
Tackling Semantic Shift in Industrial Streaming Data Over Time

Lisa Ehrlinger∗†, Christian Lettner∗, Johannes Himmelbauer∗
∗Software Competence Center Hagenberg, Softwarepark 21, 4232 Hagenberg, Austria
†Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria

email: lisa.ehrlinger@jku.at, christian.lettner@scch.at, johannes.himmelbauer@scch.at

Abstract—Industrial production processes generate huge amounts
of streaming data, usually collected by the deployed machines.
To allow the analysis of this data (e.g., for process stability
monitoring or predictive maintenance), it is necessary that the
data streams are of high quality and comparable between
machines. A common problem in such scenarios is semantic shift.
For example, a sensor’s weight unit might shift from tons to
kilograms after a firmware update and still store the collected
values to the same variable. In this paper, we discuss semantic
shift theoretically and by means of an industrial case study from
a production plant in Austria, where several hundred injection
molding machines are employed. The data collected by these
machines is used to monitor the stability of the production process
with machine learning algorithms. In the following, we present
and discuss the data preprocessing system we developed for the
production plant to handle semantic shift for huge amounts of
streaming data.

Keywords–Semantic Shift; Streaming Data; Data Quality; Pro-
cess Stability Monitoring; Data Preprocessing.

I. INTRODUCTION

Semantic shift originally describes the evolution of word
meaning over time [1]. In this paper, we observe the semantic
shift of industrial data streams, where the meaning of variables
(also: attributes, features, column names) changes over time.
Semantic shift has a negative effect on data analysis and thus,
needs to be tackled strategically. We claim that semantic shift
can be seen as a Data Quality (DQ) problem, which however,
has been little discussed in this context so far.

The awareness for this problem has been raised by different
research projects with company partners from industry. In
this paper, we specifically describe the use case from one
production plant in Austria where injection molding machines
are employed to produce plastic products. Such industrial
production processes have natural fluctuations due to the
physical conditions of the machines, as well as the variability
of the used materials [2]. To guarantee the production of high-
quality products, it is essential to continuously monitor process
signals and to ensure it moves within the specified limits [2].
To support stability monitoring of the production process with
statistical measures, we developed L* (pronounce: L-star) a
data preprocessing infrastructure that overcomes semantic shift
in the process variables.

Therefore, we make the following twofold contribution: (1)
a discussion of semantic shift as a data quality problem and
outlook for future research direction, and (2) a case study from
an industrial plant where we deployed the data preprocessing
system L*, which tackles the problem of semantic shift in
industrial data streams. The system has been deployed at our
company partner and is currently under ongoing evaluation.

In Section II, we describe semantic shift as it appears in
literature and related work. The case study at the production

plant, which highlights the practical relevance of the concept
is discussed in Section III. In Section IV, we present L*: a
process data preprocessing system where we specifically de-
scribe the components that tackle semantic shift. We conclude
with an outlook on future work in Section V.

II. SEMANTIC SHIFT – A DATA QUALITY PROBLEM

Historically, semantic shift (also: semantic change, seman-
tic drift) is a term stemming from linguistics and describes
the evolution of word meaning over time [1]. According to
Bloomfield [1], it can have different triggers and different
development. Although used interchangeably in linguistics,
we explicitly want to highlight the focus of our research on
shift (i.e., changes that can be attributed to a specific point
in time [3]) in contrast to drift (i.e., continuous transforma-
tion [3]). The reason is that semantic changes in process data
can usually be traced back to specific triggers, e.g., firmware
update of a machine, or a change in the production process.

A similar and intensively studied term from Machine
Learning (ML) research is concept drift, which refers to a drift
in the target variable predicted by a ML model [4][5]. Such
drifts are usually caused by changes in the hidden context and
can be handled with regular updates of the ML model to ensure
that the properties of the variable remain stable over time [5].
Klenner and Hahn [6] discuss the problem of semantic shift
under the term concept versioning for technical standards.

Although there is a lot of research into DQ dimensions
(cf. [7]–[10]), there is little discussion on the specific topic
“semantic shift”. In terms of DQ assessment in ontologies,
Guarino and Welty [11] introduce the properties “identity”
and “rigity”, which are related to the stability of a variable. A
similar DQ dimension is timeliness, which can be described as
“how current data is for the task at hand” [12]. Semantic shift
generalizes this dimension since the validity of data depends on
the context within it appears (e.g., on the respective machine
and the point in time). Thus, we define semantic shift in the
context of DQ as the circumstance when “the meaning of
data evolves depending on contextual factors”. Consequently,
when these factors are modeled accordingly (e.g., described
with rules), it is possible to handle semantic shift even in very
complex environments as outlined in the following case study.

III. SEMANTIC SHIFT IN INDUSTRIAL DATA STREAMS

In this section, we motivate the problem of semantic
shift with the description of an industrial case study. Due to
confidentiality, we are not allowed to publish details of the
production process.

Our Austrian manufacturing company partner works in the
field of plastics industry with injection molding machines.
These machines are tools being able to produce plastic prod-
ucts and multi material-parts by the injection molding process

36Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

Figure 1. Architecture of the L* Data Infrastructure to Handle Semantic Shift

with a clear focus on mass-production. Injection molding
represents a very complex physical-chemical process and there
exists a wide variety of situations that can lead to a bad, or at
least unstable, condition of a machine, as well as its production
process, often ending up in (increased) production rejects. Con-
sidering that there are usually more than one hundred machines
simultaneously in operation explains the company’s aim for
a monitoring system that can automatically send alerts where
process instabilities that are potentially relevant for production
quality show up. The benefit of such a system is manifold. At
first, detecting unstable process situations is a prerequisite to
actuate countermeasures in order to decrease scrap rates or
to avoid machine damage. Moreover, the company operates
in the field of massive production of very small pieces and
thus complete quality inspection is unfeasible. Time-related
knowledge about the process stability for each machine enables
us to focus the quality inspection on produced pieces from
critical production time periods.

In the collaboration with our company partner, we have
worked towards the design of a data-driven solution being
able to automatically recognize such critical situations. Thus,
it is necessary to note that the machines cyclically supply
status values to a machine data acquisition system. These
machine statuses are recorded shot by shot and currently stored
for several months. By analyzing this data, machine states
should be determined by our data-driven solution. The process
conditions depend on the following factors, which partly in-
fluence each other: machine condition, tool condition, material
condition, environmental influences, and processor operating
point setting. Our data-driven solution can find diverse known
error patterns (ranging from occasionally occurring, isolated
critical shots to slowly (in terms of weeks) deteriorating
machine conditions, e.g., due to wearing of machine parts) in
all machine data. For this purpose, firstly, we analyze in which
data sources it is possible to find relevant information from
which we can benefit. Based on that information, our solution
tries to learn recurrent error patterns. For these tasks, we use

different methods including stream data processing, classical
machine learning algorithms, outlier detection, robust learning
algorithms, and causal discovery.

For use in real production, these developed applications
should be easy to integrate in the existing operation system
and they should be applicable to as many machines as possible
without specific adaptions. Applying certain stability checks to
only a few out of many machines is unsatisfactory. Here, we
want to point out that all these applications are based on mak-
ing use of the data that a machine provides and each algorithm
expects to be fed with data in a predefined standardized format.
Fortunately, the injection molding machines of our customer
are almost exclusively from the same vendor; shipped with a
standardized data Application Programming Interface (API),
which logs data about the injection molding process (in the
following indicated with MD, short for measurement data) in
a system called “MES system”. However, there exist different
machine types and machine versions. Moreover, machines with
identical machine type and version can still provide differences
with respect to provided data as different firmware might
include also changes in the data schema. Due to the fact that all
the machines come from the same vendor, all in all, we found a
high level of data consistency; in the sense that variable names
remain the same and major changes in newer versions mainly
consist in extensions with additional variables. However, there
exist cases when certain variables undergo a semantic shift.
For example, a variable that represents the measurements of
some pressure sensor for one machine might be stored in bar
while for another machine or even for the same in a later
version the same variable is recorded in millibar. Ignoring
such semantic shifts would result in situations when algorithms
produce wrong results.

IV. L* SYSTEM ARCHITECTURE

The entire data preprocessing system has been imple-
mented on four nodes with Linux Ubuntu 16.04 installed,
respectively. Figure 1 illustrates the system architecture of

37Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

the implementation, where the red components (which are
are part of L*) are described in the following subsections.
Each component refers to exactly one node in the system
infrastructure. The system is designed for linear scalability
and therefore employs tools from the Big Data ecosystems.
The gray components illustrate the original data analysis
infrastructure at the production plant used for process stability
monitoring.

A. Data Loading
Initially, process data collected at the injection molding

machines is loaded every 10 seconds with a message queue to
the stream engine. The message queue has been implemented
with Apache Kafka [13] and aims at a robust transmission of
huge amount of messages. One advantage of using an asyn-
chronous solution here is that the message queue represents a
buffer, which is why messages are not lost even if L* is offline
temporarily. We installed Apache Kafka through the Confluent
platform [14], which is an event streaming platform that allows
to manage and organize data streams (from different sources)
for industry applications with high-performance requirements.

B. Online Datastore
The online datastore has been implemented with Apache

Cassandra [15], a column-based NoSQL DB that is optimized
to manage large amounts of measurement data. Since we
deployed the system for our company partner, we selected
Cassandra also due to its popularity [16] in comparison to
other NoSQL DBs that have similar features. Figure 2 shows
the creation statements of the two tables used for storing the
process data.

1create table MDavro (
2jahr int,
3seriennummer int,
4interval int,
5zeitpunkt timestamp,
6value blob,
7primary key((jahr, seriennummer, interval),

zeitpunkt)
8);
9

10create table MD (
11jahr int,
12seriennummer int,
13metric text,
14zeitpunkt timestamp,
15value text,
16primary key((jahr, seriennummer, metric),

zeitpunkt)
17);

Figure 2. Cassandra Tables to Store Process Data

C. Data Preprocessing
We used Spark [17] to implement the data preprocessing

system, which specifically tackles the problem of semantic
shift for our use case. Three different Spark jobs have been im-
plemented: (1) LoadMD- Avro, (2) PreProMDStream, and
(3) PreProMDBatch, where the first two are implemented as
Spark streaming jobs, and the last one as batch job. Figure 3
displays the three data streams between Cassandra and the
streaming platform Confluent.

Figure 3. Spark Data Streams

1) Stream Engine: PreProMDStream receives data,
which is encoded with the Apache Avro [18] data serialization
from the machines. The data is decoded and preprocessed
according the the defined rules (cf. Table I) to handle semantic
shifts. Eventually, the task returns the encoded data back to
Confluent.

2) Batch Environment: PreProMDBatch basically has
the same functionality as PreProMDStream, only that it is
conducted as Spark batch job. Thus, it requires a defined time
interval (start and end point) to load and process the data.

L* supports linear transformations and the application of
a time offset (lag). The current version does not allow to
represent calculated values, which needs to be done with an
external program.

Table I shows an excerpt of preprocessing rules defined
to handle semantic shift. Depending on the machine type
(machinetype), the table maps a machine internal parameter
name to a consolidated, meaningful parameter name. In addi-
tion, a simple linear transformation (scale and offset),
as well as a time delay (lag) may be applied. In the ex-
ample provided in Table I, a semantic shift has happened
on process_value_3 for machine type T3. Starting with
machine type T3, the production mode is divided into two
phases. Further, in machine type M3, the temperature values
are measured in degrees Fahrenheit. To consolidate these
values to M1 and M2 values, which are measured in degree
Fahrenheit, the values must be multiplied by 1.8 and shifted
by 32. The process parameter Process Temperature1
Previous makes use of a time delay functionality to provide
the previously measured temperature.

D. Performance Metrics
Since L* should be capable for deployment in productive

environments, we calculated a few performance metrics to
verify its suitability to handle Big Data.

In a test, 28.8 million records have been processed from
the MES system, which contained a total of 1,216 million
measurement values. This yielded an average of 42.2 mea-
surement values per record. Table II summarizes the processed
records or measurement values (short “values”) per Spark job.
In total, LoadMDAvro generated disk storage of 5.01 GB
for the Cassandra table MDavro and PreProMDBatch disk
space of 6.49 GB for the table MD in the 2.5 weeks time period.

V. CONCLUSION AND OUTLOOK

In this paper, we presented the data preprocessing system
L*, which tackles semantic shift in data streams used for
process stability monitoring. The rule-based solution is a first
attempt to systematically overcome shift in process variables
and aligns with the predominant idea how to solve DQ issues
in practice (cf. [8]). In the future, we would like to extent

38Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

TABLE I. DATA PREPROCESSING DEFINITION

MD paramname process paramname machinetype scale offset lag datatype
process value 1 Mode Stopped T1, T2, T3 1 0 0 bool
process value 2 Mode Starting T1, T2, T3 1 0 0 bool
process value 3 Mode Production T1, T2 1 0 0 bool
process value 4 Product Counter T1, T2, T3 1 0 0 long
process value 5 Process Temperature1 T1, T2 1 0 0 float
process value 6 Process Preasure T1, T2 1 0 0 float
process value 3 Mode Production Phase 1 T3 1 0 0 bool
process value 7 Mode Production Phase 2 T3 1 0 0 bool
process value 5 Process Temperature1 T3 1.8 32 0 float
process value 6 Process Temperature2 T3 1.8 32 0 float
process value 5 Process Temperature1 Previous T3 1.8 32 1 float
process value 8 Process Preasure T3 1 0 0 float

TABLE II. PERFORMANCE METRICS

Spark Data Stream Unit Throughput
(unit/sec)

Storage
(byte/unit)

LoadMDAvro Records 358 182
PreProMDBatch Values 174,343 5.6
PreProMDStream Values 4,816 -

this rule-based system with a semantic solution that takes into
account the context (e.g., of the respective machine) since it
allows to reach a higher degree of automation.

In our ongoing work, we are going to generalize the
problem of semantic shift by investigating DQ assessment
for streaming data more broadly. Although there exist many
context-independent DQ metrics for batch data sets (cf. [7]), so
far, there is little research specifically on data streams. Thus,
we would like to extract domain-independent properties that
can be applied to measure the DQ of any data stream.

ACKNOWLEDGMENT

The research reported in this paper has been supported by
the Austrian Ministry for Transport, Innovation and Technol-
ogy, the Federal Ministry of Digital and Economic Affairs, and
the Province of Upper Austria in the frame of the COMET
center SCCH.

REFERENCES
[1] L. Bloomfield, Language. Allen & Unwin, 1933.
[2] R. D. Snee, “Crucial Considerations in Monitoring Process Performance

and Product Quality,” Pharmaceutical Technology, vol. 34, no. 10, 2010,
pp. 38–40.

[3] Oxford University Press, “Oxford Dictionaries,”
https://www.lexico.com/?search filter=dictionary [retrieved: April,
2020].

[4] A. Tsymbal, “The Problem of Concept Drift: Definitions and Related
Work,” Computer Science Department, Trinity College Dublin, vol. 106,
no. 2, 2004, p. 58.

[5] G. Widmer and M. Kubat, “Learning in the Presence of Concept Drift
and Hidden Contexts,” Machine Learning, vol. 23, no. 1, 1996, pp.
69–101.

[6] M. Klenner and U. Hahn, “Concept Versioning: A Methodology for
Tracking Evolutionary Concept Drift in Dynamic Concept Systems,” in
ECAI, vol. 94. PITMAN, 1994, pp. 473–477.

[7] B. Heinrich, D. Hristova, M. Klier, A. Schiller, and M. Szubartowicz,
“Requirements for Data Quality Metrics,” Journal of Data and Infor-
mation Quality, vol. 9, no. 2, January 2018, pp. 12:1–12:32.

[8] L. Ehrlinger, E. Rusz, and W. Wöß, “A Survey of Data Quality Mea-
surement and Monitoring Tools,” 2019, https://arxiv.org/abs/1907.08138
[retrieved: April, 2020].

[9] R. Y. Wang and D. M. Strong, “Beyond accuracy: What data quality
means to data consumers,” Journal of Management Information Sys-
tems, vol. 12, no. 4, 03 1996, pp. 5–33.

[10] M. Scannapieco and T. Catarci, “Data Quality Under a Computer
Science Perspective,” Archivi & Computer, vol. 2, 2002, pp. 1–15.

[11] N. Guarino and C. Welty, “Evaluating Ontological Decisions with
OntoClean,” Communications of the ACM, vol. 45, no. 2, 2002, pp.
61–65.

[12] B. Heinrich and M. Klier, “A Novel Data Quality Metric for Timeliness
Considering Supplemental Data,” in Proceedings of the 17th European
Conference on Information Systems. Verona, Italy: Università di
Verona, Facoltà di Economia, Departimento de Economia Aziendale,
2009, pp. 2701–2713.

[13] Apache Software Foundation, “Apache Kafka – A Distributed Stream-
ing Platform,” Online, 2020, https://kafka.apache.org [retrieved: April,
2020].

[14] Confluent Inc., “Confluent,” Online, 2020, https://docs.confluent.io [re-
trieved: April, 2020].

[15] Apache Software Foundation, “Apache Cassandra,” Online, 2020,
http://cassandra.apache.org [retrieved: April, 2020].

[16] solid IT gmbh, “DB-Engines Ranking of Wide Column Stores,” Online,
2020, https://db-engines.com/en/ranking/wide+column+store [retrieved:
April, 2020].

[17] Apache Software Foundation, “Apache Spark,” Online, 2020,
https://spark.apache.org [retrieved: April, 2020].

[18] Apache Software Foundation, “Apache Avro,” Online, 2020,
https://avro.apache.org [retrieved: April, 2020].

39Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

