

and are called the R1, R2, …, R5 components of the tables. 

 

 (B, b) is stored in J1,2,6 because (B, b) satisfies join 

predicate 6, and trivial predicates 1 (B ∈ R1) and 2 (b ∈ R2). 

Similarly, (c, γ) is stored in J2,4,8 and (A, a, I, α, μ) is stored in 

J1,2,3,4,5,6,7,8,9. C (∈ R1), β (∈ R4), and λ (∈ R5) satisfy only trivial 

predicates and thus are stored in J1, J4, and J5, respectively. 

Assume join predicate numbers 1, …, n are reserved for 

trivial joins between R1, …, Rn and themselves, respectively, 

and non-trivial predicates are numbered from n+1 to n+e, 

where e is the number of join edges in the join graph.  

Definition 5. (Join Core). A join Core is composed of a set 

of tables Jk, …, l, 1 ≤ k, …, l ≤ n+e, each of which stores a set 

of maximally extended match tuples that satisfy all and only 

the join predicates k, …, l. Each table Jk, …, l is called a Join 
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(b) Matching of Join Attribute Values 

Figure 1. A Join Graph and Matching Tuples 
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Core table (or relation). The indices k, …l of the table Jk, …, l 

is called the name of the table for convenience. 

For simplicity, we shall call a maximally extended match 

tuple in a Join Core table a match tuple, to be differentiated 

from a tuple in a regular relation.  

B. Answering Queries using Join Core 

The name of a Join Core table specifies the join predicates 

satisfied by the match tuples stored in it. On the other hand, 

a join query specifies predicates that must be satisfied by the 

result tuples. Therefore, to answer a query is to look for Join 

Core tables whose names contain the predicates of the query. 

Consider Figure.1 and 2 and the query ⋈({R1, R2, R3, R4, 

R5}, {6, 7, 8, 9}). The components of the result tuples must 

satisfy predicates 6, 7, 8, and 9. In addition, the components 

themselves also satisfy trivial predicates 1, 2, 3, 4, 5. Thus, 

we look for Join Core tables whose names contain predicates 

1, 2, 3, 4, 5, 6, 7, 8, and 9. That is, ⋈({R1, R2, R3, R4, R5}, {6, 

7, 8, 9}) = J1,2,3,4,5,6,7,8,9. 

As for ⋈ ({R1, R2}, {6}), while J1,2,6 certainly contains 

some result tuples, J1,2,3,4,5,6,7,8,9 also contains some result 

tuples because tuples in J1,2,3,4,5,6,7,8,9 also satisfy 1, 2, and 6. 

That is, ⋈({R1, R2}, {6}) = π 1,2 (J1,2,6) ∪ π 1,2 (J1,2,3,4,5,6,7,8,9). 

Similarly, ⋈({R2, R4}, {8}) = π 2,4 (J2,4,8) ∪ π 2,4 (J1,2,3,4,5,6,7,8,9); 

⋈({R2, R3}, {7}) = π 2,3 (J1,2,3,4,5,6,7,8,9).  

It even holds for queries containing no non-trivial joins. 

For example, R1 = π1J1 ∪ π1 (J1,2,6) ∪ π1 (J1,2,3,4,5,6,7,8,9), R2 = π2 

(J1,2,6) ∪ π2 (J2,4,8) ∪ π2 (J1,2,3,4,5,6,7,8,9), R3 = π3 (J1,2,3,4,5,6,7,8,9), 

R4 = π4J4 ∪ π4 (J2,4,8) ∪ π4 (J1,2,3,4,5,6,7,8,9), and R5 = π5J5 ∪ π5 

(J1,2,3,4,5,6,7,8,9). It is observed that Ri can be reconstructed from 

the Join Core, which implies that a Join Core can itself be the 

database, if one wishes to not store the relations in traditional 

ways. 

Notice that when a non-trivial join predicate, such as 6, is 

satisfied by a match tuple, the associated trivial predicates on 

its operand relations, i.e., 1 and 2, are also satisfied 

automatically. Therefore, there is no need to match the trivial 

predicates of a query with the Join Core table names. That is, 

given a join query with a non-empty set of predicates {u, …, 

v}, the result tuples can be found in Join Core tables whose 

names contain u, …, v, without regard to trivial predicates. 

Trivial predicates cannot be ignored when a query contains 

no non-trivial joins, such as those described above or contains 

outer- or anti-joins, discussed later. 

Duplicates need not be eliminated in individual π i, …, j(Jk, 

…, l) above; they can be eliminated all at once when match 

tuples are merged in the final union operations. To identify 

duplicate result tuples, a simple hashing scheme is sufficient. 

Note that this is the only place that requires major memory 

consumption (in building a hash table).  

The database system can begin to generate result tuples 

once the first block of a relevant Join Core table is read into 

memory, that is, instantly. The total computation time is also 

drastically reduced because there are no (or fewer) joins to 

perform. 

C.  Join Core Construction 

Now, let us discuss how to construct a Join Core for a 

database. Tuples that find no match in one join may find 

matches in another join. For example, b finds no match in R2 

⋈ R3, but finds a match B in R1 ⋈ R2.  Unfortunately, such 

join relationships can be lost in successive joins, for example, 

in (R1 ⋈ R2) ⋈ R3. 

Full outer-joins, or simply outer-joins, retain matching 

tuples as well as dangling tuples, and thus can capture all the 

join relationships. Any graph traversal method can be used 

here as long as it incurs no Cartesian products during the 

traversal.  

For illustrative purpose, we assume a breadth-first 

traversal is adopted here. Relations are numbered based on 

the order encountered in the traversal. An outer-join is 

performed for each join edge. The output of the previous 

outer-join is used as an input to the next outer-join. The result 

tuples are distributed to Join Core tables based on the join 

predicates, both trivial and non-trivial ones, they have 

satisfied in the traversal.  

Example 4. (Join Core Construction). Assume a breadth-

first traversal of the join graph (Figure. 1(a)) from R1 is 

performed.  An outer-join is first performed between R1 and 

R2. It generates (intermediate) result tuples (A, a), (B, b), (C, 

-), and (-, c). The next outer-join with R3 generates (A, a, I), 

(B, b, -), (C, -, -) and (-, c, -).  Then, the outer-join with R4 

generates (A, a, I, α), (B, b, -, -), (C, -, -, -), (-, c, -, γ), and (-, 

-, -, β). The final outer-join with R5 generates (A, a, I, α, µ), 

(B, b, -, -, -), (C, -, -, -, -), (-, c, -, γ, -), (-, -, -, β, -), and (-, -, -

, -, λ), which are written, without nulls, to J1,2,3,4,5,6,7,8,9, J1,2,6, 

J1, J2,4,8, J4, and J5, respectively, based on the join predicates 

they satisfy. 

      V.    ANSWERING EQUI-JOIN QUERIES 

In this section, we formally discuss how a join query can 

be answered using the Join Core. First, we consider databases 

with acyclic join graphs, followed by databases with cyclic 

join graphs. 

A.  Acyclic Join Graph 

As illustrated in the previous section, join queries with 

acyclic join graphs can be answered by simply extracting 

the requested components from Join Core tables whose 

names contain the join predicates specified in the queries. 

Theorem 1. Let ⋈ ({Ri, …, Rj}, {u, …, v}) be joins of 

the set of relations {Ri, …, Rj} with respect to a set of join 

predicates {u, …, v}≠ø. Let e be the number of join edges in 

the join graph, 

⋈ ({Ri, …, Rj}, {u, …, v})  = ∪{k, …, l} ⊇ {u, …, v} π i, …, j (Jk, …, l) 

where 1 ≤ i, …,  j ≤ n, 1 ≤ k, …,  l, u, …, v  ≤ n+e. 
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Here, we shall call {k, …, l} ⊇ {u, …,  v} or equivalently, k 

∈{u, …,  v} ˄… ˄ l ∈{u, …,  v} shall be called (table name) 

selection criteria. 

B.  Cyclic Join Graph 

Figure. 3(a) shows a cyclic join graph. When a relation is 

visited in a, for example, breadth-first traversal, its attributes 

are added to the resulting schema. In a cyclic join graph 

however, a node may be visited more than once. For example, 

R4 is visited through edge ⟨R2, R4⟩ for the first time, and then 

through ⟨R3, R4⟩ for the second time when the cycle forms. 

To differentiate matches associated with different edges, we 

shall create two copies of R4, named R4 (the original name) 

and R5 (the next available relation number). Note that this is 

effectively converting a cyclic graph into an acyclic one. We 

shall call all copies of R4, i.e., R4 and R5, alias relations of R4. 

Note that a cycle-completing relation, such as R4, may 

replicate more than once if it completes more than one cycle 

in the traversal. Figure. 3(b) shows the converted graph.  

 

With a cyclic join graph converted into an acyclic one, a 

Join Core can be constructed in the same way as before. 

However, to determine whether an extended match tuple 

contains a cycle or not, we need to check if the alias 

components have the same value. 

Example 5. (Answering Cyclic Join Queries). Figure. 4 

shows the join relationships and the Join Core for Figure 3. 

Consider a cyclic join query: ⋈ ({R1, R2, R3, R4}, {6, 7, 8, 9}). 

To ensure that it is the same tuple in the cycle-completing 

relation that satisfies both predicates 8 and 9, the alias 

components R4 and R5 must be the same. That is, a selection 

condition, σ4=5, must be imposed. Thus, ⋈({R1, R2, R3, R4}, 

{6, 7, 8, 9}) = π 1,2,3,4 (σ4=5 (J1,2,3,4,5,6,7,8,9)) = {(A, a, α, I)}. On 

the other hand, (B, b, β, II, III) does not contain an answer to 

the query because its R4 and R5 components (i.e., II and III) 

are not the same. 

Consequently, cycles in a query graph can be treated like 

ordinary acyclic join predicates, with the exception that 

additional constraints on the equalities of alias components 

must be added. 

Theorem 2. Let ⋈ ({Ri, …, Rj}, {u, …, v}), 1 ≤ i, …, j ≤ n, 

be a query contains cycles. 

⋈({Ri, …, Rj}, {u, …, v}) = ∪{k, …, l} ⊇ {u, …,  v} π i, …,  j(σF 

(Jk,…,l)) 

C. Multiple Join Edges Between Relations 

 It is possible that there is more than one join edge between 

a pair of relations. This situation can be easily resolved by 

treating it as a cycle. 

 Example 6. (Multiple Edges between Relations) Assume 

there are two join edges, e1 and e2, between R1 and R2. Then, 

one can pick any relation, say R2, as the cycle completing 

relation, replicate it, and call the replica R3. Finally, let e1 be 

the edge between R1 and R2, and e2 be the edge between R1 

and R3. 

VI. QUERIES WITH OTHER JOINS 

Now, a join can be an equi-, semi-, outer- or anti-join. A 

join generates result tuples dependent upon whether the equi-

join predicate between the operand relations are satisfied (in 

an equi- or semi-join) or not satisfied (in an anti-join). A little 

deliberation reveals that match tuples that do not satisfy an 

equi-join predicate can be found in Join Core tables whose 

names do not contain that predicate, recalling that Join Core 

table names specify all and only the equi-join predicates 

satisfied. An outer-join generates a result tuple no matter 

whether the equi-join predicate is satisfied or not.  

A join query consisting of a sequence of join operators 

has a query predicate that is a logical combination of the 

individual predicates of constituent joins. We attempt to 

obtain query result tuples from Join Core tables whose names 

satisfy the query predicates. Here, we focus on how to 

formulate the query predicates as (table name) selection 

criteria for Join Core tables that contain the query result 

tuples. For example, satisfying predicate p is rewritten as p ∈ 

{k, …, l}, where {k, …, l} is the set of indices of a Join Core 

table name. 

Afterward, specific handlings, such as removal of 

unwanted attributes, equality checking for alias components 

(for cycle-completing relations), and padding null values for 

“missing” attributes (for outer-joins), are performed. For 

simplicity, we shall only briefly describe these afterward 

handlings. 

A. Single-Join Queries 

We start by deriving the selection criteria, denoted by S, 

for queries with only one join operator. Let p be the equi-join 

predicate between Ri and Rj. Consider Ri op Rj, where op is 

either an equi-join, semi-join, outer-join, or anti-join. 

 

 

 

 

            (a) A Cyclic Join Graph           (b) A Converted Join Graph 

Figure 3. Converting A Cyclic Graph 
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1) Equi-Join. As discussed, to compute Ri ⋈ Rj with a 

join predicate p, we look for Join Core tables Jk,…,l whose 

indices contain p, i.e., S= p ∈ {k, …, l}. As mentioned, trivial 

predicates i and j need not, but can, be included in S because 

they are satisfied automatically and must have appeared as 

part of the names of the tables satisfying p. 

2) Semi-Join. The left semi-join Ri ⋉ Rj  and right semi-

join Ri ⋊ Rj extract only the Ri and Rj components from Ri ⋈ 
Rj, respectively. Here, we shall not be concerned about the 

projection operations. Consequently, the selection criterion S 

for a semi-join is the same as that for an equi-join, that is, S 

= p ∈ {k, …, l}.  

3) Outer-Join. While computing Ri ⟗ Rj during the 

construction of the Join Core, each pair of tuples satisfying 

predicate p forms an output tuple. In addition, each non-

matching tuple from either Ri (satisfying the trivial predicate 

i) or Rj (satisfying the trivial predicate j) also forms an output 

tuple. Consequently, to answer the query Ri ⟗ Rj, we look 

for Join Core tables Jk, …, l such that (i ∈ {k, …, l} ˄ (¬ (p ∈ 

{k, …, l}))) ˅  (j ∈ {k, …, l} ˄ (¬(p ∈ {k, …, l}))) ˅ p ∈ {k, 

…, l}, where ¬ is the logical “not” operator and ˅ is the 

logical “or” operator. Since  p ∈ {k, …, l} implies i ∈ {k, …, 

l} ˄  j ∈ {k, …, l}, the selection criteria S can be simplified 

to S= i ∈ {k, …, l} ˅  j ∈ {k, …, l}. Trivial predicates i and j 

cannot be omitted from S because no non-trivial predicates 

that reference i and j are satisfied. 

A left outer-join Ri ⟕ Rj asks for matching tuple pairs and 

non-matching tuples from Ri. Therefore, S= i ∈ {k, …, l}. 
Similarly, for a right outer-join Ri ⟖ Rj, S=j ∈ {k, …, l}. 

After identifying the Join Core tables, tuples that do not 

find a match in the other operand relation need to be padded 

with null values for those attributes of the other relation. 

Example 7. (Outer-Join). Let us consider Figure. 1 and 2.  

R1 ⟗ R2:  S= 1 ∈ {k, …, l} ˅ 2 ∈ {k, …, l}. Only J1, J1,2,6, 

J2,4,8, and J1,2,3,4,5,6,7,8,9 satisfy S. The answer is {(C, -), (B, b), 

(-, c) (A, a)}. Note that tuples in J1 and J8 need to be padded 

with null values for the set of attributes of the other operand 

relations, while unwanted components 3, 4, and 5 need to be 

removed from J1,2,3,4,5,6,7,8,9. 

R1 ⟕ R2:  S= 1 ∈ {k, …, l}. Only J1, J1,2,6, J1,2,3,4,5,6,7,8,9 

satisfy S, and the result is {(C, -), (B, b), (A, a)}. 

R1 ⟖ R2: S= 2 ∈ {k, …, l}. Only J1,2,6, J2,4,8, J1,2,3,4,5,6,7,8,9 

satisfy S, and the result is {(B, b), (-, c) (A, a)}.  

4) Anti-Join. An anti-join Ri ⊳ Rj, defined as Ri – (Ri ⋉ 
Rj), returns tuples in Ri that do not find a match in Rj.  When 

the outer-join for the edge p was performed during the 

construction of the Join Core, such tuples (from Ri) must have 

found no match in Rj and were stored in tables whose names 

contain i, but not p. Therefore, to answer the query Ri ⊳ Rj, 

we look for Jk, …, l,  i ∈ {k, …, l}  ˄ ¬ (p ∈{k, …, l}), namely, 

S= i ∈ {k, …, l}  ˄ ¬ (p ∈{k, …, l}). Trivial predicate i cannot 

be omitted. 

 

Example 8. (Anti-Join).  

R1 ⊳ R2: S= 1 ∈ {k, …, l} ˄ ¬ (6 ∈ {k, …, l}). Only J1 

satisfies and the answer is {C}.  

R2 ⊳ R4: S= 2 ∈ {k, …, l} ˄ ¬ (8 ∈ {k, …, l}). Only J1,2,6 

satisfies and the answer is {b}. 

B. Multi-Join Queries 

A Join Core consists of regular and extended Join Core 

tables. For simplicity, we shall not mention explicitly what 

types of Join Core tables the query predicates are applied to. 

Readers are advised that if the query is of Type (i), then the 

selection criteria should be applied to both types of Join Core 

tables; otherwise, they should only be applied to regular Join 

Core tables.  

Let E = E1 op E2, where E, E1, and E2 are expressions that 

contain arbitrary legitimate sequences of equi-, semi, outer- 

and anti-join operators, and op is one of these join operators 

with a join predicate p. We assume the query graphs for E, 

E1, and E2 are all connected subgraphs of G. Let S1 and S2 be 

the selection criteria on the Join Core tables for E1 and E2, 

respectively, and S the criteria for E. We discuss how to 

derive S from S1 and S2. 

1) Equi-Join. Consider E = E1 ⋈ E2. Each tuple in E is a 

concatenation of a pair of extended matches in E1 and E2 that 

satisfy p, and such “longer” extended matches must have 

been captured by successive outer-joins (and complementary 

joins for cycle-completing relations) performed during the 

Join Core construction and stored in Join Core tables whose 

names satisfy S1 ˄ S2 ˄ p∈ {k, …, l}. On the other hand, the 

components of each tuple in such Join Core tables that satisfy 

S1 and S2 must be result tuples of E1 and E2, respectively. In 

addition, the two components satisfy the join predicate p and 

thus can generate a result tuple in E. Thus, S = S1 ˄ S2 ˄ p ∈ 

{k, …, l}. 

2) Semi-Join. E = E1 ⋉ E2 and E = E1 ⋊ E2. As explained, 

a semi-join is basically an equi-join, except that only the 

attribute values of one of the operands is retained. Thus, S = 

S1˄S2˄p∈{k,…,l}. 

       3) Outer-Join.  E = E1 ⟗ E2. Tuples in E represent 

extended matches that come from non-matching tuples of E1 

and E2, and matching pairs of E1 and E2. All these extended 

match tuples in E were captured by successive outer-joins 

(and complementary joins for cycle-completing relations) 

performed during construction of the Join Core and stored in 

tables whose names satisfy (S1 ˄ (¬p∈ {k, …, l})) ˅ (S2 ˄ 

(¬p∈ {k, …, l})) ˅ (S1 ˄ S2 ˄ p∈ {k, …, l}), which can be 

simplified to S1 ˅  S2 because p∈ {k, …, l} implies S1 ˄  S2.  On 

the other hand, each tuple in a Join Core table whose name 

satisfies S1 ˅ S2 must provide a result tuple to E1, E2, or E. 

Thus, S = S1 ˅ S2. Similarly, for E1 ⟕ E2, S = S1; for E1 ⟖ E2, 
S = S2. 
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4) Anti-Join. E = E1 ⊳ E2. Tuples in E are extended 

matches in E1 that do not find matches in E2. Thus, tuples in 

E must have been captured by successive outer-joins (and 

complementary joins) performed and stored in Join Core 

tables whose names satisfy S1 but not (S2 ˄ p∈ {k, …, l}). On 

the other hand, Join Core tables whose names satisfy S1 but 

not (S2 ˄ p∈ {k, …, l}) contain tuples of E1 that do not join 

with tuples in E2, which are exactly the result tuples of E. 

That is, S = S1 ˄ ¬(S2 ˄ p ∈ {k, …, l}). 

Example 9. (Multi-Anti-Join Queries).  

(R1 ⋈ R2) ⊳ R3: S= 6 ∈ {k, …, l} ˄ ¬ (7 ∈ {k, …, l}). Only 

J1,2,6 satisfies S and the answer is {(B, b)}.  

(R2 ⊳ R1) ⊳ (R4 ⋈ R5): S=(2 ∈ {k, …, l} ˄ ¬ (6 ∈ {k, …, 

l})) ˄ ¬ (9 ∈ {k, …, l} ˄ 8∈ {k, …, l}). Only J2,4,8 satisfies S, 

and the answer is {(c)}. 

Theorem 3. Let E = E1 op E2, where E, E1, and E2 are 

arbitrary legitimate expressions that contain equi-, semi-, 

outer- and anti-joins, and op is one of these join operations 

with a join predicate p. Let S1 and S2 be the selection criteria 

for identifying Join Core tables from which the resulting 

tuples of E1 and E2 can be derived, respectively. Then, the 

selection criteria S for E is (i) if op = ⋈, S = S1 ˄ S2 ˄ p∈ {k, 

…, l}; (ii) if op = ⋉ or ⋊, S = S1 ˄ S2 ˄ p∈ {k, …, l}; (iii) if 

op = ⟗, S = S1 ˅ S2; if op = ⟕; S = S1; if op = ⟖, S = S2; (iv) 

if op = ⊳, S = S1 ˄ ¬(S2 ˄ p∈ {k, …, l}). 

 

C. Join Queries with Intersections, Unions, and Differences 

 Here, we consider join queries with commonly 

encountered set operators, intersections, unions, and 

differences. Note that an intersection can be treated as an 

equi-join in which the join attribute is the primary key. Here, 

we assume that the join graph includes edges specifying the 

equalities of primary keys between two schema compatible 

relations. 

 Let p be a join predicate specifying the equality of primary 

key attributes of two schema compatible relations. The 

intersection operation requires matches in the key values. 

Consequently, the resulting tuples of Ri ∩ Rj can only be 

found in Join Core tables Jk, …, l whose names contain 

predicate p, i.e., S = p ∈ {k, …, l}.  This is exactly the same 

selection criterion as that for an equi-join or a (left or right) 

semi-join. As for the union operation, the resulting tuples of 

Ri U Rj  can be found in Join Core tables  whose names contain 

trivial predicate i or j, i.e., S = i ∈ {k, …, l} ˅ j ∈{k, …, l}, 

the same selection criteria as for a full outer-join. Similarly, 

for the difference operation, the resulting tuples of Ri – Rj can 

be found in Join Core tables whose indices contain the trivial 

predicate i, but not j, i.e., S = i ∈ {k, …, l} ˄ ¬ (j ∈ {k, …, 

l}), the same selection criteria as for an anti-join. 

 By the same reasoning as presented in the previous 

section (B) and Theorem 3, we can extend the usage of Join 

Core tables to queries with arbitrary legitimate sequences of 

unions, differences, and intersections, in addition to equi-, 

semi-, outer- and anti-joins. The theorem follows. 

 Theorem 4. Let E = E1 op E2, where E, E1, and E2 are 

arbitrary legitimate expressions that contain equi-joins, semi-

joins, outer-joins, anti-joins, unions, differences, and 

intersections, and op is one of these operations with a join 

predicate p. Let S1 and S2 be the selection criteria for 

identifying Join Core tables from which the result tuples of 

E1 and E2 can be derived, respectively. Then, the selection 

criteria S for E is (i) if op = ⋈ or ∩, S = S1 ˄ S2 ˄ p∈ {k, …, 

l}; (ii) if op = ⋉ or ⋊, S = S1 ˄ S2 ˄ p∈ {k, …, l}; (iii) if op = 

⟗ or U, S = S1 ˅ S2; if op = ⟕, S = S1; if op = ⟖, S = S2; (iv) 

if op = ⊳ or –, S = S1 ˄ ¬(S2 ˄ p ∈ {k, …, l}). 

VII. COST ANALYSIS 

In this section, we analyze the time and space 

consumption of using Join Core. In addition, we also discuss 

measures to reduce the size of Join Core. 

A) Time Consumptions 

1) Disk Accesses Time 

 To answer a query, Join Core tables containing the result 

tuples are read into memory. Thus, the total number of disk 

accesses is dependent upon the size of the query result, not 

the complexity of the query.  

2) CPU Time 

 Once desired Join Core tables are read into memory, all 

that is remaining is to perform equality checking between 

alias components (of cycle-completing relations), pad 

“missing” attributes with null values (for outer-join 

operations), and eliminate unwanted attributes and 

duplicates. All these tasks should take only a very small 

amount of CPU time. 

B) Space Consumptions 

 To simplify discussions, we assume no dangling tuple 

exists in any of the equi-joins in the graph, which represents 

a worst case space consumption scenario since dangling 

tuples can shorten the matches. We further assume that in 

each join, all tuples of a relation find exactly the same number 

of matches in the other relation, namely a uniformity 

assumption on the matching of a join. 

 Consider a join between Ri (with Ti tuples), and Rj (with 

Tj tuples). We shall call Tj/Ti, denoted as rij, the join ratio of 

Ti with respect to Tj, that is, the average number of matches 

found in Rj for each tuple in Ri. In a one-many relationship 

from Ri to Rj, rij ≥1. On the other hand, in a many-one 

relationship from Ri to Rj, Tj/Ti ≤ 1. Since each tuple in Ri still 

can find one match in Rj, as we have assumed no dangling 

tuples exist in the joins, rij is set to 1 (i.e., rij=1) when Tj/Ti ≤ 

1. 

 To estimate the size of a Join Core, we first estimate the 

total number of match tuples, denoted by M, in the Join Core, 

and multiply it by the length of each match tuple. 
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 To estimate the number of different matches, we can start 

from any relation, say Ri, by setting M = Ti, and then marking 

Ri as visited. For each edge ⟨Ri, Rj⟩, where Ri is a visited node 

while Rj is not, M=M ×rij. Once all relations are visited, the 

final M is the estimate. 

 Now, let us compute the length of each match tuple. Let e 

be the number of join edges and n the number of relations in 

the join graph. Each outer-join adds the set of attributes of 

one relation to the schema of the output, recalling the 

construction of a Join Core. Therefore, the final output of the 

outer-joins consists of the values of the attributes of e+1 

relations, e+1 ≥ n. For simplicity of analysis, we assume 

tuples in all relations have the same or a similar length L. 

Therefore, the size the Join Core is  

                                      M×(e+1)×L                            (1) 

  As compared to the database size Tavg×n×L, where 

Tavg=Avg{T1, …, Tn} is the average number of tuples in a 

relation. 

 Note that when all relations are of similar sizes, i.e., 

Tavg≈T1 ≈…≈ Tn, all rij’s ≈1 and M≈Tavg. In addition, if the 

graph has no (or few) cycles, i.e., e+1=(≈) n,  the Join Core 

size would be close to the database size, that is, M× (e+1)× 

L≈ Tavg×n× L, which is the best case scenario. 

C) Space Reduction Methods 

Many data compression techniques [4][5][13] can be used 

to compress the Join Core. Here, we shall only discuss 

methods that are specifically related to the reduction of the 

Join Core structure. 

Storing all join relationships of a complex graph can 

consume large amounts of space. Here, we discuss heuristics 

that can significantly reduce the space consumption of the 

Join Cores, however, at the price of incurring additional join 

operations. Further research is still needed to analyze the cost 

and benefits of these heuristics. 

(H1). Store only useful relations, relationships, and 

attribute values. Statistics and knowledge on the usages of 

relations, relationships, and attributes may be available or can 

be collected to assist in making such decisions. 

 (H2). Remove smaller relations from a join graph. Smaller 

relations, in terms of the numbers of tuples in the relations, 

need replicate their tuples more times to generate M match 

tuples, which will make updates (on smaller relations) more 

expensive. In addition, if a removed relation is referenced in 

a join query, then a join operation must be performed. 

Removing smaller relations incurs less penalty because joins 

with smaller relations are faster to perform. Moreover, 

smaller relations have better chances of fitting in memory to 

make the joins faster.  

 (H3). Remove cycle-completing relations. Removal of a 

cycle-completing relation from a graph implies removal of all 

its aliases too, which can significantly reduce the storage 

consumption. Since any graph traversal method can be used 

in construction a Join Core, one is given the opportunity to 

select “good” relations to be cycle-completing relations. 

Here, we recommend relations that are small (following H2) 

and, if possible, complete multiple cycles.  

      1) Constructing Join Core with Space Constraint 

 Without detailed cost-benefit measures, here is a simple 

way to construct a Join Core that satisfies a given space limit. 

First, one can, following (H1), remove unwanted relations, 

relationships, and attributes if a priori knowledge or statistics 

are available. If the Join Core is still too large, one can 

consider removing a smallest relation, following (H2), or a 

cycle-completing relation, following (H3), until the desirable 

size is met. 

VI. NEO4J GRAPH DATABASE  

     In this section, we discuss Neo4j in details as it will be 

used in later performance evaluation against Join Core. 

Neo4j is most popular graph databases according to [24]. 

It is an open-source graph database management system that 

provides high scalability and read/write performance [24]. 

The high performance is mainly owing to the use of both a 

native processing and storage model. Native processing 

model is referred to the leverage of index-free adjacency 

(where related nodes are physically connected to each other) 

in graph database. The use of index- free means that the query 

time depends on the searched graph length rather than the 

total size of the graph [4]. On the other hand, native storage 

model refers to the underlying physical structure of the 

database, where nodes and relationships are stored in a graph 

structure. This technology ensures that the graph database is 

optimized by storing related entities close to each other [24].  

Neo4j employs the property graph data model [24]. 

Property graph model consists of nodes, relationship, 

properties and labels [7]. Both node and relationship hold a 

number of properties that are stored in the form of key-value 

pairs. Relationship links nodes to each other and each 

relationship has a name, direction and start and end nodes. 

Labels tag nodes to group them, and to identify their role in 

the dataset. Figure. 5 explains the consumer complaints 

against the company’s products and sub-products, and issues 

that rose and the company’s responses to. Each and every 

node is associated with the labels and the properties. 

       In Neo4j, each type of element is stored in a separate data 

store. For instance, physical file neostore.nodestore.db 

contains all nodes in the dataset where 

neostore.propertystore.db and neostore. relationshipstore.db 

stores properties and relationship, respectively [7].  Records 

inside node and relationship data store are fixed in size which 

accelerates record lookups in the file, as any known record 

ID can be used compute the record’s location in the file. 

 Neo4j can be queried in many ways, such as Traverser 

API and Cypher query language [17]. Cypher is a declarative 

graph query language provides an efficient way to create, 

update and query the graph database [3]. It is considered as a  
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Figure 5. The labelled property graph Model 

 

powerful language that focuses on what to get rather than 

how to get it.  Cypher’s structure is inspired by SQL to make 

it easier and more familiar for the SQL users, although it 

focuses on finding and describing patterns in the graph. 

Cypher uses clauses (like most query languages) to query 

from the graph, a simple read query would be consist of 

MATCH, WHERE and RETURN clauses. Cypher execution 

engine optimizes and turn each query into an execution plan. 

The plan is a pattern of number of connected operators, where 

each operator is responsible for a small section of the query 

execution. 

VII. EXPERIMENTAL RESULTS 

A) Space Consumptions 

 We have performed experiments on the graph database 

NEO4J 3.0.6 community edition along with the Join Core to 

compare their performance efficiency. We have performed 

all experiments on a laptop computer with a 2.40 GHz CPU, 

8GB RAM, and a 1 TB hard drive. 1.2GB consumer 

complaint dataset was generated. Consumer Complaints 

dataset has 4 relations, i.e. Product table, Issue table, 

Response table and Complaint table. The dataset which we 

took was from the Neo4j dataset.  After processing the dataset 

in the join core tables, we get 3 GB dataset. These tables are 

stored in the hard disk. The larger size of Join Core is due to 

replications of tuples of relations. Similarly, after loading all 

the data and the relationships between them in the Neo4j 

database we get a data size of 2.4GB. The data is stored in the 

disks. The increase in the size of the database is due to 

summation of actual size of database, ratio of size of graph.db 

to index and ratio of size of graph.db to schema [24]. Table 1 

shows the size of Join Core and Neo4j. 

 

 

 

 B) Query Processing Time 

 We measure the elapsed time of the test queries. In Neo4j, 

the consumer complaint dataset has some cypher queries in 

[23]. We use the same queries and modify them to be worked 

in Join Core. While keeping (most of) the selections and 

projections, we remove any “group by”, “order by”, “limit”, 

aggregate functions, from the queries so that we can focus 

mainly on the join query processing. We add “distinct” to the 

queries as we have implicitly assumed the set semantics in 

the paper. 

 Join Core tables are read from disks into memory for 

processing, and the result tuples are written back to the disks. 

Elapsed time measures the time from beginning to end, after 

writing all result tuples to the disks.  

 Table 2 shows the query processing time. In the first 

column, the ID of the consumer complaint query is shown 

first, followed by the relations involved in the join operations. 

For simplicity, relations are referenced by the numbers 

assigned to them in Figure. 6. All times are measured in 

milliseconds. 

 With Join Cores, all queries saw their first responses 

instantly. As explained, all it takes is the retrieval of a block 

of a relevant Join Core table into memory and simple 

manipulations before output it after simple manipulations.

 The result size of the query, not the complexity 

determines the query processing time because the join result 

is readily available in the Join Core. Queries 2 and 3 best 

illustrate this characteristic of Join core. Query 2 has only one 

join but generates large numbers of result tuples. On the other 

hand, Query 3 has two joins, but generates much smaller 

numbers of result tuples. Therefore, it took much longer to 

process Query 2 than Query 3. As shown in Table 2, in Join 

Core, it took 253milliseconds to process Query 2 for 1.2 GB 

dataset, but it took only 13milliseconds, respectively, to 

process Query 3. Since there were no joins to perform in the 

Join Core, many queries completed instantly. Whereas in 

Neo4j, path traversal operations in the complex relationships 

of nodes determines the query processing time because in 

Neo4j, it first travels through the relationship table and then 

retrieves the resultant tuples from the disk. Queries 1 and 6 

are best to illustrate this characteristic of Neo4j. Both queries 

1 and 6 have no joins. But the complexities of relationships 

involved in the query makes to retrieve small number of 

result tuples in more time compared to query 1, which 

TABLE 1. SPACE CONSUMPTIONS 

Consumer Complaint 

Dataset 
Join Core Neo4j 

1.2 GB 3 GB 2.4 GB 

 

 

 
 

 

 

 

 

 

           Figure 6.  Consumer Complaints Join Graph 

 

1. Product 

4. Response 

3. Complaint  

2. Issue 
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retrieved large number of result tuples in less time compared 

to query 6. 

 From the results, it can be inferred that, if the query has  

the complex relationships in it then Neo4j takes more time 

than the join core. From the above experimental results, it can 

be observed that when the queries require large joins one can 

use join core, which is portable and can be used for any 

application domain irrespective of the API. Join Core retrieve 

results instantly when compared to the Neo4j. From this 

study, it can be concluded that to process complex queries 

join core is the best option irrespective of the size of the data. 

 Another advantage of the proposed methodology is that it 

does not consume much memory. All it needs is to build a 

hash table for the final duplicate elimination. 

 We believe the instant responses, fast query processing, 

and small memory consumption of the Join Core are well 

worth its required additional storage space. 

 

VIII. CONCLUSIONS AND FUTURE WORK 

In this paper, an anti-relational approach, called Join 

Core, has been presented. Join Core technique stores the equi-

join relationships of tuples on various tables. The join queries 

can be answered quickly by merely merging these tables 

without having to perform expensive joins. We use Neo4j as 

graph database to perform experiments and compare its time 

and space consumptions with a Join Core. Preliminary 

experimental results showed that Join Core outperforms 

Neo4j when complex join queries are processed. This is 

because in Join Core, there was no need to perform join 

operations at run time while in Neo4j, the path traversal 

operations depend upon the complexities of the relationships 

of tuples. In the future work, we will implement all possible 

scenarios discussed in the above sections, such as the semi-

join, outer- or anti-join. We will also perform experiments in 

the SSD and compare the performance with the hard disk. 

Furthermore, we will assess the impact of the page cache size 

used in Neo4j. 
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