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Abstract—The concept of smart cities is related to the 
development of services, systems and applications to 
provide sustainable solutions for a huge and fast-
growing population in urban areas. In a smart cities 
context, the wide range of application domains leads to a 
variety of large independent local repositories with non-
unified data models that support very limited 
interoperability and, more importantly, hinder data 
reuse, integration, extension and partitioning. In order 
to address such issues, this paper presents a metamodel 
for specification and instantiation of context data in 
smart cities driven by interoperable distributed 
middleware platforms, enabling data integration, reuse, 
extension and partitioning, supplied by several 
independent data providers across a lot of application 
domains. Supported by an experimental prototype 
implementation, empirical results based on a semi-real 
dataset evince the potential benefits and practical 
applicability of the proposed metamodel. 

Keywords-smart cities; context modeling; context-awareness; 

data integration and partitioning. 

I. INTRODUCTION  

The concept of smart cities has gained a lot of attention 
from researchers around the world [1]. The core of this 
concept has explored the fact that the adoption of ICTs 
(Information and Communication Technologies) can 
improve quality of life and mitigate urban issues resulted 
from rapid population growth [2]. Among such ICTs, IoT 
(Internet of Things) is a key technology to solve major 
problems faced by people living in cities, enabling a range 
of services and applications by interconnecting digital and 
physical things (e.g., smartphones, TVs, vehicles) to share 
data and resources [3]. 

Nowadays, in large cities, a number of services, systems 
and applications have been developed with focus on specific 
urban problem domains, for instance, traffic and waste 
management, smart health and smart education [4]. Most of 
such software solutions are developed and managed by 
several public or private stakeholders, which adopt different 
ICT platforms and infrastructures [5], leading to a variety of 
large independent, local repositories with non-unified data 
models [6] and segmented data [5], resulting in the 
formation of the information island phenomenon [7]. 
Consequently, current solutions for smart cities support very 
limited interoperability and, more importantly, hinder data 
integration, reuse, extension and partitioning. 

As a means to avoid information islands, in a way 
similar to the concept of virtual data warehouses [8], one of 
the main challenges in distributed middleware platforms for 
smart cities is to find a way to provide an integrated view of 
big urban data, enabling the development of interoperable 
services, systems and applications that communicate with 
each other for creating holistic and contextualized views of 
the cities [9][10]. 

In such a scenario, the adoption of a unified data model 
plays an important role, acting as a kind of glue that can 
bind services, systems and applications together. However, 
a unified data model for data integration is not enough. 
Regarding the dynamic, elastic and changeable nature of big 
urban data, such a unified data model ought also to facilitate 
data reuse, extension and partitioning. 

In order to address such issues, this paper presents a 
metamodel for specification and instantiation of context data 
associated to all kinds of entities in smart cities. More 
importantly, the proposed metamodel, called DCDS 
(Distributed Context Data Schema), can be adopted as a 
unified data model in interoperable distributed middleware 
platforms for enabling data integration, reuse, extension and 
partitioning, supplied by several independent data providers 
across a lot of application domains. Supported by an 
experimental prototype implementation, empirical results 
based on a semi-real dataset evince the potential benefits 
and practical applicability of the proposed metamodel. 

The remainder of the paper is structured as follows. 
Section 2 identifies the requirements related to data models 
for smart cities. Then, Section 3 discusses some related 
work, highlighting how identified requirements are handled 
by each one. Section 4 presents the proposed metamodel, 
detailing how to create schemas and instances related to 
smart cities entities, whose context data can be integrated, 
reused, extended and partitioned. Next, Section 5 shows a 
use case based on a large semi-real dataset on public urban 
transport. Concluding, Section 6 presents some final 
remarks, limitations and future work. 

II. REQUIREMENTS FOR SMART CITIES DATA MODELS 

This section identifies some requirements for data 
models that aim to ease the development of interoperable 
services, systems and applications in the smart cities 
scenario. To do that, an initial list of requirements has been 
derived through a literature review, covering a reasonable 
set of studies and proposals [11]-[20]. Note that the goal is 
not to be comprehensive, but rather to provide an overview 
of the main requirements. Accordingly, the conducted 
literature review has identified the following requirements: 
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● Flexibility – enables easy adaptation to different 
smart cities contexts, being not bounded to a single 
application or even a specific domain [13]. 

● Expressivity – concerned with the generic problem 
of knowledge representation [11], ensures a wide 
data design space for specification and instantiation 
of several data types related to smart cities entities. 

● Simplicity – adopts a minimal number of structuring, 
composition and control rules, making more 
intelligible and easier data modelling processes [12]. 

● Semanticability – attaches semantic annotations as a 
means to enable human or automatic inspection and 
transformation of context data in heterogeneous 
distributed shared scenarios [14][15]. 

● Granularability – represents the characteristics of 
the context data at different levels of detail [13], 
including composite entities, structured datatypes 
and partial attribute assignments. 

● Interoperability – supports structured unambiguous 
schemas to define entities and their attributes [17], 
which are helpful in data exchange among 
heterogeneous distributed platforms. 

● Reusability – boosted also by structured schemas 
that act as reusable data contracts, encouraging to 
develop data-driven services in which ecosystem’s 
actors can publish and share reusable datasets [18]. 

● Integrability – represents a step beyond reuse, in 
which ecosystem’s actors can integrate other 
different external datasets, providing added value 
services or adapting to different target purposes [18]. 

● Extensibility – allows schemas and their associated 
instances to evolve over time and accommodate 
changes readily, dealing with the inherent diversity 
and dynamism of smart cities [19]. 

● Partitionability – enables context data related to 
smart cities entities to be partitioned or splitted up in 
multiple hosting nodes [20], supporting concurrent 
access to increase performance and scalability [16]. 

III. RELATED WORK 

Data models have been proposed for platforms, systems, 
services and applications in several smart cities contexts. 
However, most of them have been adopted in centralized 
approaches, in which a single module, service, repository or 
node, herein called broker, is responsible for storing and 
managing the whole urban data, which obviously do not 
scale very well. Inversely, the proposed metamodel can be 
adopted in distributed approaches, in which multiple brokers 
can store context data related to smart cities entities in a 
distributed and even partitioned manner.  

Based on XML (Extensible Markup Language), 
ContextML (CML) is a language designed by the C-Cast 
project [21] and adopted in the IoT architecture proposed by 
Cippra [22]. In both, it has been adopted as a common 
representation for exchanging context data between their 
respective components. Thus, it defines a markup language 
for context representation and mainly communication that 
should be supported by all components of compliant 
architectures. As a result, CML can meet the interoperability 

requirement, however, has a not so simple syntax. Note that 
the C-Cast project [21] and the Cippra architecture [22] 
propose centralized approaches that do not deal with issues 
related to partitionability. 

Other two projects, SENSEI [23] and IoT-A [12], define 
data models to provide interoperability. Context entities are 
called resources in SENSEI and virtual entities in IoT-A. In 
both, the respective data models allow to represent real-
world entities making possible to be aware of the context or 
environment in which such entities operate or can be 
accessed. Due to that, SENSEI and IoT-A can adequately 
meet the expressivity requirement, however, do not adopt a 
simple way to represent such entities, requiring expertise in 
low-level protocols, device standards and data formats. As a 
result, the effort for modelling entities is quite high and full 
of challenges even in simple cases. Despite that, both 
projects propose methods to orchestrate IoT services in 
order to combine together several resources or virtual 
entities in different granularities, providing high-level 
services based on semantic and ontological concerns. 

NGSI (Next Generation Service Interfaces) [24][25] 
defines a context management information model that 
adopts the concept of entities as virtual representation of all 
kinds of real-world physical objects. In NGSI, each entity 
has a state represented by attributes, providing context-
awareness in a simple, flexible and expressive way to 
compliant platforms and applications [12][24]. Despite 
defining mechanisms to manage references to external 
entities [25], in essence, NGSI presupposes the adoption of 
centralized approaches in compliant middleware platforms. 
As a result, a reasonable effort is required to explore 
partitioned context data among multiple brokers, imposing 
an issue related to scalability. 

Based on the requirements identified for smart cities 
data models, Table I contrasts CML, SENSEI, IoT-A, NGSI 
and the proposed DCDS metamodel. The comparison takes 
as a starting point the evaluation presented by Jara et al. 
[12] and Nitti et al. [26] but enriched with new requirements 
and proposals. In all cases, the evaluated proposals were 
analyzed based on a set of concepts, properties and 
observations, directly extracted by us from their respective 
documentations. In Table I, note that the conducted 
evaluation adopts black dots to represent the degree of 
attendance for each proposal with respect to each 
requirement, varying from zero to three dots. 

TABLE I. SMART CITY DATA MODELS 

 CML SENSEI IoT-A NGSI DCDS 

Flexibility ●●● ●●● ●●● ●●● ●●● 

Expressivity ●●● ●●● ●●● ●●● ●●● 

Simplicity ● ● ● ●●● ●●● 

Semanticability ● ●●● ●●● ●● ●● 

Granularability ● ●● ●● ●● ●●● 

Interoperability ●● ●● ●● ●● ●●● 

Reusability ● ●● ●● ●● ●●● 

Integrability ● ●● ●● ●● ●●● 

Extensibility ●●● ●● ●● ●● ●●● 

Partitionability - - - ● ●●● 
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As can be observed in Table I, among related work, 

NGSI has higher levels of attendance for almost all 

requirements, representing a promising data model to deal 

with smart cities entities. In fact, due to that, some existing 

projects have adopted the NGSI model, including the 

Fiware platform [27] that has gained a lot of attention in 

smart cities research communities. Despite that, as can be 

noticed, NGSI has limitations related to granularability, 

reusability, integrability, extensibility and partitionability. 

Regarding that smart cities scenarios require the ability to 

deal with massive urban data produced by a very large 

number of data sources and providers, such NGSI 

limitations have direct and strong impact on compliant 

smart cities platforms in respect to their scalability, usability 

and so practical applicability. Acting as a complementary 

approach, taking NGSI capabilities as a basis, the proposed 

DCDS metamodel introduces some simple but key 

additional features in order to better deal with several issues 

related to granularability, reusability, integrability, 

extensibility and partitionability. 

IV. A DISTRIBUTED CONTEXT DATA SCHEMA 

In order to improve existing proposals for smart cities 
data models, this section presents a context data metamodel, 
called DCDS, which provides the means to specify and 
instantiate context information associated to all kinds of 
real-world entities in a broad range of smart cities domains. 
As the main benefits and contributions, DCDS can be 
adopted as a unified data model in interoperable distributed 
middleware platforms for enabling data integration, reuse, 
extension and partitioning, supplied by several independent 
data providers across a lot of application domains. The 
remainder of this section describes the DCDS metamodel in 
more depth, including how to specify and instantiate smart 
cities entities, and how to support data partitioning. 

A. Specifying and Instantiating Entities 

DCDS adopts the concepts of entity schema and entity 
instance for representing the unambiguous single 
specification and the multiple associated instances for each 
context entity, respectively. Using UML (Unified Modeling 
Language), as illustrated in Figure 1, the representation of 
an entity schema has four constituting model elements. 

+ name: string

+ type: string
+ value: any

Schema Description

+ name: string

+ type: string
+ refs: <int> list

Attribute Schema

+ id: string {id}

+ version: string
+ owner: URI

+ providers: <URI> list

Entity Schema

+ name: string

+ type: string

Metadata Schema
1 1..*

1
1

1
*

* *

 
Figure 1. DCDS UML representation. 

As the starting point of an entity schema, the Entity 
Schema model element has the following terms: 
id – provides a globally unique identifier for each entity 

schema; version – indicates the version of the respective 
entity schema, enabling providers to manage the entity 
schema lifecycle; owner – identifies the owner/provider that 
has specified the entity schema, allowing all providers to 
share schemas among them; and providers – defines a list of 
multiple providers in which related instances of the entity 
schema can be integrally or partially stored and retrieved. 

Each context entity can have several context attributes, 
each one represented in the respective schema by the 
Attribute Schema model element, which has the following 
terms: name – provides a unique identifier for each attribute 
associated to the given entity schema; type – indicates the 
type of the respective attribute (e.g., string, integer and 
float); and refs – defines a list of references to providers in 
which the given attribute can be stored and retrieved. Note 
that, as explained later, the terms providers and refs are the 
basis for two distinct data partitioning types, which in turn 
leverage data granularity in an innovative way. 

The other two model elements Metadata Schema and 
Schema Description are related to different types of optional 
metadata, which can be adopted to enrich information about 
schemas and instances, varying among simple textual 
descriptions, rich semantic annotations, and well-known 
adopted metrics, patterns and even standards. On the one 
hand, Metadata Schema denotes different types of metadata 
that can be associated to the given attribute during the 
instantiation of context entities. On the other hand, Schema 
Description represents metadata descriptions that can be 
associated to the specification of the own schema and the 
respective attributes. Each Metadata Schema and Schema 
Description model element has two terms, name and type, 
providing a unique identifier for each metadata and 
indicating the type of the given metadata, respectively. 
Besides, each Schema Description has the value term for 
representing the specific metadata content. 

Based on entity schemas, DCDS provides a simple, 
flexible and expressive way to describe unambiguous 
context entities in smart cities scenarios. As another 
important feature, each entity schema can be evaluated by 
compliant parsers and even engines to syntactically and 
semantically validate distributed context entity data, making 
possible to interoperate and integrate reusable context data 
managed by different providers in smart cities scenarios. 

A step further, versioned schemas leverage extensibility, 
enabling to evolve context entity specifications and their 
instances over time, accommodating changes as a means to 
deal with the dynamic nature of urban data. For instance, 
new attributes and metadata can be included in schemas and 
subsequently their instances. Besides, already existing 
attributes and metadata can be renamed, updated or even 
removed. Therefore, it is possible to support CRUD (Create, 
Read, Update and Delete) operations for context entity 
schemas and instances. More importantly, such operations 
can also be employed in the list of providers where related 
instances and their attributes can be integrally or partially 
stored and retrieved. Of course, a compliant platform ought 
to define an API (Application Programming Interface) for 
dealing with the extensibility related to entity schemas and 
their attributes. 
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In practice, the DCDS UML representation must be 
converted to a context representation language. Among 
existing languages, for instance XML, CSV (Comma-
Separated Values) and RDF (Resource Description 
Framework), JSON (JavaScript Object Notation) [28] has 
gained more and more attention in IoT scenarios, since it is 
simpler, smaller, faster and more readable than XML [29]. 
Figure 2 shows an example of a DCDS JSON schema. 

{
"id":"bus",
"version":"1.0",
"owner":"dcds.provider1.br",
"providers":["dcds.provider1.br", "dcds.provider2.br", "dcds.provider3.br"],
"schema-description":{

"description":{
"type":"text",
"value":"Buses of the public transport system"}},

"location":{
"type":"point",
"refs":[1, 2],
"schema-description":{

"format":{
"type":"text",
"value":"GeoJson georeferenced location"}}},

"speed":{
"type":"double",
"refs":[1, 3],
"metadata-schema":{

"unit":{
"type":"string"}}},

"people-ammount":{
"type":"integer",
"refs":[1, 2, 3]}

}
 

Figure 2. DCDS JSON schema representation. 

In smart cities platforms, systems and applications, each 
real-world physical entity (e.g., sensors, actuators, 
automobiles and users) can be modeled and represented as a 
virtual context entity, which is denoted as an entity instance 
in the DCDS metamodel. Using a UML representation, as 
illustrated in Figure 3, an entity instance has three 
constituting model elements. Note that each entity instance 
must be compliant with its respective entity schema. As 
such, an entity instance can only have attributes and 
metadata previously specified in its corresponding entity 
schema. 

+ name: string

+ type: string

+ value: any

Entity Attribute
1 1..* 1

*
+ name: string

+ type: string

+ value: any

Attribute Metadata

+ id: string {id}

+ schema: string

+ version: string

+ owner: URI

Entity Instance

 

Figure 3. Context entity UML model. 

Acting as the starting point of an entity instance, the 
Entity Instance model element has the following terms: 
id – provides a local identifier for each entity instance from 
the producer viewpoint; schema – indicates the compliant 
entity schema that defines the context information for the 
respective type of entity instance; version – denotes the 
version of the respective entity schema; owner – identifies 
the owner/provider that specified the compliant entity 
schema. Note that, together, the terms id, schema, version 
and owner provide a globally unique identifier for each 
entity instance, enabling compliant middleware platforms to 
provide naming services to leverage location transparency 
for schemas and their respective instances. 

Each entity instance can have several context attributes, 
each one represented in the respective entity instance by the 
Entity Attribute model element, which has the following 
terms: name – denotes the attribute name defined in the 
corresponding entity schema; type – indicates the type of the 
respective attribute (e.g., string, integer and float); and value 
– represents the current value of the attribute in the given 
entity instance. In order to provide high granularity levels, a 
compliant middleware platform must have the capability of 
storing and retrieving integrally or partially the attributes of 
managed entity instances. 

As specified in an entity schema, each entity instance 
can have optional associated metadata for providing 
contextual information about the given attribute instance. To 
do that, DCDS adopts the Attribute Metadata model 
element, which has three terms, name, type and value, 
denoting respectively the metadata name, type and specific 
content, all of them defined in the associated entity schema. 

Figure 4 illustrates a simple example of a DCDS JSON 
instance, compliant with the DCDS JSON schema 
previously defined in Figure 2. As can be noticed, DCDS 
defines a context information model similar to NGSI [24] 
but enriched with the concept of entity schemas for 
leveraging the support to the identified requirements. 

{
"id":"CT01-1 Circular-Tourism",
"schema":"bus",
"version":"1.0",
"owner":"dcds.provider1.br",
"location":{

"type":"point",
"value":[30.52, 10.25]},

"speed":{
"type":"double",
"value":60.35,
"unit":{

"type":"string",
"value":"kilometer per hour - km/h"}},

"people-ammount":{
"type":"integer",
"value":32}

}  

Figure 4. DCDS JSON instance representation. 

In order to provide a formal DCDS representation, 
EBNF (Extended Backus-Naur Form) grammars have been 
specified for entity schemas and instances, making possible 
to develop DCDS parsers. Due to space limitations and for 
the sake of simplicity, Figure 5 illustrates the EBNF 
grammar for entity schemas only, but without including the 
Schema Description model element. 

dcds_schema ::= '{' entity_schema (',' attribute_schema)+ '}'

entity_schema ::= '"id":' '"' string '"' ','
'"version":' '"' string '"' ','
'"owner":' '"' uri '"' ','
'"providers":' '[' uri (',' uri)* ']'

attribute_schema ::= attribute_spec (',' metadata_schema)*

attribute_spec ::= '"' attr_name '"' ':' '{'
'"type":' '"' string '"' ','
'"refs":' '[' integer (',' integer)* ']'
'}'

metadata_schema ::= '"metadata-schema:"' '{'
'"' meta_name '"' ':' '{‘

'"type":' '"' string '"' '}'
'}'

attr_name ::= string
meta_name ::= string  

Figure 5. EBNF grammar for DCDS schemas. 
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B. Partitioning Context Instances and Attributes  

Based on the DCDS metamodel, compliant middleware 
platforms can provide data partitioning in a two-fold 
perspective: context instance partitioning and context 
attribute partitioning. Such partitioning perspectives have a 
direct influence on requirements related to integrability, 
granularability and reusability, making possible services, 
systems and applications to integrate reusable context data 
from multiple providers in different granularity levels. 
Figure 6a and Figure 6b depict both partitioning approaches. 

people-amount temperature

(a) Context Instance Partitioning (b) Context Attribute Partitioning

speed

A B C D

location

A B A B

 

Figure 6. Data partitioning approaches. 

In the context instance partitioning (Figure 6a), multiple 
independent data providers can store and manage subsets of 
entity instances related to the same entity schema. Thus, 
instead of storing the whole set of entity instances in a 
single provider, subsets of them are partitioned in multiple 
providers based on organizational, economical or 
geographical policies. Note that, for each entity instance, all 
currently valued attributes of the instance are integrally 
stored in a single provider, but without the need of assigning 
values to all attributes. 

For example, in large cities, where there can be several 
bus operator companies responsible by providing the public 
transportation system, it sounds interesting that every 
company stores and manages context data about its own bus 
fleet. Figure 6a presents an example of instance partitioning, 
in which two providers manage all context data (location, 
people-amount, speed and temperature) associated with the 
bus fleet of two independent bus operator companies, which 
have the buses A/B and C/D, respectively. To do that, the 
providers term of the respective entity schema must simply 
include the URI (Uniform Resource Identifier) list of the 
authorized providers. Figure 7 illustrates the instance 
representation for buses A and C, which are integrally 
stored in different data providers with all attributes. 

{
"id":"Bus-A",
"schema":"bus",
"version":"1.0",
"owner":"dcds.provider1.br",
"location":{

"type":"point",
"value":[-23.56, -46.65]},

"speed":{
"type":"double",
"value":60.35},

"people-ammount":{
"type":"integer",
"value":32},

"temperature":{
"type":"double",
"value":22.25}

}

{
"id":"Bus-C",
"schema":"bus",
"version":"1.0",
"owner":"dcds.provider1.br",
"location":{

"type":"point",
"value":[-50.12, -18.20]},

"speed":{
"type":"double",
"value":25.35},

"people-ammount":{
"type":"integer",
"value":10},

"temperature":{
"type":"double",
"value":19.00}

}  

Figure 7. Instance partition example. 

Differently, in the context attribute partitioning 
(Figure 6b), multiple independent data providers can store 
and manage subsets of attributes related to the same type of 
entity instances. That is, instead of storing all attributes of a 
given entity instance in a single provider, subsets of them 
are partitioned in multiple providers, probably based on 
expertise and capabilities of such providers. Again, there is 
no need of assigning values to all attributes. 

For instance, in several cities, where the public 
transportation system is only provided by the municipal 
government, it seems interesting to hire distinct specialized 
companies for gathering and managing different context 
data types of interest. Figure 6b shows an example of 
attribute partitioning, in which two providers separately 
manage two distinct context attributes (location/people-
amount and speed/temperature) associated with the 
municipal bus fleet. To do that, similarly, the providers term 
of the target entity schema must have the URI list of the 
authorized providers; but differently, for each attribute, the 
refs term must have the ordinal positions in the URI list of 
the providers that can store the respective attribute. Figure 8 
illustrates the instance representation for bus A, which are 
partially stored in two different data providers without the 
need of assigning values to all attributes in each provider. 

{
"id":"Bus-A",
"schema":"bus",
"version":"1.0",
"owner":"dcds.provider1.br",
"location":{

"type":"point",
"value":[-23.56, -46.65]},

"people-ammount":{
"type":"integer",
"value":32}

}

{
"id":"Bus-A",
"schema":"bus",
"version":"1.0",
"owner":"dcds.provider1.br",
"speed":{

"type":"double",
"value":25.35},

"temperature":{
"type":"double",
"value":19.00}

}  

Figure 8. Attribute partition example.  

In order to manage both partitioning perspectives, a 
compliant DCDS provider ought to adopt an integration 
process for combining all required instances associated to a 
given schema, version and provider. In the context instance 
partitioning, the requesting provider has to retrieve partial 
collections of instances stored in different providers and 
thereafter to integrate all them to provide the whole set of 
required instances. In the context attribute partitioning, the 
same process must be performed but, additionally, the 
requesting provider has to concatenate partial attributes of 
instances retrieved from different providers to reconstruct 
the whole set of attributes for all required instances. 

It is important to emphasize that, in case of relational 
storage, both partitioning perspectives can be mapped to 
horizontal and vertical partitioning, as indicated in [30] for 
RDBMS (Relational Database Management Systems). In 
such a case, on the one hand, the context instance 
partitioning can be mapped to the horizontal partitioning, in 
which context instances are partitioned into disjoint sets of 
rows that are physically stored and accessed separately in 
different RDBMS-based providers. On the other hand, the 
context attribute partitioning can be mapped to the vertical 
partitioning, in which context attributes are partitioned into 
disjoint sets of columns that are physically stored and 
accessed separately in different RDBMS-based providers. 
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V. EXPERIMENTAL EVALUATION 

In order to evaluate DCDS, based on HTTP (Hypertext 
Transfer Protocol) and REST (Representational State 
Transfer), a prototype implementation of a compliant 
distributed middleware platform, called Sirius, has been 
developed as a set of RESTful services for integrating 
multiple data providers, supporting the development of 
services, systems and applications in a broad range of smart 
cities domains. 

As illustrated in Figure 9, Sirius adopts a service-
oriented architecture. The Context Schema Manager deals 
with the versioned lifecycle of entity schemas, including 
CRUD operations for schemas and their respective attributes 
and metadata. Taking such specified schemas as a basis, the 
Context Instance Manager coordinates communication 
among other distributed Sirius brokers for storing, retrieving 
and integrating instances, including CRUD operations for 
instances and their respective attributes and metadata. By 
implementing a query processor, the Context Query Engine 
deals with a simple query language that can be adopted to 
transparently access and integrate context data from 
multiple providers. In order to provide independence from 
low-level database technologies, each Context Broker 
Adapter acts as a translator among DCDS JSON 
representations and a given low-level representation model. 
Therefore, several Context Broker Adapters can provide a 
way to map or transform different structured or unstructured 
data models into DCDS schemas. 

Context Instance
Manager

Context Schema
Manager

Context Query
Engine

Context Broker 
Adapter

Context
Broker

CIM-REST-API CSM-REST-API CQE-REST-API

 

Figure 9. Sirius middleware platform. 

Sirius was developed using Flask, a lightweight Python 
microframework for developing web applications and 
RESTful services. In addition, Sirius adopts Orion Context 
Broker [31] as a local broker for persisting instances. In 
order to define a distributed platform, virtual machines 
deployed in the AWS (Amazon Web Services) cloud 
infrastructure [32] act as context providers, running 
complete Sirius platform instances. 

In the DCDS experimental evaluation, a semi-real 
dataset is adopted, taking as a basis the real-time database of 
the urban transport system provided by the São Paulo town 
hall in Brazil. Such a database provides an HTTP RESTful 
API to access the real-time context data related to all bus 
fleets provided by bus operator companies in São Paulo. 
Originally, the context database provides information 
related to the name of the line, location and travel direction 
of about 10,000 buses. However, for enriching the context 
attributes associated to buses, the conducted experiments 
have included additional synthetic attributes. Thus, in the 

bus schema, each bus instance has the following attributes: 
location, people-amount, temperature and speed. 

In a way similar to Figure 6a and Figure 6b, two 
different experiments have been successfully evaluated 
using six virtual machines in the AWS cloud infrastructure, 
four of them to deploy Sirius instances, another one to 
deploy Orion and the last one to use as a client to dispatch 
operations. In the first experiment, the context instance 
partitioning approach was evaluated, spreading 10,000 bus 
instances in four Sirius brokers, which means around 2,500 
bus instances in each broker. In such a case, each bus 
instance has all four attributes stored in the respective 
broker. In the second experiment, the context attribute 
partitioning approach was evaluated, storing all 10,000 bus 
instances repeatedly in each Sirius broker. However, 
differently, each bus instance has only one attribute stored 
in each Sirius broker. As a mean to define a comparing 
baseline, the experiment also has a third configuration in 
which all buses are stored a centralized Orion broker. 

As an initial performance evaluation, a configurable set 
of concurrent users, varying from 10 to 100, dispatch read 
requests for each configuration of the experiment, each one 
recovering the whole set of 10,000 stored instances. Then, 
for each set of concurrent users, the total time for processing 
such requests was measured. The experiment was conducted 
using the JMeter load testing tool [33], which allows to 
configure different load profiles and calculate their 
respective response times for a variety of services. In 
JMeter, HTTP requests can be modeled as users, which 
perform concurrent requests to target services. 

Figure 10 shows the total response time for each 
configuration (instance partitioning, attributed partitioning 
and centralized Orion) and the set of concurrent users (10, 
20, 40, 60, 80, 100). Of course, the lower the response time, 
the better performance has the evaluated configuration. 

 

Figure 10. Performace evaluation. 

As can be noticed, in both partitioning configurations, as 
the number of concurrent users increases, the Sirius’ 
distributed approach provides better and better performance 
when contrasted with the Orion’s centralized approach. For 
example, considering 100 concurrent users, the gains of the 
instance and attribute partitioning approaches are around 
79.4% and 18.9%, respectively. 
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VI. CONCLUSION AND FUTURE WORK 

In order to evolve from not so scalable, centralized smart 
cities platforms, this paper presents the DCDS metamodel, 
which provides a means to specify and instantiate 
distributed, partitioned and versioned context information 
associated to all kinds of real-world entities in a broad range 
of smart cities domains. As the main contributions, DCDS 
can be adopted as a unified data model in interoperable, 
scalable and distributed middleware platforms, enabling the 
development of services, systems and applications that can 
easily deal with capabilities related to data integration, 
reuse, extension and partitioning, supplied by several 
independent providers across a lot of smart cities domains. 

On the one hand, in DCDS, versioned schemas and 
instances enable to evolve entity schemas and their 
instances over time, accommodating changes imposed by 
dynamic urban data. On the other hand, DCDS enables data 
partitioning in an innovative two-fold approach. First, 
multiple providers can manage subsets of instances related 
to the same schema. Second, multiple providers can manage 
subsets of attributes related to the same type of instances. As 
contributions, such versioning and partitioning capabilities 
leverage requirements related to extensibility, integrability, 
granularability and reusability, enabling services, systems 
and applications to integrate reusable, extensible context 
data from multiple providers in distinct granularity levels. 

It is important to highlight that both partitioning 
approaches have the potential to provide better response 
time and scalability in compliant middleware platforms due 
to gains imposed by parallel access [16], concentrating 
frequently accessed instances or attributes in providers with 
more available or less overloaded processing power, 
communication bandwidth and storage capacity. 

Despite such contributions, from the viewpoint of 
complaint platforms, DCDS does not have concerns related 
to security requirements, such as access control, 
authentication, confidentiality and denial of service. 
Besides, in collaborative distributed smart cities initiatives, 
business models ought to be adopted in order to regulate 
how to monetize data providers. Together, concerns related 
to security and business models represent key potential 
branches for future work. 

As another future branch, it is important to conduct 
performance, load and stress tests with much bigger 
scenarios, including a lot of data provider nodes and several 
types of context entities in different smart cities domains. 
Such tests enable to gather more confidence about empirical 
findings related to enumerated requirements of interest, but 
also including scalability and availability. 
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