

A Context Data Metamodel for Distributed Middleware Platforms in Smart Cities

Júlio Suzuki Lopes

Federal Institute of Paraíba (IFPB)

João Pessoa, Brazil

email: julio.lopes@ifpb.edu.br

Lucas Vale F. da Silva, Gledson Elias

Federal University of Paraíba (UFPB)

João Pessoa, Brazil

email: lucasfaustino@ppgi.ci.ufpb.br, gledson@ci.ufpb.br

Abstract—The concept of smart cities is related to the
development of services, systems and applications to
provide sustainable solutions for a huge and fast-
growing population in urban areas. In a smart cities
context, the wide range of application domains leads to a
variety of large independent local repositories with non-
unified data models that support very limited
interoperability and, more importantly, hinder data
reuse, integration, extension and partitioning. In order
to address such issues, this paper presents a metamodel
for specification and instantiation of context data in
smart cities driven by interoperable distributed
middleware platforms, enabling data integration, reuse,
extension and partitioning, supplied by several
independent data providers across a lot of application
domains. Supported by an experimental prototype
implementation, empirical results based on a semi-real
dataset evince the potential benefits and practical
applicability of the proposed metamodel.

Keywords-smart cities; context modeling; context-awareness;

data integration and partitioning.

I. INTRODUCTION

The concept of smart cities has gained a lot of attention
from researchers around the world [1]. The core of this
concept has explored the fact that the adoption of ICTs
(Information and Communication Technologies) can
improve quality of life and mitigate urban issues resulted
from rapid population growth [2]. Among such ICTs, IoT
(Internet of Things) is a key technology to solve major
problems faced by people living in cities, enabling a range
of services and applications by interconnecting digital and
physical things (e.g., smartphones, TVs, vehicles) to share
data and resources [3].

Nowadays, in large cities, a number of services, systems
and applications have been developed with focus on specific
urban problem domains, for instance, traffic and waste
management, smart health and smart education [4]. Most of
such software solutions are developed and managed by
several public or private stakeholders, which adopt different
ICT platforms and infrastructures [5], leading to a variety of
large independent, local repositories with non-unified data
models [6] and segmented data [5], resulting in the
formation of the information island phenomenon [7].
Consequently, current solutions for smart cities support very
limited interoperability and, more importantly, hinder data
integration, reuse, extension and partitioning.

As a means to avoid information islands, in a way
similar to the concept of virtual data warehouses [8], one of
the main challenges in distributed middleware platforms for
smart cities is to find a way to provide an integrated view of
big urban data, enabling the development of interoperable
services, systems and applications that communicate with
each other for creating holistic and contextualized views of
the cities [9][10].

In such a scenario, the adoption of a unified data model
plays an important role, acting as a kind of glue that can
bind services, systems and applications together. However,
a unified data model for data integration is not enough.
Regarding the dynamic, elastic and changeable nature of big
urban data, such a unified data model ought also to facilitate
data reuse, extension and partitioning.

In order to address such issues, this paper presents a
metamodel for specification and instantiation of context data
associated to all kinds of entities in smart cities. More
importantly, the proposed metamodel, called DCDS
(Distributed Context Data Schema), can be adopted as a
unified data model in interoperable distributed middleware
platforms for enabling data integration, reuse, extension and
partitioning, supplied by several independent data providers
across a lot of application domains. Supported by an
experimental prototype implementation, empirical results
based on a semi-real dataset evince the potential benefits
and practical applicability of the proposed metamodel.

The remainder of the paper is structured as follows.
Section 2 identifies the requirements related to data models
for smart cities. Then, Section 3 discusses some related
work, highlighting how identified requirements are handled
by each one. Section 4 presents the proposed metamodel,
detailing how to create schemas and instances related to
smart cities entities, whose context data can be integrated,
reused, extended and partitioned. Next, Section 5 shows a
use case based on a large semi-real dataset on public urban
transport. Concluding, Section 6 presents some final
remarks, limitations and future work.

II. REQUIREMENTS FOR SMART CITIES DATA MODELS

This section identifies some requirements for data
models that aim to ease the development of interoperable
services, systems and applications in the smart cities
scenario. To do that, an initial list of requirements has been
derived through a literature review, covering a reasonable
set of studies and proposals [11]-[20]. Note that the goal is
not to be comprehensive, but rather to provide an overview
of the main requirements. Accordingly, the conducted
literature review has identified the following requirements:

39Copyright (c) IARIA, 2019. ISBN: 978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

mailto:julio.lopes@ifpb.edu.br
mailto:lucasfaustino@ppgi.ci.ufpb.br

● Flexibility – enables easy adaptation to different
smart cities contexts, being not bounded to a single
application or even a specific domain [13].

● Expressivity – concerned with the generic problem
of knowledge representation [11], ensures a wide
data design space for specification and instantiation
of several data types related to smart cities entities.

● Simplicity – adopts a minimal number of structuring,
composition and control rules, making more
intelligible and easier data modelling processes [12].

● Semanticability – attaches semantic annotations as a
means to enable human or automatic inspection and
transformation of context data in heterogeneous
distributed shared scenarios [14][15].

● Granularability – represents the characteristics of
the context data at different levels of detail [13],
including composite entities, structured datatypes
and partial attribute assignments.

● Interoperability – supports structured unambiguous
schemas to define entities and their attributes [17],
which are helpful in data exchange among
heterogeneous distributed platforms.

● Reusability – boosted also by structured schemas
that act as reusable data contracts, encouraging to
develop data-driven services in which ecosystem’s
actors can publish and share reusable datasets [18].

● Integrability – represents a step beyond reuse, in
which ecosystem’s actors can integrate other
different external datasets, providing added value
services or adapting to different target purposes [18].

● Extensibility – allows schemas and their associated
instances to evolve over time and accommodate
changes readily, dealing with the inherent diversity
and dynamism of smart cities [19].

● Partitionability – enables context data related to
smart cities entities to be partitioned or splitted up in
multiple hosting nodes [20], supporting concurrent
access to increase performance and scalability [16].

III. RELATED WORK

Data models have been proposed for platforms, systems,
services and applications in several smart cities contexts.
However, most of them have been adopted in centralized
approaches, in which a single module, service, repository or
node, herein called broker, is responsible for storing and
managing the whole urban data, which obviously do not
scale very well. Inversely, the proposed metamodel can be
adopted in distributed approaches, in which multiple brokers
can store context data related to smart cities entities in a
distributed and even partitioned manner.

Based on XML (Extensible Markup Language),
ContextML (CML) is a language designed by the C-Cast
project [21] and adopted in the IoT architecture proposed by
Cippra [22]. In both, it has been adopted as a common
representation for exchanging context data between their
respective components. Thus, it defines a markup language
for context representation and mainly communication that
should be supported by all components of compliant
architectures. As a result, CML can meet the interoperability

requirement, however, has a not so simple syntax. Note that
the C-Cast project [21] and the Cippra architecture [22]
propose centralized approaches that do not deal with issues
related to partitionability.

Other two projects, SENSEI [23] and IoT-A [12], define
data models to provide interoperability. Context entities are
called resources in SENSEI and virtual entities in IoT-A. In
both, the respective data models allow to represent real-
world entities making possible to be aware of the context or
environment in which such entities operate or can be
accessed. Due to that, SENSEI and IoT-A can adequately
meet the expressivity requirement, however, do not adopt a
simple way to represent such entities, requiring expertise in
low-level protocols, device standards and data formats. As a
result, the effort for modelling entities is quite high and full
of challenges even in simple cases. Despite that, both
projects propose methods to orchestrate IoT services in
order to combine together several resources or virtual
entities in different granularities, providing high-level
services based on semantic and ontological concerns.

NGSI (Next Generation Service Interfaces) [24][25]
defines a context management information model that
adopts the concept of entities as virtual representation of all
kinds of real-world physical objects. In NGSI, each entity
has a state represented by attributes, providing context-
awareness in a simple, flexible and expressive way to
compliant platforms and applications [12][24]. Despite
defining mechanisms to manage references to external
entities [25], in essence, NGSI presupposes the adoption of
centralized approaches in compliant middleware platforms.
As a result, a reasonable effort is required to explore
partitioned context data among multiple brokers, imposing
an issue related to scalability.

Based on the requirements identified for smart cities
data models, Table I contrasts CML, SENSEI, IoT-A, NGSI
and the proposed DCDS metamodel. The comparison takes
as a starting point the evaluation presented by Jara et al.
[12] and Nitti et al. [26] but enriched with new requirements
and proposals. In all cases, the evaluated proposals were
analyzed based on a set of concepts, properties and
observations, directly extracted by us from their respective
documentations. In Table I, note that the conducted
evaluation adopts black dots to represent the degree of
attendance for each proposal with respect to each
requirement, varying from zero to three dots.

TABLE I. SMART CITY DATA MODELS

 CML SENSEI IoT-A NGSI DCDS

Flexibility ●●● ●●● ●●● ●●● ●●●

Expressivity ●●● ●●● ●●● ●●● ●●●

Simplicity ● ● ● ●●● ●●●

Semanticability ● ●●● ●●● ●● ●●

Granularability ● ●● ●● ●● ●●●

Interoperability ●● ●● ●● ●● ●●●

Reusability ● ●● ●● ●● ●●●

Integrability ● ●● ●● ●● ●●●

Extensibility ●●● ●● ●● ●● ●●●

Partitionability - - - ● ●●●

40Copyright (c) IARIA, 2019. ISBN: 978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

As can be observed in Table I, among related work,

NGSI has higher levels of attendance for almost all

requirements, representing a promising data model to deal

with smart cities entities. In fact, due to that, some existing

projects have adopted the NGSI model, including the

Fiware platform [27] that has gained a lot of attention in

smart cities research communities. Despite that, as can be

noticed, NGSI has limitations related to granularability,

reusability, integrability, extensibility and partitionability.

Regarding that smart cities scenarios require the ability to

deal with massive urban data produced by a very large

number of data sources and providers, such NGSI

limitations have direct and strong impact on compliant

smart cities platforms in respect to their scalability, usability

and so practical applicability. Acting as a complementary

approach, taking NGSI capabilities as a basis, the proposed

DCDS metamodel introduces some simple but key

additional features in order to better deal with several issues

related to granularability, reusability, integrability,

extensibility and partitionability.

IV. A DISTRIBUTED CONTEXT DATA SCHEMA

In order to improve existing proposals for smart cities
data models, this section presents a context data metamodel,
called DCDS, which provides the means to specify and
instantiate context information associated to all kinds of
real-world entities in a broad range of smart cities domains.
As the main benefits and contributions, DCDS can be
adopted as a unified data model in interoperable distributed
middleware platforms for enabling data integration, reuse,
extension and partitioning, supplied by several independent
data providers across a lot of application domains. The
remainder of this section describes the DCDS metamodel in
more depth, including how to specify and instantiate smart
cities entities, and how to support data partitioning.

A. Specifying and Instantiating Entities

DCDS adopts the concepts of entity schema and entity
instance for representing the unambiguous single
specification and the multiple associated instances for each
context entity, respectively. Using UML (Unified Modeling
Language), as illustrated in Figure 1, the representation of
an entity schema has four constituting model elements.

+ name: string

+ type: string
+ value: any

Schema Description

+ name: string

+ type: string
+ refs: <int> list

Attribute Schema

+ id: string {id}

+ version: string
+ owner: URI

+ providers: <URI> list

Entity Schema

+ name: string

+ type: string

Metadata Schema
1 1..*

1
1

1
*

* *

Figure 1. DCDS UML representation.

As the starting point of an entity schema, the Entity
Schema model element has the following terms:
id – provides a globally unique identifier for each entity

schema; version – indicates the version of the respective
entity schema, enabling providers to manage the entity
schema lifecycle; owner – identifies the owner/provider that
has specified the entity schema, allowing all providers to
share schemas among them; and providers – defines a list of
multiple providers in which related instances of the entity
schema can be integrally or partially stored and retrieved.

Each context entity can have several context attributes,
each one represented in the respective schema by the
Attribute Schema model element, which has the following
terms: name – provides a unique identifier for each attribute
associated to the given entity schema; type – indicates the
type of the respective attribute (e.g., string, integer and
float); and refs – defines a list of references to providers in
which the given attribute can be stored and retrieved. Note
that, as explained later, the terms providers and refs are the
basis for two distinct data partitioning types, which in turn
leverage data granularity in an innovative way.

The other two model elements Metadata Schema and
Schema Description are related to different types of optional
metadata, which can be adopted to enrich information about
schemas and instances, varying among simple textual
descriptions, rich semantic annotations, and well-known
adopted metrics, patterns and even standards. On the one
hand, Metadata Schema denotes different types of metadata
that can be associated to the given attribute during the
instantiation of context entities. On the other hand, Schema
Description represents metadata descriptions that can be
associated to the specification of the own schema and the
respective attributes. Each Metadata Schema and Schema
Description model element has two terms, name and type,
providing a unique identifier for each metadata and
indicating the type of the given metadata, respectively.
Besides, each Schema Description has the value term for
representing the specific metadata content.

Based on entity schemas, DCDS provides a simple,
flexible and expressive way to describe unambiguous
context entities in smart cities scenarios. As another
important feature, each entity schema can be evaluated by
compliant parsers and even engines to syntactically and
semantically validate distributed context entity data, making
possible to interoperate and integrate reusable context data
managed by different providers in smart cities scenarios.

A step further, versioned schemas leverage extensibility,
enabling to evolve context entity specifications and their
instances over time, accommodating changes as a means to
deal with the dynamic nature of urban data. For instance,
new attributes and metadata can be included in schemas and
subsequently their instances. Besides, already existing
attributes and metadata can be renamed, updated or even
removed. Therefore, it is possible to support CRUD (Create,
Read, Update and Delete) operations for context entity
schemas and instances. More importantly, such operations
can also be employed in the list of providers where related
instances and their attributes can be integrally or partially
stored and retrieved. Of course, a compliant platform ought
to define an API (Application Programming Interface) for
dealing with the extensibility related to entity schemas and
their attributes.

41Copyright (c) IARIA, 2019. ISBN: 978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

In practice, the DCDS UML representation must be
converted to a context representation language. Among
existing languages, for instance XML, CSV (Comma-
Separated Values) and RDF (Resource Description
Framework), JSON (JavaScript Object Notation) [28] has
gained more and more attention in IoT scenarios, since it is
simpler, smaller, faster and more readable than XML [29].
Figure 2 shows an example of a DCDS JSON schema.

{
"id":"bus",
"version":"1.0",
"owner":"dcds.provider1.br",
"providers":["dcds.provider1.br", "dcds.provider2.br", "dcds.provider3.br"],
"schema-description":{

"description":{
"type":"text",
"value":"Buses of the public transport system"}},

"location":{
"type":"point",
"refs":[1, 2],
"schema-description":{

"format":{
"type":"text",
"value":"GeoJson georeferenced location"}}},

"speed":{
"type":"double",
"refs":[1, 3],
"metadata-schema":{

"unit":{
"type":"string"}}},

"people-ammount":{
"type":"integer",
"refs":[1, 2, 3]}

}

Figure 2. DCDS JSON schema representation.

In smart cities platforms, systems and applications, each
real-world physical entity (e.g., sensors, actuators,
automobiles and users) can be modeled and represented as a
virtual context entity, which is denoted as an entity instance
in the DCDS metamodel. Using a UML representation, as
illustrated in Figure 3, an entity instance has three
constituting model elements. Note that each entity instance
must be compliant with its respective entity schema. As
such, an entity instance can only have attributes and
metadata previously specified in its corresponding entity
schema.

+ name: string

+ type: string

+ value: any

Entity Attribute
1 1..* 1

*
+ name: string

+ type: string

+ value: any

Attribute Metadata

+ id: string {id}

+ schema: string

+ version: string

+ owner: URI

Entity Instance

Figure 3. Context entity UML model.

Acting as the starting point of an entity instance, the
Entity Instance model element has the following terms:
id – provides a local identifier for each entity instance from
the producer viewpoint; schema – indicates the compliant
entity schema that defines the context information for the
respective type of entity instance; version – denotes the
version of the respective entity schema; owner – identifies
the owner/provider that specified the compliant entity
schema. Note that, together, the terms id, schema, version
and owner provide a globally unique identifier for each
entity instance, enabling compliant middleware platforms to
provide naming services to leverage location transparency
for schemas and their respective instances.

Each entity instance can have several context attributes,
each one represented in the respective entity instance by the
Entity Attribute model element, which has the following
terms: name – denotes the attribute name defined in the
corresponding entity schema; type – indicates the type of the
respective attribute (e.g., string, integer and float); and value
– represents the current value of the attribute in the given
entity instance. In order to provide high granularity levels, a
compliant middleware platform must have the capability of
storing and retrieving integrally or partially the attributes of
managed entity instances.

As specified in an entity schema, each entity instance
can have optional associated metadata for providing
contextual information about the given attribute instance. To
do that, DCDS adopts the Attribute Metadata model
element, which has three terms, name, type and value,
denoting respectively the metadata name, type and specific
content, all of them defined in the associated entity schema.

Figure 4 illustrates a simple example of a DCDS JSON
instance, compliant with the DCDS JSON schema
previously defined in Figure 2. As can be noticed, DCDS
defines a context information model similar to NGSI [24]
but enriched with the concept of entity schemas for
leveraging the support to the identified requirements.

{
"id":"CT01-1 Circular-Tourism",
"schema":"bus",
"version":"1.0",
"owner":"dcds.provider1.br",
"location":{

"type":"point",
"value":[30.52, 10.25]},

"speed":{
"type":"double",
"value":60.35,
"unit":{

"type":"string",
"value":"kilometer per hour - km/h"}},

"people-ammount":{
"type":"integer",
"value":32}

}

Figure 4. DCDS JSON instance representation.

In order to provide a formal DCDS representation,
EBNF (Extended Backus-Naur Form) grammars have been
specified for entity schemas and instances, making possible
to develop DCDS parsers. Due to space limitations and for
the sake of simplicity, Figure 5 illustrates the EBNF
grammar for entity schemas only, but without including the
Schema Description model element.

dcds_schema ::= '{' entity_schema (',' attribute_schema)+ '}'

entity_schema ::= '"id":' '"' string '"' ','
'"version":' '"' string '"' ','
'"owner":' '"' uri '"' ','
'"providers":' '[' uri (',' uri)* ']'

attribute_schema ::= attribute_spec (',' metadata_schema)*

attribute_spec ::= '"' attr_name '"' ':' '{'
'"type":' '"' string '"' ','
'"refs":' '[' integer (',' integer)* ']'
'}'

metadata_schema ::= '"metadata-schema:"' '{'
'"' meta_name '"' ':' '{‘

'"type":' '"' string '"' '}'
'}'

attr_name ::= string
meta_name ::= string

Figure 5. EBNF grammar for DCDS schemas.

42Copyright (c) IARIA, 2019. ISBN: 978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

B. Partitioning Context Instances and Attributes

Based on the DCDS metamodel, compliant middleware
platforms can provide data partitioning in a two-fold
perspective: context instance partitioning and context
attribute partitioning. Such partitioning perspectives have a
direct influence on requirements related to integrability,
granularability and reusability, making possible services,
systems and applications to integrate reusable context data
from multiple providers in different granularity levels.
Figure 6a and Figure 6b depict both partitioning approaches.

people-amount temperature

(a) Context Instance Partitioning (b) Context Attribute Partitioning

speed

A B C D

location

A B A B

Figure 6. Data partitioning approaches.

In the context instance partitioning (Figure 6a), multiple
independent data providers can store and manage subsets of
entity instances related to the same entity schema. Thus,
instead of storing the whole set of entity instances in a
single provider, subsets of them are partitioned in multiple
providers based on organizational, economical or
geographical policies. Note that, for each entity instance, all
currently valued attributes of the instance are integrally
stored in a single provider, but without the need of assigning
values to all attributes.

For example, in large cities, where there can be several
bus operator companies responsible by providing the public
transportation system, it sounds interesting that every
company stores and manages context data about its own bus
fleet. Figure 6a presents an example of instance partitioning,
in which two providers manage all context data (location,
people-amount, speed and temperature) associated with the
bus fleet of two independent bus operator companies, which
have the buses A/B and C/D, respectively. To do that, the
providers term of the respective entity schema must simply
include the URI (Uniform Resource Identifier) list of the
authorized providers. Figure 7 illustrates the instance
representation for buses A and C, which are integrally
stored in different data providers with all attributes.

{
"id":"Bus-A",
"schema":"bus",
"version":"1.0",
"owner":"dcds.provider1.br",
"location":{

"type":"point",
"value":[-23.56, -46.65]},

"speed":{
"type":"double",
"value":60.35},

"people-ammount":{
"type":"integer",
"value":32},

"temperature":{
"type":"double",
"value":22.25}

}

{
"id":"Bus-C",
"schema":"bus",
"version":"1.0",
"owner":"dcds.provider1.br",
"location":{

"type":"point",
"value":[-50.12, -18.20]},

"speed":{
"type":"double",
"value":25.35},

"people-ammount":{
"type":"integer",
"value":10},

"temperature":{
"type":"double",
"value":19.00}

}

Figure 7. Instance partition example.

Differently, in the context attribute partitioning
(Figure 6b), multiple independent data providers can store
and manage subsets of attributes related to the same type of
entity instances. That is, instead of storing all attributes of a
given entity instance in a single provider, subsets of them
are partitioned in multiple providers, probably based on
expertise and capabilities of such providers. Again, there is
no need of assigning values to all attributes.

For instance, in several cities, where the public
transportation system is only provided by the municipal
government, it seems interesting to hire distinct specialized
companies for gathering and managing different context
data types of interest. Figure 6b shows an example of
attribute partitioning, in which two providers separately
manage two distinct context attributes (location/people-
amount and speed/temperature) associated with the
municipal bus fleet. To do that, similarly, the providers term
of the target entity schema must have the URI list of the
authorized providers; but differently, for each attribute, the
refs term must have the ordinal positions in the URI list of
the providers that can store the respective attribute. Figure 8
illustrates the instance representation for bus A, which are
partially stored in two different data providers without the
need of assigning values to all attributes in each provider.

{
"id":"Bus-A",
"schema":"bus",
"version":"1.0",
"owner":"dcds.provider1.br",
"location":{

"type":"point",
"value":[-23.56, -46.65]},

"people-ammount":{
"type":"integer",
"value":32}

}

{
"id":"Bus-A",
"schema":"bus",
"version":"1.0",
"owner":"dcds.provider1.br",
"speed":{

"type":"double",
"value":25.35},

"temperature":{
"type":"double",
"value":19.00}

}

Figure 8. Attribute partition example.

In order to manage both partitioning perspectives, a
compliant DCDS provider ought to adopt an integration
process for combining all required instances associated to a
given schema, version and provider. In the context instance
partitioning, the requesting provider has to retrieve partial
collections of instances stored in different providers and
thereafter to integrate all them to provide the whole set of
required instances. In the context attribute partitioning, the
same process must be performed but, additionally, the
requesting provider has to concatenate partial attributes of
instances retrieved from different providers to reconstruct
the whole set of attributes for all required instances.

It is important to emphasize that, in case of relational
storage, both partitioning perspectives can be mapped to
horizontal and vertical partitioning, as indicated in [30] for
RDBMS (Relational Database Management Systems). In
such a case, on the one hand, the context instance
partitioning can be mapped to the horizontal partitioning, in
which context instances are partitioned into disjoint sets of
rows that are physically stored and accessed separately in
different RDBMS-based providers. On the other hand, the
context attribute partitioning can be mapped to the vertical
partitioning, in which context attributes are partitioned into
disjoint sets of columns that are physically stored and
accessed separately in different RDBMS-based providers.

43Copyright (c) IARIA, 2019. ISBN: 978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

V. EXPERIMENTAL EVALUATION

In order to evaluate DCDS, based on HTTP (Hypertext
Transfer Protocol) and REST (Representational State
Transfer), a prototype implementation of a compliant
distributed middleware platform, called Sirius, has been
developed as a set of RESTful services for integrating
multiple data providers, supporting the development of
services, systems and applications in a broad range of smart
cities domains.

As illustrated in Figure 9, Sirius adopts a service-
oriented architecture. The Context Schema Manager deals
with the versioned lifecycle of entity schemas, including
CRUD operations for schemas and their respective attributes
and metadata. Taking such specified schemas as a basis, the
Context Instance Manager coordinates communication
among other distributed Sirius brokers for storing, retrieving
and integrating instances, including CRUD operations for
instances and their respective attributes and metadata. By
implementing a query processor, the Context Query Engine
deals with a simple query language that can be adopted to
transparently access and integrate context data from
multiple providers. In order to provide independence from
low-level database technologies, each Context Broker
Adapter acts as a translator among DCDS JSON
representations and a given low-level representation model.
Therefore, several Context Broker Adapters can provide a
way to map or transform different structured or unstructured
data models into DCDS schemas.

Context Instance
Manager

Context Schema
Manager

Context Query
Engine

Context Broker
Adapter

Context
Broker

CIM-REST-API CSM-REST-API CQE-REST-API

Figure 9. Sirius middleware platform.

Sirius was developed using Flask, a lightweight Python
microframework for developing web applications and
RESTful services. In addition, Sirius adopts Orion Context
Broker [31] as a local broker for persisting instances. In
order to define a distributed platform, virtual machines
deployed in the AWS (Amazon Web Services) cloud
infrastructure [32] act as context providers, running
complete Sirius platform instances.

In the DCDS experimental evaluation, a semi-real
dataset is adopted, taking as a basis the real-time database of
the urban transport system provided by the São Paulo town
hall in Brazil. Such a database provides an HTTP RESTful
API to access the real-time context data related to all bus
fleets provided by bus operator companies in São Paulo.
Originally, the context database provides information
related to the name of the line, location and travel direction
of about 10,000 buses. However, for enriching the context
attributes associated to buses, the conducted experiments
have included additional synthetic attributes. Thus, in the

bus schema, each bus instance has the following attributes:
location, people-amount, temperature and speed.

In a way similar to Figure 6a and Figure 6b, two
different experiments have been successfully evaluated
using six virtual machines in the AWS cloud infrastructure,
four of them to deploy Sirius instances, another one to
deploy Orion and the last one to use as a client to dispatch
operations. In the first experiment, the context instance
partitioning approach was evaluated, spreading 10,000 bus
instances in four Sirius brokers, which means around 2,500
bus instances in each broker. In such a case, each bus
instance has all four attributes stored in the respective
broker. In the second experiment, the context attribute
partitioning approach was evaluated, storing all 10,000 bus
instances repeatedly in each Sirius broker. However,
differently, each bus instance has only one attribute stored
in each Sirius broker. As a mean to define a comparing
baseline, the experiment also has a third configuration in
which all buses are stored a centralized Orion broker.

As an initial performance evaluation, a configurable set
of concurrent users, varying from 10 to 100, dispatch read
requests for each configuration of the experiment, each one
recovering the whole set of 10,000 stored instances. Then,
for each set of concurrent users, the total time for processing
such requests was measured. The experiment was conducted
using the JMeter load testing tool [33], which allows to
configure different load profiles and calculate their
respective response times for a variety of services. In
JMeter, HTTP requests can be modeled as users, which
perform concurrent requests to target services.

Figure 10 shows the total response time for each
configuration (instance partitioning, attributed partitioning
and centralized Orion) and the set of concurrent users (10,
20, 40, 60, 80, 100). Of course, the lower the response time,
the better performance has the evaluated configuration.

Figure 10. Performace evaluation.

As can be noticed, in both partitioning configurations, as
the number of concurrent users increases, the Sirius’
distributed approach provides better and better performance
when contrasted with the Orion’s centralized approach. For
example, considering 100 concurrent users, the gains of the
instance and attribute partitioning approaches are around
79.4% and 18.9%, respectively.

44Copyright (c) IARIA, 2019. ISBN: 978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

VI. CONCLUSION AND FUTURE WORK

In order to evolve from not so scalable, centralized smart
cities platforms, this paper presents the DCDS metamodel,
which provides a means to specify and instantiate
distributed, partitioned and versioned context information
associated to all kinds of real-world entities in a broad range
of smart cities domains. As the main contributions, DCDS
can be adopted as a unified data model in interoperable,
scalable and distributed middleware platforms, enabling the
development of services, systems and applications that can
easily deal with capabilities related to data integration,
reuse, extension and partitioning, supplied by several
independent providers across a lot of smart cities domains.

On the one hand, in DCDS, versioned schemas and
instances enable to evolve entity schemas and their
instances over time, accommodating changes imposed by
dynamic urban data. On the other hand, DCDS enables data
partitioning in an innovative two-fold approach. First,
multiple providers can manage subsets of instances related
to the same schema. Second, multiple providers can manage
subsets of attributes related to the same type of instances. As
contributions, such versioning and partitioning capabilities
leverage requirements related to extensibility, integrability,
granularability and reusability, enabling services, systems
and applications to integrate reusable, extensible context
data from multiple providers in distinct granularity levels.

It is important to highlight that both partitioning
approaches have the potential to provide better response
time and scalability in compliant middleware platforms due
to gains imposed by parallel access [16], concentrating
frequently accessed instances or attributes in providers with
more available or less overloaded processing power,
communication bandwidth and storage capacity.

Despite such contributions, from the viewpoint of
complaint platforms, DCDS does not have concerns related
to security requirements, such as access control,
authentication, confidentiality and denial of service.
Besides, in collaborative distributed smart cities initiatives,
business models ought to be adopted in order to regulate
how to monetize data providers. Together, concerns related
to security and business models represent key potential
branches for future work.

As another future branch, it is important to conduct
performance, load and stress tests with much bigger
scenarios, including a lot of data provider nodes and several
types of context entities in different smart cities domains.
Such tests enable to gather more confidence about empirical
findings related to enumerated requirements of interest, but
also including scalability and availability.

REFERENCES

[1] T. Nam and T. A. Pardo, “Conceptualizing Smart City with
Dimensions of Technology, People, and Institutions”, 12th Int. Conf.
on Digital Government Research, 2011, pp. 282-291.

[2] H. Chourabi, et al., “Understanding Smart Cities: An Integrative
Framework”, 45th Hawaii Int. Conf. on Syst. Sci., 2012, pp. 2289-2297.

[3] E. Borgia, “The Internet of Things Vision: Key Features, Applications
and Open Issues”, Computer Commun., vol. 54, pp. 1-31, Dec. 2014.

[4] M. Naphade, G. Banavar, C. Harrison, J. Paraszczak, and R. Morris,
“Smarter Cities and their Innovation Challenges”, Computer, Issue 6,
pp. 32-39, Jun. 2011.

[5] N. Ben-Sassi, et al., “Service Discovery and Composition in Smart
Cities”, Int. Conf. on Adv. Inf. Syst. Eng., 2018, pp. 39-48.

[6] A. J. Jara, et al., “Smart Cities Semantics and Data Models”, Int. Conf.
on Inf. Technol. & Syst., 2018, vol. 721, pp. 77-85.

[7] F. J. Villanueva, M. J. Santofimia, D. Villa, J. Barba, and J. C. Lopez,
“Civitas: The Smart City Middleware from Sensors to Big Data”, 7th
Int. Conf. on Innovative Mobile and Internet Serv. in Ubiquitous
Comput., 2013, pp. 445-450.

[8] M. Crowe, C. Begg, F. Laux, and M. Laiho, "Data validation for big
live data", 9th Int. Conf. on Advances in Databases, Knowl., and Data
Appl., 2017, pp. 30-36.

[9] I. A. Hashem, et al., “The Role of Big Data in Smart City”, Int. J. of
Inf. Manag., vol. 36, n. 5, pp. 748-758, Oct. 2016.

[10] M. Strohbach, H. Ziekow, V. Gazis, and N. Akiva, “Towards a Big
Data Analytics Framework for IoT and Smart City Applications”, In:
F. Xhafa, L. Barolli, A. Barolli, and P. Papajorgji (eds), Modeling and
Processing for Next-Generation Big-Data Technologies, vol 4,
pp. 257-282, 2015.

[11] P. Bellavista, A. Corradi, M. Fanelli, and L. Foschini, “A Survey of
Context Data Distribution for Mobile Ubiquitous Systems”, ACM
Comput. Surveys, vol. 44, n. 4, pp. 24-28, Aug. 2012.

[12] A. J. Jara, et al., “Semantic Web of Things: An Analysis of the
Application Semantics for the IoT Moving Towards the IoT
Convergence", Int. J. of Web and Grid Serv., vol. 10, n. 2/3,
pp. 244-272, Apr. 2014.

[13] C. Bolchini, C. A. Curino, E. Quintarelli, F. A. Schreiber, and L.
Tanca, “A Data-Oriented Survey of Context Models”, ACM SIGMOD
Record, vol. 36, n. 4, pp. 19-26, Dec. 2007.

[14] R. Reichle, et al., “A Comprehensive Context Modeling Framework
for Pervasive Computing Systems”, Int. Conf. on Distrib. Appl. and
Interoperable Syst., vol.5053, 2008, pp. 281-295.

[15] A. J. Jara, Y. Bocchi, D. Fernandez, G. Molina, and A. Gomez, “An
Analysis of Context-Aware Data Models for Smart Cities: Towards
Fiware and ETSI CIM Emerging Data Model”, Int. Archives of
Photogrammetry, Remote Sens. and Spatial Inf. Sci.,
vol. XLLII-4/W3, pp. 43-50, Set. 2017.

[16] M. Boussard, et al., “A Process for Generating Concrete
Architectures”, Enabling Things to Talk, Springer, pp. 45-111, 2013.

[17] W. C. McGee, “On User Criteria for Data Model Evaluation”, ACM
Trans. on Database Syst., vol. 1, n. 4, pp. 370-387, 1976.

[18] A. A. García, M. O. U. Criado, and C. P. Heredero, “The Ecosystem
of Services around Smart Cities: An Exploratory Analysis”, Procedia
Comput. Sci., vol. 64, pp. 1075-1080, 2015.

[19] J. Lee, S. Baik, and C. C. Lee, “Building an Integrated Service
Management Platform for Ubiquitous Ecological Cities”, Computer,
vol. 44, n. 6, pp. 56-63, 2011.

[20] R. White and J. Tantsura, “Navigating Network Complexity: Next-
Generation Routing with SDN”, Service Virtualization, and Service
Chaining, Addison-Wesley, 2015.

[21] M. Knappmeyer, S. L. Kiani, C. Fra, B. Moltchanov, and N. Baker,
“ContextML: A Light-Weight Context Representation and Context
Management Schema”, 5th Inter. Symp. on Wireless Pervasive
Comput., 2010, pp. 367-372.

[22] M. R. Crippa, “Design and Implementation of a Broker for a Service-
Oriented Context Management and Distribution Architecture”,
Undergraduate Thesis, UFRGS, Jul. 2010.

[23] V. Tsiatsis, et al., “The SENSEI Real World Internet Architecture”,
In: Towards the Future Internet: Emerging Trends from Europe
Research, pp. 247-256, 2010.

[24] OMA, “NGSI Context Management”, version 1.0, May 2012.

[25] OMA, “NGSI Registration and Discovery”, version 1.0, May 2012.

[26] M. Nitti, V. Pilloni, G. Colistra, and L. Atzori, “The Virtual Object as
a Major Element of the Internet of Things: A Survey”, IEEE Commun.
Surveys & Tuts., vol. 18, n. 2, pp. 1228-1240, Nov. 2016.

[27] Fiware, http://www.fiware.org [retrieved: April, 2019].

[28] JSON, http://www.json.org [retrieved: April, 2019].

[29] S. Zunke and V. D’Souza. “JSON vs XML: A Comparative
Performance Analysis of Data Exchange Formats”, Int. J. of Comp.
Sci. and Netw., vol. 3, n. 4, pp. 257-261, Aug. 2014.

[30] S. Agrawal, V. Narasayya, and B. Yang, “Integrating vertical and
horizontal partitioning into automated physical database design”, Int.
Conf. on Manag. of Data, 2004, pp. 359-370.

[31] Orion, http://fiware-orion.readthedocs.io [retrieved: April, 2019].

[32] AWS, http://aws.amazon.com/pt/ec2 [retrieved: April, 2019].

[33] JMeter, http://jmeter.apache.org [retrieved: April, 2019].

45Copyright (c) IARIA, 2019. ISBN: 978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

