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Abstract—In this article, we introduce a new pattern-based
summarization framework for representing and reasoning about
fragmented data sets. A fragment summary is a concise, complete
and precise representation of a data fragment and its information
contents relatively to the whole data set. We formally define the
notion of fragment summary and the use of Structured Query
Language (SQL) queries over fragment summaries for analyzing
data fragments. We introduce an algorithm for computing sum-
maries and present an experimental evaluation using two real-life
data sets.
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I. INTRODUCTION

Summarization is the process of generating a concise
representation of a data set for some specific processing tasks.
Compared to data compression, the goal of summarization
is, usually, to preserve enough information for fulfilling these
tasks without the need for decompression. Data summarization
has been applied to various data types (text, data streams,
graphs, structured data, music, etc.) for different tasks related
to information retrieval, data monitoring, data visualization,
query processing, and data integration as witnessed by recent
works [1]–[5].

In this article, we introduce a new pattern-based summa-
rization framework for representing and analyzing fragmented
data sets. A fragment summary is a concise representation of
a data fragment and its information contents relative to the
whole data set. Data fragments can be the result of user-defined
filtering queries or any other data extraction task over some
data set. They can also correspond to data tables (sources)
that partially cover a complete reference table like a dimension
table in some analytic data set. Fragment summaries can then
be used to rapidly decide if a data tuple or a category of tuples
(defined by attribute/value pairs) is completely or partially
included in the corresponding data fragment.

To better understand the potential of fragment summaries,
consider Energy in Table I reporting the daily energy con-
sumption for rooms (ro) in two floors (fl). The table contains
a tuple for each location and time defined by the week (we)
and the day (da), and indicates missing information with Null.
The first data fragment is defined by query Qavail returning
all tuples with existing kWh values. The second fragment,
denoted with Qmiss, contains all tuple identifiers with missing
kWh values ; it is complementary to the first fragment. Both
fragment summaries are presented in Table II. A fragment
summary corresponds to a table of patterns that concisely

TABLE I. DATA TABLE

Energy fl ro we da kWh
t0 f1 r1 w1 Mon 10
t1 f1 r1 w1 Tue 12
t2 f1 r1 w2 Mon 10

m0 f1 r1 w2 Tue Null
t3 f1 r2 w1 Mon 8
t4 f1 r2 w1 Tue 10

m1 f1 r2 w2 Mon Null
m2 f1 r2 w2 Tue Null
t5 f2 r1 w1 Mon 12
t6 f2 r1 w1 Tue 7
t7 f2 r1 w2 Mon 8
t8 f2 r1 w2 Tue 8

TABLE II. FRAGMENT SUMMARIES OF QAV AIL AND QMISS

Pavail fl ro we da
p0 ∗ ∗ w1 ∗
p1 f2 ∗ ∗ ∗
p2 f1 r1 ∗ Mon

Pmiss fl ro we da
p3 ∗ r2 w2 ∗
p4 f1 r1 w2 Tue

summarizes all data categories contained in the fragment. The
summary Pavail describes all complete categories of available
information (for example, all values are available for category
[we=’w1’] and any sub-category), whereas the summary Pmiss

describes all empty categories (e.g. all values are missing
for category [ro=’r2’, we=’w2’]). Observe that both fragment
summaries contain the minimal set of all attribute/value pairs
that are necessary to precisely characterize this fragment (and
all categories it subsumes). For example, categories [fl=’f1’,
ro=’r1’] and [we=’w2’] are not subsumed by any pattern in
both tables and therefore contain tuples with missing and with
available measures. Observe also that the intersection of both
summaries is empty and the union is the “wildcard” template
∗ covering the whole data set.

Fragments summaries are meant to provide a precise se-
mantic characterization of data fragments and, thus, can be
exploited for performing complex analytical tasks such as
analyzing the completeness and correctness of analytic aggre-
gation queries. To illustrate this case, consider the following
query over the original data table Energy(fl, ro, we, da, kWh):

select fl, ro, we, sum(kWh) from Energy
group by fl, ro, we

By examining this data table, it is easy to notice that the
computed sum for the partition [f1,r1,w1] is be incorrect since
this partition is incomplete. This examination allows inferring
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that no value is returned for the partition [f1,r2,w2] whose
values are missing. Fragment summaries are very useful in
supporting such analysis tasks especially when data becomes
large and not amenable to visual inspection ; in this case, SQL
turns out to be helpful as illustrated with the following queries
over fragment summaries:

• select fl,ro, we from Pavail where da=’*’

retrieves the summary of all partitions with a correct
aggregation result (e.g., the fragment characterized
with week=w1 and floor=f2)

• select fl,ro, we from Pavail where da<>’*’

returns the partitions with incorrect results (all results
are incorrect for room ’r1’ at floor ’f1’) and

• select fl,ro, we from Pmiss where da=’*’ char-
acterizes the missing results (all results are missing
for room ’r2’ at week ’w2’).

Fragment summaries characterize all complete categories
in a fragment and their compactness ratio (summary size/frag-
ment size) can be very high (see Section VI). This space loss is
compensated by the speedup of complex decision tasks, such as
identifying complete and missing data and annotating incorrect
query results.

In our previous example, all fragments (and their sum-
maries) were defined over a set of attributes that are part
of the table key. In this case, the summary of any fragment
is ”complete” in the sense that it allows to decide for each
tuple if it is part of the fragment or not. It is also possible
to build summaries over sets of attributes that are insufficient
to separate fragment tuples from non-fragment tuples. In this
case, some tuple categories can be formally identified as
belonging to some fragment, but other categories may be non-
distinguishable.

To illustrate the notion of non-distinguishable (ND)
fragments, consider the Adult dataset [6] that is widely
used for learning population classes based on income. This
dataset reports census data about income for 32, 561 in-
dividuals described by 14 attributes including one numeri-
cal attribute Age with domain [17, 90] and seven categor-
ical attributes Workclass, Education, Marital-Status, Occu-
pation, Race, Sex and Income [<50k,≥50k]. In [7], this
data-set was used for producing approximate summaries
of highly frequent data categories. An example of such
a summary is the one stating that 69% of individuals
with [race=’White’, sex=’Male’, Marital-Status=’married-
civ-spouse’] have a high-income (i.e., >50K). Instead of
producing approximate summaries, we are interested in obtain-
ing exact ones by exploiting additional attributes like: Age,
Workclass, Education and Occupation and classify the
individuals into High, Low and Non-Distinguishable (ND) as
reported in Table III.

Here, we can see that (1) all white married male soldiers
between 40 and 50 and all employees of the federal govern-
ment with a PhD have a high income, (2) all white married
males that have a low income, are young or have never worked
or have a preschool diploma and (3) it is not possible to decide
for white married males with a Master degree, or are old with
a PhD, whether they belong to high or low-income class. We
will show in Section V how this kind of detailed analysis can
be done by evaluating simple SQL queries over pre-computed
fragment summaries.

TABLE III. “MARRIED-WHITE-MALE” FRAGMENT

High age workc education occupation
40-50 ∗ ∗ Armed-Forces
∗ federal-gov Doctorate ∗

Low age workc education occupation
< 20 ∗ ∗ ∗
∗ Never-worked ∗ ∗
∗ ∗ Preschool ∗

ND age workc education occupation
∗ ∗ Masters ∗

> 60 ∗ Doctorate ∗

Contributions: In this article, we formalize the notion
of fragment summary and show how fragment summaries
can be exploited for characterizing data fragments in data
sets and query results. Our approach leverages the relational
representation of fragment summaries by taking advantage of
SQL for achieving these different analyses. We introduce an
algorithm for efficiently generating fragment summaries and
sketch a mechanism for reasoning on fragment summaries to
gain knowledge about data.

Outline: This article is organized as follows. In Section
II, we survey related work before introducing our data model in
Section III. Sections IV and V are dedicated to presenting the
fragment generation algorithm and the reasoning mechanism,
respectively. Experimentation results are discussed in Section
VI, and we conclude the article in Section VII.

II. RELATED WORK

Our contribution lies in the intersection of two mainstream
topics: data summarization and relative data completeness,
which is a special case of data completeness. We report on
works addressing both topics.

A. Data summarization
The main goal of most approaches in this family is to

reduce the data size while preserving as much information as
deemed useful for achieving specific operations like evaluating
aggregate queries [4] or returning approximate answers with
correctness guarantees [1]. Different techniques are used. Some
approaches exploit semantic knowledge like fuzzy thesauri
and linguistic variables [8][9] or OLAP hierarchies [2][3]
to generate concise descriptions of large data sets. Efficient
encoding of data has also been used for compressing columns
and rows [10] but our work is more reminiscent to the family
of pattern mining approaches [7][11][12] where summaries
are expressed using patterns. In [7], summaries are built by
selecting the most representative patterns that capture the
largest fragments of data. The approach uses the Minimum
Description Length principle for guiding the extraction process
that searches for a minimal patterns-set with maximal infor-
mativeness. Differently from [7], our approach is concerned
with extracting an exhaustive set of patterns characterizing a
table fragment w.r.t. entire table and a set of attributes.

B. Relative data completeness
Information completeness is a major data quality issue that

received attention in the database context [13]–[16]. Several
approaches have addressed the problem of assessing the query
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answer completeness when queries are evaluated on a database
with possibly missing tuples or Null values. Relative infor-
mation completeness assumes the existence of a virtual or
materialized reference database DBC describing the full extent
of data. The data set can be described by views over a virtual
DBC [15] and assessing the completeness of a query resorts
to determining whether it can be answered using these views.
In [17], data completeness is defined by a set of containment
constraints between the database D and a master dataset DBC ,
and D is complete for a query Q relative to DBC , if adding
tuples to D either violates some constraints or does not change
the answer of Q.

The use of metadata for describing the data completeness
has been investigated in [13][14][16][18]. C-tables [13] and
m-tables [18] have been proposed for annotating tuples with
certainty information and propagating certainty to query an-
swers. In [16], patterns were used to annotate tables with
completeness information and a pattern algebra was designed
for reasoning on query answer completeness. Differently from
[16], which assumes the existence of a set of patterns describ-
ing complete data fragments, our approach investigates how
to efficiently extract such patterns from reference data and,
more importantly, how to ensure that the extracted patterns
exhaustively capture completeness information. Moreover, we
do not restrict ourselves to the study of completeness but
use patterns as means to characterize any data fragment with
respect to a reference dataset and a set of attributes.

III. DATA MODEL

In this section, we introduce the notion of fragment sum-
mary as a comprehensive description of all complete data
categories in a data fragment. Let S and T be two relational
tables such that S ⊆ T . Then S is called a fragment of
source or reference table T and the pair F = (S, T ) is
called a constrained fragment. For example, any table T
with Null values for a given attribute A can be decomposed
into two constrained fragments Fnotnull = (Snotnull, T ) and
Fnull = (Snull, T ) where fragment Snull contains all tuples in
T with null values for A and fragment Snotnull contains all
tuples in T without null values. In the following, we assume
that the source table T of each constrained fragment is known
and use without distinction the terms fragment and constrained
fragment.

A. Fragment Summaries and Patterns
Let A = {a1, a2, ..., an} be a set of attributes where

the domain of each attribute is extended by a distinguished
wildcard value ∗. A pattern p = [a1 : v1, a2 : v2, ..., an : vn]
over A is a tuple that assigns to each attribute ai ∈ A a value
vi ∈ dom(ai) ∪ {∗} in the extended domain of ai. A set of
patterns P (A) = {p1, p2, . . . , pk} over a set of attributes A is
called a pattern table. We denote by [∗] the wildcard pattern
where all pattern attributes are assigned to wildcards. Observe
that a pattern table might contain only data tuples, i.e. patterns
without any wildcards.

A pattern table P defines a hierarchy of patterns LF =
(P ∗,≤) where p ≤ p′ if p can be obtained from p′ by
replacing zero or more constants by wildcards (p is called
a specialization of p′) and P ∗ contains all patterns p′ such
that there exists a pattern p ∈ P where p′ ≤ p or p ≤ p′.
Then, the pattern instance /(p, S) of a pattern p over pattern

attributes A in some table S is the sub-fragment or category
of tuples t ∈ S where t[A] ≤ p (t[A] denotes the projection
of t on attributes A). It is also easy to show that the following
properties hold for pattern instances:

• /([∗], S) = S;
• /(p, /(p, S)) = /(p, S);
• S ⊆ S′ ⇒ /(p, S) ⊆ /(p, S′).

The notion of instance can naturally be extended from patterns
to pattern tables P and constrained fragments F = (S, T ) :
/(P, S) =

⋃
p∈P /(p, S) and /(P, F ) = (/(P, S), /(p, T )).

The following definitions introduce several properties for
pattern sets that are necessary for defining the notion of frag-
ment summary. Constrained fragments are related to pattern
tables through the notion of pattern satisfaction. A constrained
fragment F = (S, T ) satisfies a pattern p if the instance of p
in the data table T is equal to the instance of p in the fragment
S: /(p, T ) = /(p, S). We also say that pattern p characterizes
fragment F . By extension, a constrained fragment F satisfies
a completeness pattern table P if F satisfies all patterns
in P . We can show that all fragments Fi in Section I
satisfy the corresponding pattern tables Pi. A pattern table
P covers a constrained fragment F if for all patterns p
characterizing fragment F , there exists a pattern p′ ∈ P where
p ≤ p′. We can show that all pattern tables Pi in the
introduction cover the corresponding fragments Fi. Observe
that a pattern table P covering a constrained fragment F is
not necessarily satisfied by F . In particular, all pattern table
containing the universal pattern cover (but are not satisfied
by) all constrained fragments. Then, a pattern table P strictly
covers a constrained fragment F if P covers F and F satisfies
P . Finally, a pattern table P is reduced if there exists no pair
of distinct patterns p ∈ P and p′ ∈ P such that p′ ≤ p.

Proposition 1: For each constrained fragment F , there ex-
ists a unique reduced strict cover, called the fragment summary
of F , and denoted by .(F ).
All pattern tables Pi in the introduction are fragment sum-
maries of the corresponding fragments Fi.

First, observe that a fragment summary .(F ) is not nec-
essarily minimal with respect to instantiation, i.e., there might
exist a subset of patterns P ′ ⊂ .(F ) where /(P ′, F ) =
/(.(F ), F ) (all categories described .(F ) are subsumed by the
patterns in P ′). This makes our summarization model different
from other models, which try to maximize the compression
ratio, whereas fragment summaries are compact representa-
tions of all characteristic data categories. Second, a fragment
summary might only cover a strict subset of its fragment F =
(S, T ), i.e., /(.(F ), T ) ⊂ F [A]. We call the set of all tuples in
t ∈ F−/(.(F ), T ) the rest of F : R(F ) = S[A]−/(.(F ), F ).
The rest R(F ) defines all categories of tuples in F that cannot
be distinguished from other data tuples t′ 6∈ F by pattern
attributes A, i.e. t[A] = t′[A]. This rest can again be considered
as a new fragment that can be summarized. We also can easily
show that, if A is a key in the source data table T , the rest is
empty, i.e., /(.(F ), F ) = S[A] for all fragments F = (S, T ).

IV. COMPUTING FRAGMENT SUMMARIES

Algorithm FoldData (Algorithm 1) computes for a given
constrained table F = (S, T ) a strict cover .(F ) over a set of
attributes A. If A is the set of all attributes in F , FoldData
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produces the summary of F . The algorithm explores the data
table by searching for complete sub-fragments (categories) that
correspond to some specific pattern. It starts from the most
general pattern i.e. wildcard pattern [∗] (level 0) and explores
top-down and breadth-first the pattern subsumption lattice LS

generated by the active attribute domains in the data table S.
Each level l corresponds to all patterns p with l constants. For
checking if some pattern p is satisfied by S, the algorithm
compares the size of the instances in p in S and T . After each
level, all specializations of the derived complete patterns p are
by definition also complete and the tuples covered by p can
be pruned from S before executing the next level. Algorithm
FoldData uses the following functions:

• powerSet(A, level) produces all sets of level at-
tributes in A.

• patterns(A,S) produces for a set of attributes A all
patterns πA(S)× {[∗]}

• checkComp(p, S, T ) checks if /(p, S) = /(p, T )

• prune(P, S) deletes from S all tuples satisfied by
patterns p ∈ P .

Observe that operations checkComp and patterns can be im-
plemented by standard SQL queries. In particular, patterns is
a simple projection on S and checkComp can be implemented
by comparing the result of two count-queries on S and T (we
suppose that S ⊆ T ). In the worst case, FoldData explores

Algorithm 1: Algorithm FoldData

Data: constrained table F = (S, T ), attribute set A
Result: summary .(F )

1 P := ∅ ; for level := 0 to |A| do
2 X := ∅ ;
3 for B ∈ powerSet(A, level) do
4 for p ∈ patterns(B,S) do
5 if checkComp(p, S, T ) then
6 P := P ∪ {p} ; X := X ∪ {p} ;
7 prune(X , S) ;
8 return P

(almost) the whole pattern lattice LS that is generated by all
attribute×value combinations in the fragment. The number
of patterns size(LS) of LS depends on the active attribute
domains in the fragment S and the number of attributes
n = |A|: size(LS) =

∑n
i=1(C

n
i ) ∗ Di where Di is the

maximum size of the Cartesian product of the active domain
of i attributes in the data table. The size of the source table
influences the cost of checking pattern satisfaction. We also
can estimate an upper bound for the fragment summary size
as follows. Each tuple in the fragment generates between 0 (for
tuples that are subsumed by patterns generated by other tuples)
and k patterns, where k is the number of identifiers of the tuple
in the source (reference) table. In the worst case, the size of the
generated summary is max1≤i≤nCn

i ' Cn
n/2 times the size of

the fragment where n = |A| is the number of attributes in A.
Such a worst-case scenario corresponds to the particular case
of random missing data with highly correlated attribute values
and no pruning opportunities. If all attributes are necessary to
identify any tuple in the source table (independent attribute
domains), the fragment summary cannot get bigger than the
fragment. As we show in our experiments, real-world data

generally follows more regular incompleteness schemes, which
increase the compression rate and folding performance.

V. REASONING WITH FRAGMENT SUMMARIES

A. Formal reasoning model
Fragment summaries and fragment patterns in general are

concise characterizations of data fragments and can be used
for analyzing and comparing data fragments extracted from a
given reference data set. By the previous definition of fragment
summary, the following constraints hold for all constrained
fragments F = (S, T ) where T 6= ∅ and all patterns p ∈ .(F )
of their summaries :

• the instance /(p, S) is complete with respect to T and
not empty.

• the instances /(p′, S) of all specializations p′ of p are
complete with respect to T (but might be empty) and

• the instances /(p′, S) of all generalizations p′ 6= p of
p are incomplete with respect to T and not empty.

Similarly, let F = (S, T ) denote the complement of
fragment F where S contains all tuples “missing” in S w.r.t. T
and .(F ) be the summary of F . Then as before, we can show
for all F = (S, T ) where T 6= ∅ and all patterns p ∈ .(F ) in
the summary of F :

• the instance /(p, S) is incomplete with respect to T
and empty.

• the instances /(p′, S) of all specializations p′ of p are
empty (but might be complete) and

• the instances /(p′, S) of all generalization p′ 6= p of
p are incomplete with respect to T and not empty.

We can show that the rest of a fragment summary is equal
to the rest of its complement R(.(F )) = R(.(F )). We denote
the summary of this rest of ”indistinguishable” patterns by
ND(F, F ) = .(R(.(F )) = .(R(.(F )).

For all patterns p where there exists no generalization in
.(F ) ∪ .(F ) the following holds :

• the intersection between the instance /(p, F ) and both,
F and F is not empty.

• if p is a tuple (only constant attribute values), then p
and all generalizations of p are in ND(F, F ).

Based on these properties, all patterns in the summary of
a fragment F can be classified into (1) C patterns, which
have a complete instance in the fragment, (2) ND patterns,
which have a incomplete and indistinguishable instance in
the fragment, (3) E patterns, which have an empty instance
in the source (reference) table and (4) IN patterns, which
cover all other patterns. Recall from our introduction example
in Section I the ”White Male Married” fragment from the
Adult dataset. Table III shows some patterns of each fragment
summary of fragments ”high income”, ”low income” and
”indistinguishable” (ND). For simplification, we assume in
the following that these tables represent the entire fragment
summaries. Consider the patterns in Table IV. We want to
reason and decide for each pattern the fragment belongs to.

Figure 1 is a tree representation of patterns where each
node at some level i corresponds to a pattern of length i
and each node corresponds to an attribute value at a given
level. The wildcard pattern [∗] is the root; the first level
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TABLE IV. ADULT DATASET PATTERNS

age workc education occupation
∗ ∗ ∗ ∗

< 20 ∗ ∗ ∗
40− 50 ∗ ∗ ∗
∗ ∗ masters ∗
∗ ∗ doctorate ∗

40− 50 ∗ preschool ∗
> 60 ∗ doctorate ∗
∗ federal-gov doctorate ∗

40− 50 ∗ ∗ Armed-force
40− 50 never-worked ∗ Armed-force

Figure 1. Labeled completeness pattern hierarchy

corresponds to patterns [∗, ∗,masters, ∗], [40 − 50, ∗, ∗, ∗],
[∗, ∗, doctorate, ∗] and [< 20, ∗, ∗, ∗] with one attribute. The
second level specializes the patterns at level one by replacing
one wildcard by a constant. All patterns in summary .(High)
are complete and labeled by Chigh (in blue) and all patterns
in summary .(Low) are labeled Clow (in orange). All an-
cestors of these patterns nodes are IN -patterns (incomplete,
not empty, distinguishable). Patterns [∗, ∗,masters, ∗] and
[> 60, ∗, Doctorate, ∗] are indistinguishable (ND) (in red).
Finally, pattern [40−50, never−worked, ∗, Armed−Forces]
is empty (label E) since it specializes a complete high income
pattern [40 − 50, ∗, ∗, Armed − Forces] and a complete low
income pattern [∗, never − worked, ∗, ∗] (not shown in Fig-
ure 1).

B. Reasoning with SQL Queries

Let RAext = RA∪{., /} be the relational algebra extended
by two operators . and / where (1) /A(P ) generates for a
given pattern table P an equivalent pattern table P ′ where all
values of attributes ai ∈ A are constant values and (2) .A(P )
generates for a given pattern table P an equivalent pattern table
where there exists no pattern p and subset S ⊆ P ′ with more
than one pattern that is equivalent to p : 6 ∃p, S ⊆ P ′, |S| > 1 :
{p} ≡ S. Using this extended algebra, we can define queries
over fragment summaries. First we can define two operators
.(F ) = .A(F ) and /(P ) = /A(P ) that compute the summary
of some fragment F and the instance of a pattern table P ,
respectively. Unfolding / can directly be translated into the
relational algebra by joining the pattern table with the data
table, whereas folding . over a set of attributes needs recursion,
which is not expressible in relational algebra (see Section IV
for implementations of .). Based on this formalization, it is
then possible to rewrite any pattern query without folding into

a relational SQL query over source tables and their fragment
summaries. We will illustrate this by two examples.

First, selection can be applied for checking if some given
pattern p is a specialization/generalization of a pattern p′ ∈ P .
For example, when considering the summary P in Table IV,
pattern [40− 50, ∗, Doctorate, Armed−Forces] is complete
(C) in fragment High or empty(E) in the source table if the
result of following query over the summary P(High) is not
empty:

select * from P (High)
where (age=’40-50’ or age=’*’)
and (education=’Doctorate’ or education =’*’)
and (occupation=’Armed-Forces’ or occupation=’*’)

It is easy to see that the result contains pattern [40− 50, ∗, ∗,
Armed− Forces].

Joining two summaries needs unfolding. Consider two
summaries P1(age, workc) and P2(workc, education) of
two fragments S1 and S2 of data table Adult. The natu-
ral join of these two summaries generates a new summary
P (age, workc, education) characterizing the fragment S1 on
S2:

select P1.age,T.workc,P2.education
from P1, P2, Adult
where (P1.age=Adult.age or P1.age=*)
and (P1.workc=Adult.workc or P1.workc=*)
and (P2.workc=Adult.workc or P2.workc=*)
and (P2.education=Adult.education or P2.education=*)

Observe that we have to join both summaries with the data
set on attribute workc to filter out all empty result patterns.
The resulting pattern table might not be minimal and has to be
re-folded over attribute workc to obtain a minimal summary.

VI. EXPERIMENTS

We conducted a set of experiments on two real-life data
sets. In each data set, we chose the characteristics that fit a
specific use case, in order to evaluate the use and efficiency
of our model in a targeted fashion.

A. Completeness summaries for sensor data

The first use case of our study considers a real sensor data
set recorded by the network of our university campus. This
data set includes measures about various campus resources
(lighting, electricity, water, temperature, etc.). We restrict on
measures pertaining to temperatures collected in 12 buildings
equipped with temperature sensors and refer to this data set
with Temp.

We build two reference data sets with different spatial
coverage and over the same time interval. The first reference,
noted TAll, includes all spatial locations of the campus re-
gardless of the existence of temperature sensors. The second
reference, noted TTemp, restricts on localities equipped with
a temperature sensor, that is, localities present in Temp. The
schema of the data and the reference tables are as follows
whereas their sizes are reported in Table V.

Temp(building, floor, room, year,month, day, hour, temp)

Locx(building, floor, room) Cal(year,month, day, hour)
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Both reference tables Tx (where x = All or x = Temp) are
defined by the Cartesian product of a location table Locx and
the same calendar table Cal and contain the key of Temp.

TABLE V. SIZE OF REFERENCE TABLES TALL AND TTEMP

x |Locx| |Calx| |Tx| = |Locx| × |Calx|
All 10,757 8,760 94,231,320

Temp 2,810 8,760 24,615,600

1) Complete and missing fragments: In addition to frag-
ment Temp, we build two smaller data fragments by restricting
Temp spatially to one building (building 25) and temporally to
one month (January). The resulting fragments are respectively
denoted by Temp OneBlg and Temp OneMon. For each data
fragment ds we also define two ”narrower” reference data sets
Tds

All and Tds
Temp obtained by using same spatial or temporal

restriction of ds on reference tables TAll and TTemp.
Complete pattern summaries remain unchanged with the

reference extension, but it is more efficient to restrict the study
to the areas covered by sensors to avoid producing extra pattern
sets (missing summary) and decrease the execution time when
producing fragment summaries (see Table VI).

TABLE VI. PATTERN DERIVATION: EXECUTION TIME

data set ds |P (ds)| Execution time (sec)
T Temp T All

Temp 11, 269 5, 983 32, 620
Temp OneBlg 39 45 45

Temp OneMon 119 75 90

2) Compactness: We measure the effectiveness of pat-
terns in terms of compactness and the efficiency of Algo-
rithm FoldData. The compactness of a pattern table P is
defined by the ratio |P |/|S| between the size of summary P
and the size of the data fragment S (low compactness means
high compression ratio). We consider for this part the restricted
reference TTemp , and report results in table VII.

TABLE VII. PATTERN DERIVATION: PRELIMINARY RESULTS

data set ds |PC | |Comp.C | |PM | |CompM |
Temp 11,269 85× 10−4 7,086 2.86× 10−4

Temp OneBlg 39 1.1× 10−4 36 0.28× 10−4

Temp OneMon 119 13× 10−4 222 1.1× 10−4

3) Performance: In the following experiment, we evaluate
the performance of algorithm FoldData. Table VI reports the
execution time for the three data sets and both reference data
sets. We notice that the execution time mainly depends on the
number of generated patterns and the reference data size and
the fragment size itself has a low impact on running time.

To study the evolution of the execution time w.r.t the
number of patterns and the fragment size, we derive from the
original data fragment Temp, 30 sub-fragments grouped into
three categories with approximately the same completeness
ratio but of different size. Figure 2 shows the running time of
FoldData for all fragments according to the number of gen-
erated patterns. Points of different colors denote fragments of
different size (orange = 15%, violet = 10% and green = 3%
of the reference data set).

Figure 2. FoldData performance

Notice that execution time is not impacted by the fragment
size but grows exponentially with the number of generated
patterns.

B. Census income (Adult) data set
The Adult data set is a public data set from the UCI

(University of California Irvine) machine learning repository
[6], which contains census data about population income.
The data set consists of 32, 561 tuples over 14 attributes.
For our experiments, we keep a subset of 8 attributes: one
numerical attribute, age ranging from 17 to 90, and seven
categorical attributes: Workclass (Private, Federal-Gov...), Ed-
ucation (Bachelors, Doctorate,...), Marital-Status (Married,
Divorced..), Occupation (Tech-Support, Sales,...), Race (Black,
White,...), Sex (Female, Male), Income (<50k,≥50k). This data
set is widely used for learning population income classes (high
income >50K, and low <=50k). We achieve different tasks
using this data set: 1) completeness/missingness characteriza-
tion regarding the occupation attribute and 2) income classes
summarization.

1) Data completeness analysis: In this data set, Occupation
and Workclass are the only attributes with Null values and
generate the same complete and missing fragments with/with-
out Null values. The preliminary results of the completeness
analysis are shown in Table VIII.

TABLE VIII. COMPLETENESS AND MISSING PATTERNS FOR
OCCUPATION/WORKCLASS

workclass/occupation complete missing
data set data patterns data patterns
Adult 30718 3363 1843 521

2) Income class summarization: The results are reported
in table IX. We can see that by decreasing the number
of attributes, the coverage of the corresponding summaries
decreases and the size of the rest increases. We also can see
that the number of patterns in a summary might be higher
than the data set it describes (for example, the summary for
high income in D1). This is due to the fact that a summary
precisely characterizes the fragment with respect to the whole
data set and therefore contains more information about the data
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TABLE IX. INCOME CLASSES SUMMARIES WITH VARIABLE ATTRIBUTES SETS

data set
Age : numerical Age : categorical

Attributes High income Low income Not distinguishable High income Low income Not distinguishable
Data Patterns Data Patterns Data Patterns Data Patterns Data Patterns Data Patterns

D1 Ag,Wo,Ed,MS,Oc,Ra,Se 4382 5485 20848 10924 7544 1995 1591 1813 15227 4096 15743 1454
D2 Ag,Ed,MS,Oc,Se 2283 1786 18164 4736 12114 1859 394 284 11235 971 20932 736
D3 Ag,Ed,MS,Oc 1712 1106 16964 3131 13858 1762 184 133 9363 493 23014 645

Ag:age, Wo:Workclass, Ed:Education,MS:Marital-Status,Oc:Occupation,Ra:Race,Se:Sex

(a) Seven attributes (b) Five attributes (c) Four attributes

Figure 3. Income classes pattern summaries with variable attributes sets (Age as a numerical attribute)

fragment than the fragment itself. The table also shows that
reducing the attribute Age domain, by aggregating values (nu-
merical to categorical), lead to increasing the size of ND, which
can be explained by the fine-grained correlation between the
Age attribute and the Income. Figure 3 shows the distribution
of patterns according to their length (number of constant values
in a pattern). For example, in D2 we infer that 74 patterns of
length 2, are in the high-income summary, while 1, 033 belong
to low-income summary. This means that for data covered
by both patterns sets, we can decide about their income by
knowing only two attributes among 7. We also observe the
evolution of the size of the pattern set corresponding to non-
distinguishable data (in yellow), increasing with attribute set
restriction.

The running time increases with the number of attributes.
The larger the attribute set is, the more attribute combinations
have to be checked during pattern generation. Table X sum-
marizes the running times for fragment Low in all data sets.

TABLE X. EXECUTION TIME DEPENDING ON ATTRIBUTES
NUMBER

Data set Number of attributes Running time (s)
D1 7 259.19
D2 5 60.96
D3 4 32.87

C. Compactness study for synthetic data sets
We showed in previous experiments various results for

pattern summary compactness for both data sets (Temp and
Adult). While the compactness for complete and missing data
fragments summaries over Temp was very low, we can observe
in Table IX that high/low-income fragment summaries suffer
from a bad compactness, that even exceeds 1 in some cases
(D1: Age numerical : High income). This difference can be
explained by the data distribution over the fragments: sensors
fail in a continuous time intervals, leading to long complete
and incomplete data sequences, which can be summarized by
a small number of generic patterns. On the other hand, high
and low-income tuples in the Adult data set are distributed in a

Figure 4. Random evolution

random way over the attributes domains, which leads to large
sets of specific patterns. To better understand this phenomena,
we created two series of synthetic data sets starting from the
Temp data set and simulated a set of sensors producing data
with different missing/available data distributions.

1) Dense distribution data sets are obtained by sequen-
tially (in time order) adding new measures to TTemp.

2) Sparse distribution data sets are generated by ran-
domly deleting measures from TTemp.

We generate a series of data sets by increasing and
decreasing the completeness of three initial data sets with
completeness fixed to 0% (empty), 30% and 50% respectively.
For each initial data set, we simulate two types of evolution
(1) by successively inserting tuples from the reference until
reaching full completeness and (2) by successively deleting
tuples until reaching emptiness. The insertion and deletions
follow two strategies: i) a sequential strategy that selects the
(inserted or deleted) tuples using their spatial and temporal
domain order preserving the original data distribution and
which we call sequential evolution, and ii) a random strategy
that picks these tuples in a random fashion, we call random
evolution.

Figures 4 and 5 depict the variation of compactness for
each data set and its evolution. In the randomly evolving data
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Figure 5. Sequential evolution

sets (Figures 4), the compactness of a random data set with
30% completeness evolves symmetrically in both directions
(insertion and deletion). Random insertions and deletions first
generate new patterns and cause at some point the fusion
of fine-grained patterns to coarser-grained ones to achieve
maximum compactness at both extremities. In the sequentially
evolving data sets, we observe the same trend with a lower am-
plitude for a data set with 50% initial completeness: insertions
lead to a faster completion of the partial partitions (thanks to
order sensitive updates) and thus to faster derivation of coarser
patterns without deriving all their subsumed patterns.

VII. CONCLUSION

We have proposed a formal summarization model and
introduced reasoning mechanisms for characterizing the con-
tents of data fragments relative to a complete dataset. We
illustrated the use of our framework within two application
scenarios for reasoning about information completeness and
for characterizing fragment summaries. We have illustrated our
approach and validated its implementation experimentally on
two data sets. A natural extension under study is the use of
Apache Spark [19] for computing and querying summaries for
very large fragmented data sets. We also intend to implement
a visual query interface for the interactive exploration of
fragment summaries.
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