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Abstract— Computational Electromagnetics is a discipline 

that deals with the processing and modeling of multi-physics 

and electromagnetic problems. Thanks to the advent of 

computers and numerical methods, engineers today can 

develop algorithms and software to solve Maxwell’s equations 

numerically. The electromagnetic scattering problem leads to 

a very large system of equations with millions or even billions 

of unknowns; traditional data analysis methods are 

oftentimes not efficient enough to handle the problem due to 

data volume. The field of Big Data has emerged from the need 

to process a massive amount of data and is a research area 

that facilitates the complex work of extremely large data sizes. 

Fast algorithms can be developed to efficiently manage the 

Big Data approach to support areas of science and 

engineering. In this paper, we explore an application of Big 

Data and algorithms in computational electromagnetics 

scattering problems.  

Keywords—Big Data; Computational Electromagnetics 

(CEM); Method of Moments (MoM); Fast Algorithms, 

Multilevel Fast Multipole Algorithm (MLFMA). 

I. INTRODUCTION 

 We are currently in an era of digital information. This 
means that a great amount of information is generated daily. 
To manage, analyze and store this information, very 
powerful tools are needed. Big Data technology plays a very 
important role in this area. It allows large companies to 
optimize decision-making and obtain results optimally. Big 
Data is a term used to describe a set of data or combinations 
of sets of data whose size, complexity, and velocity of 
growth make it difficult to capture, manage, process or 
analyze using conventional technologies and tools, such as 
relational databases and conventional statistics or 
visualization package, within the time necessary for them to 
be useful [1]. Although there is no firmly defined size for 
determining whether a data set is Big Data, and the 
definition continues to change over time, professionals 
currently refer to Big Data to be datasets ranging from 30-
50 Terabytes to several Petabytes [1]. 

For some problems, the data size may be so large that it 

does not fit in the main memory of a single machine. The 

need to process such a huge amount of data There is a need 

to process such a huge amount of data through efficient 

algorithms in machine learning, network traffic 

monitoring, scientific computing, signal processing, and 

other areas. Some well-known examples of such algorithms 

are numerical linear algebra algorithms for big matrices [2] 

(regression, low-rank approximation, matrix completion), 

dimensional reduction for reducing data dimension to 

conserve the geometric structure [3], compressed sensing 

for approximation recovery of sparse signals [4] and sparse 

Fourier Transform as fast algorithms for signals calculation 

in a frequency domain [5]. To better understand Big Data's 

difficulty, it is often broken down using five V’s: Volume, 

Velocity, Value, Variety, and Veracity [8][9]. 
 

 

Figure 1. The 5 V’s of Big Data. 

 The 5 V’s of Big Data illustrated in Figure 1 can be 
defined as follows: 

• Volume refers to the exponential increase in data 

resulting from new technologies, and the ease of 

generating digital data is a palpable reality. The 

volume means large size. 

• Velocity is the rate of growth and how fast data is 

gathered for analysis.  

• Value is indicative of substantial value, including 

the ability to understand the target better, 

accordingly, and optimize performance.  

• Variety is information about the various types of 

data, such as structured, unstructured, semi-

structured, etc.  

• Veracity means the confidence established about 

the data to be used. 
 Big Data serves the purpose of converting data 
(information) into knowledge. Researchers have added 
more dimensions from 5 to 10 [6], covering terms such as 
validity, vulnerability, volatility, visualization, variability, 
and even more, which can be found in technology and data 
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generation advances [7]. The rest of this paper is organized 
as follows: Section II describes Computational 
Electromagnetic (CEM) as an interdisciplinary field, 
Section III describes the Method of Moments (MoM) as a 
powerful numerical technique in CEM, Section IV 
addresses the algorithm techniques to exploit MoM, Section 
V describes the multilevel fast multipole algorithm and 
Section VI summarize some Big Data techniques 
implemented to solve different electromagnetic engineering 
problems. The conclusions close the article.  

II. COMPUTATIONAL ELECTROMAGNETIC 

Electromagnetic (EM) analysis is a discipline that 

solves Maxwell’s equations to obtain a better 

understanding of complex systems. The advent of 

numerical methods and computers has changed the 

traditional ways of EM analyzing, and a field called 

Computational Electromagnetics has emerged [10]. It is a 

prominent EM research area that involves the modeling of 

the interaction of EM fields with physical objects, the study 

of electromagnetic compatibility between equipment in 

different environments, the design of antennas, the design 

of passive microwave circuits and components, the 

calculation of the Radar Cross Section (RCS) and Inverse 

Synthetic Aperture Radar (ISAR) images, the analysis of 

antennas embarked on complex structures, Doppler 

analysis, and radio propagation both indoors and outdoors. 

When an EM problem is given for a practical 

application, we need to describe our problem 

mathematically based on EM physics to seek a numerical 

method. We can apply Partial Differential Equations 

(PDEs) and boundary conditions to define an equivalent 

boundary-value problem. Then, from our mathematical 

formulation, we can develop a numerical method 

effectively, and depending on the problem, we will need to 

decide to use an existing method or develop a new one 

addressing the problem. After a numerical method is 

selected or developed, it is necessary to develop an efficient 

computer program for implementation. Finally, after the 

computer program is validated, we can use it to solve the 

problem given by constructing a geometrical model and the 

specification of EM mediums (permittivity, permeability, 

and conductivity) [11]. All the steps previously discussed 

are summarized in Figure 2. 

 

 
 

Figure 2. Numerical analysis steps for solving engineering problems. 

 

As shown in Figure 3, CEM is a highly interdisciplinary 

field that combines physics, mathematics, and computer 

science to advance engineering applications. 

 

 

 
 

Figure 3. CEM is an interdisciplinary field for advancing engineering 

applications. 

 

Today, numerical methods for EM scattering problems 

need to process a very large system of equations with 

millions or even billions of unknown variables [12]. 

Traditional methods are inefficient and fast algorithms in 

EM have been developed to solve this problem in an 

efficient manner [10]. As a common method, we can 

represent our system of unknowns as a hierarchical 

representation with a matrix system of N number of 

unknowns. Fast algorithms use O(NlogN) memory and 

approximately O(N) or even O(logN) time [12]. Traditional 

numerical methods usually require O(𝑁2 ) memory and 

O(𝑁2) time so in the scenario that N becomes very large, 

we can identify a huge discrepancy in memory and time 

between traditional and fast algorithms [10].  

The next section describes an efficient algorithm for 

electromagnetic scattering problems that can be 

implemented in multicore-based and cluster architectures. 

Electromagnetics simulations are critically important in 

several application areas, such as antenna design for 

aircraft, satellites, and medical devices. We can reduce the 

numerical formulation cost by assuming time-harmonic 

solutions and reformulating Maxwell’s equations to 

describe EM waves in terms of surface currents. The result 

of this approach is a numerical problem that can be solved 

on the surface of the object being studied.  

III. METHOD OF MOMENTS  

The method of moments is a very powerful numerical 

technique developed for solving complex EM problems. 

Compared to the Finite Element Methods (FEM), MoM 

also transforms the boundary-value problem into a matrix 

equation that can be solved on computers [13]. 

Mathematical-based MoM was proposed almost one 

century ago, but its applications did not arise until 1960s 

[14]. Today, it is one of the most important methods in 

CEM. MoM has been well studied on open-region 

electromagnetic problems, such as wave scattering and 

antenna radiation, and it is very efficient for problems 

involving either impenetrable or homogeneous objects 

[13]. Also, the capability of MoM has been improved by 

the development of fast algorithms that can deal with huge 

MoM matrix equations [12]. MoM forces the boundary 

conditions to be satisfied in an average sense over the entire 

surface. 
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We can see a system of equations to compute the 

surface currents as an inverse problem. Applying an 

iterative method, the inverse problem is converted to 

repeated solutions of the forward problem. For example, a 

basic problem in EM consists of computing an EM field, 

given the distribution of sources/charges. The forward 

model is well known to compute electrostatic potential  

Φ = ∑ 𝐾(𝑥,

𝑁

𝑗=1

𝑥𝑗) 𝑞𝑗 

where 𝑞𝑗 is the point charge at the location represented by 

𝑥𝑗.The interaction between the field points and the charges 

is represented by the kernel 𝐾(𝑥, 𝑥𝑗) which is logarithmic 

in two dimensions and proportional to the inverse distance 

in three dimensions. 

The corresponding scattering problem computes 

electric and magnetic fields E and H generated by surface 

currents on metallic objects, such as aircraft [21]. Avoiding 

its mathematical derivation, a simplified form is given by  

𝐸(𝑟) =  ∫ 𝐺(𝑟, 𝑟′)𝑗(𝑟′)                                                        
𝜕𝛺

+
1

𝑘2
 𝛻 (𝐺(𝑟, 𝑟′ )𝛻 ⋅ 𝑗(𝑟′) 𝑑𝑟′ 

where ∂Ω is the surface of the object, and for computer 

simulation, it is discretized, r is a point in the space and 

𝐺(𝑟, 𝑟′) is the Green’s function representing a point source 

response [21]. Figure 4 shows a visualization of an example 

of a discretized unit sphere.  To make this type of problem 

solvable by computers, we need to discretize the object in 

N number of pieces. We can represent the sources and 

fields of the surface current by a set of basis functions and 

corresponding coefficients to approximate the solution of 

the surface current [19]. After the discretization, we 

convert the problem to a matrix equation by intruding on 

another set of functions called testing or weighing functions 

[19].  

 

It can be expressed in a compact form as 

∑ 𝑍𝑖𝑗𝐼𝑗 =

𝑁

𝑗=1

𝑉𝑖        𝑖 = 1,2,3 … 𝑁 

where 𝑍𝑖𝑗  is the N x N matrix system with the unknown 

coefficients, 𝐼𝑗 is the vector of unknowns, and 𝑉𝑖  is the 

source vector. 

 

IV. FAST ALGORITHMS 

Unlike FEM based on PDEs that yield to huge sparse 

matrix system, the method of moments, MoM, based on 

integral equations (IEs), produces a fully populated matrix 

system because of the applications of the Green’s function. 

Now, the problem is the high complexity associated with 

methods for the full matrix solution. It becomes a limitation 

on the capability of MoM. In conventional methods for 

matrix solutions, such as Gaussian elimination or lower-

upper (LU) decomposition, the time complexity is O(𝑁3) 

and the space complexity is O(𝑁2), where N is the matrix 

dimension. An iterative method can reduce the time 

complexity to O(𝑁2), but the memory remains the same for 

a direct method. The total time complexity is O(Niter 𝑁2) 

where Niter is the number of iterations reaching a certain 

convergence. If Niter is small, then an interactive process 

will be faster than LU decomposition just for the right-hand 

side of the equation, but the iterative solution must be 

repeated for every right-hand size [15][20], which makes 

MoM limited to one-, two- or three-dimensional problems. 

A better understanding of the high computational 

complexity of traditional direct and interactive methods 

can be found in [15]. The complexities of O(𝑁3)and O(𝑁2) 

make the time and space increase dramatically with the 

increase of the number N, and it may exceed the capabilities 

computers have today. A technique used to reduce time and 

memory complexities for iterative methods, especially for 

large-scale problems, is called fast algorithms. We can 

broadly define fast algorithms as algorithms that can solve 

both matrix and integral equations that can be discretized 

in a matrix equation by MoM. More details regarding fast 

algorithms can be found in [10][14][15]. Some examples of 

fast algorithms are the Conjugate Gradient–FFT (CG-FFT) 

method, the Adaptive Integral Method (AIM), the Fast 

Multipole Method (FMM), and the Adaptive Cross-

Approximation (ACA) method. 

For this survey, we focus on FMM because it is the 

base for the technique presented in the next section of this 

paper. FMM divides the current elements into groups by 

their physical locations in space. A group is then defined as 

a collection of current elements near each other. Figure 5 

illustrates an example of an arbitrary object with basis 

functions divided into groups, so the computation of far 

fields that is calculated indirectly in multiples steps is made 

fast, whereas near fields are computed directly (more 

quickly). 

FMM integrates a new concept of decomposing the 

MoM matrix into near-and-far-interaction components. It 

makes a fast matrix-vector calculation possible by 

(1) 

(2) 

(3) 

 
 

Figure 4. Discretization of a unit sphere in small patches. 
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multipole or plane wave expansions and eventually reduces 

the computational complexity to O(NlogN) [18]. 

V. MULTILEVEL FAST MULTIPOLE ALGORITHM 

For a problem with N unknowns, we can divide them 

into N/M groups. For near-fields interactions, aggregations, 

and disaggregation, O(NM) operations are required, 

whereas the calculation of translation requires O(𝑁2 /M) 

operations. A small or large number of groups M will 

improve the complexity performance of the operation 

count for the calculation of near-fields interactions or 

translation calculation. An optimal choice of M is M 

proportional to √𝑁  and the operation count in each 

calculation is balanced to O(𝑁3/2 ) [15]. We can apply 

FMM to each group; if we have small groups and each 

group has only a few basis functions, the calculation of 

near-fields interaction will be only O(N), and the same will 

be the case for aggregation and desegregation [15]. To 

reduce the translation calculation, when the groups are far 

from each other, we aggregate the field from the center of 

a group to another large group and designate the received 

field to the groups residing in the second larger group. This 

process reduces the translation counts, and this idea can be 

extended to multiple levels until there are no far-apart 

groups among the highest-level group. The algorithm that 

results from all this procedure is called Multilevel Fast 

Multipole Algorithm (MLFMA) [10]. 

In [10] and [15], the authors introduce a comparison 

example of a telephone communication scenario to 

understand how FMM and MLFMA work. We can 

consider a network with N telephones. Imagine that all the 

telephones are directly connected. In that case, we will need  

𝑁2 telephone lines. If we divide the telephones into groups 

according to their proximity to each other, and then connect 

all the telephones in the same group to a single hub, and 

then connect the hubs, we can reduce the number of 

telephones lines to O(𝑁3/2𝑙𝑜𝑔 𝑁); this is basically what 

FMM does. Now, imagine that we can establish a second 

level of hubs which can further reduce the number of 

telephone lines. If the number of telephone lines is very 

large, we can reduce the number of telephone lines to 

O(NlogN) by establishing multiple levels of hubs. 

Similarly, MLFMA reduces the operation counts and 

memory requirement of the FMM to O(NlogN). 

Finally, as a real application example, in [22], there is a 

snapshot of the surface current on a card induced by a 

Hertzian dipole at 1.0 GHz and a snapshot of the surface 

current on an airplane induced by an incident plane wave 

at 2.0 GHz. The discretization of the airplane surface 

results in nearly 1 million unknowns. Storing it in its 

corresponding full MoM matrix would take around 8TB of 

storage memory. Using MLFMA, the memory storage 

requirement is reduced to 2.5 GB. In [18], the same airplane 

is simulated with approximately 10 million unknowns at 8 

GHz. Also, in [12], we can find another example of surface 

current on an aircraft from a boundary element with 

approximately 2 million unknowns. 

In addition to all the topics discussed above, there are 

parallelization approaches of the MLFMA on distributed 

memory computers. The most common parallelization 

approach is to partition the data as tree structures over 

computational nodes. To make this possible, we apply 

Message Passing Interface (MPI) based parallelization, 

such as [16][17]. 

This paper has briefly discussed the complexity 

performance for MoM and the accelerated versions with 

FMM and MLFMA as integral method solvers for EM 

problems in the frequency domain.  A comparison of the 

complexity performance for these three algorithms using 

iterative solvers is summarized in Table 1. 

TABLE I.  MOM BASED FAST ALGORITHM COMPLEXITIES 

Method 
Complexity 

Time Memory 

MoM O(𝑁2) O(𝑁2) 

FMM O(𝑁1.5) O(𝑁1.5) 

MLFMA O(NlogN) O(NlogN) 

VI. BIG DATA TECHNIQUES IN ELECTROMAGNETIC 

ENGINEERING PROBLEMS 

The electromagnetic spectrum has shown four 

characteristics of Big Data, namely, Variety, Volume, 

Value, and Velocity [32]. One application of Big Data is 

reported in [32], where data mining is used to detect 

abnormal spectrum and abnormal positioning targets from 

massive EM data in real-time. Another application of Big 

Data in EM problems is Symbolic Regression (SR). This 

type of regression analysis is used to perform a search in an 

analytical expression that fits a large dataset [23] SR is 

classified as a Machine Learning technique and can be 

applied to derive a full-wave simulation-based analytical 

expression for the characteristic impedance Z0 of microstrip 

lines using Big Data resulting from a 3D-EM simulation 

[23]. SR is considered a suitable algorithm for obtaining 

accurate analytical expressions where the interrelations 

within the data are highly complex in a very large dataset 

[23]. A different implementation of machine learning to 

manage the large size of data for design optimization in EM 

can be found in the literature, such as reinforcement 

learning for antenna configuration and design [33], deep 

learning for microwave filter and circuit design [34], EM 

 
 

Figure 5. Basis functions are divided into groups for fast far-field 

computation. 
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inverse problems in oil and gas exploration, as well as 

microwave and optical imaging [30].  

Big Data in EM is found in the design of tilted-beam 

antennas with aperiodic Partially Reflective Surfaces 

(PRS). To design antennas for beamforming and high gain 

wireless application, PRS are highly reflective 

metasurfaces considered well suitable for the design of 

antennas [25]. During the optimization process of the 

aperiodic PRS, a large data size is generated. An improved 

Hybrid Real-binary Bat Algorithm (HRBBA) is applied to 

optimize the aperiodic PRS [26]. Bat Algorithm (BA), 

inspired by the echolocation of microbats, efficiently and 

reliably process Big Data optimization problems [27]-[29]. 

In [30], a statistical approach is proposed based on the 

Markov Chain Monte Carlo (MCMC) for Large-Scale 

Georsteering inversion using directional electromagnetic 

logging measurements. Due to the high volume of data 

collection in the oil and gas industry, the proposed method 

in [30] addresses large-scale inverse problems.  

Today, the convergence between Big Data Analytics 

and High-Performance Computing is considered a 

promising research area [35]. In CEM, training deep 

learning or running large-scale simulations can take a 

tremendous amount of time. For this reason, parallel and 

high-performance computing are essential to efficiently 

accelerate the convergence of an algorithm toward an 

accurate solution. An application of Big Data techniques in 

the EM scattering problem can be found in [31]. This work 

proposes a method to predict the number and location of 

scattering grating lobes produced by an array antenna. The 

method used implements the idea of decomposing the RCS 

of the array antenna into a multiplication of the array RCS 

factor and the element RCS factor.  

Fast Algorithms such as MLFMA are developed to 

accelerate the algorithm execution. At the same time, they 

can reduce the complexity of the algorithm in terms of 

memory and time; especially, it considerably alleviates the 

memory requirement to store the matrix system that can 

store millions or billions of unknown’s values. Parallel 

computing is implemented to reduce the computational 

time of the algorithm; in addition, it extends the usability 

of multiple threats for the mathematical operations in 

solving the problem.  Applications of high-performance 

computing in EM engineering applications can be found in 

areas such as EM radiation, propagation and scattering, 

antenna analysis, RCS, analysis of Electromagnetic 

Compatibility (ECM) and Electromagnetic Interference 

(EMI), circuits modeling, microwave, analysis, nano-

electronic devices among others [36]-[40]. 

VII. CONCLUSION 

Big Data has become one of the most important fields 

for complex research related to engineering applications. 

We have seen that the term Big Data does not only mean a 

very large amount of data; it is also a concept considering 

several important factors, such as how we interpret data, 

how valuable it is, and even how variable the data could be, 

like the well-known 5 V’s of Big Data. Besides, Big Data 

helps with the management of structured, unstructured, or 

misstructured data. Efficient algorithms exploit Big Data’s 

potential by reducing its computational complexity in 

modern computers. High-performance computing supports 

efficient large-scale data-intensive processing to enable 

complex applications in different scientific and engineering 

fields. 

In this survey, we have described what computational 

electromagnetics is and how highly multidisciplinary of a 

field it is. We have also described the numerical procedures 

of MoM and its application in EM scattering problems. 

MoM has been the base for fast algorithm implementations, 

such as FMM and MLFMA. It is important to state that 

MLFMA has been one of the most important advances in 

CEM in the last two decades. The development of 

numerical methods can be applied effectively across 

spatial, temporal, and frequency scales with the modeling 

and simulation of physical phenomena, such as circuits, 

heat transfer, and charge transport. This opens a new 

opportunity for computational electromagnetics research.  
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