
Comparison of Experiment Tracking Frameworks in
Machine Learning Environments

Tim Budras†, Maximilian Blanck∗, Tilman Berger∗, and Andreas Schmidt†‡,
∗ inovex GmbH, Karlsruhe

Email: {mblanck, tberger}@inovex.de
† Department of Computer Science and Business Information Systems,

Karlsruhe University of Applied Sciences
Karlsruhe, Germany

Email: {buti1021, andreas.schmidt}@h-ka.de
‡ Institute for Automation and Applied Computer Science

Karlsruhe Institute of Technology
Karlsruhe, Germany

Email: andreas.schmidt@kit.edu

Abstract—The machine learning market is growing and ma-
chine learning is increasingly being used productively. Because of
this, more and more tools have been developed in the past with
the aim of supporting machine learning in practice. One type of
these tools is called experiment tracking tools. Their objective is to
keep track of the information generated by different experiment
runs so that the information can be used later, for example, to find
the best experiment run. Within the context of a bachelor thesis,
a pre-selection of 20 systems was made and then 4 of them were
selected for a more in-depth analysis and their characteristics
were examined in more detail. This paper summarizes the most
important findings of this thesis.

Index Terms—Machine Learning; Experiment Tracking; De-
velopment Environment

I. INTRODUCTION

The machine learning market is growing strongly. Accord-
ing to MarketsandMarkets [1], it is ”expected to grow from
USD 1.03 billion in 2016 to USD 8.81 billion by 2022”. As a
result of this growth, tools have been developed in recent years
to help develop machine learning models and put them into
production. However, due to the fact that the use of machine
learning in productive software is relatively new, tools and
conventions are less settled and less commonly applied than
in traditional software development. Warden [2] uses the term
”machine-learning-reproducibility-crisis” to describe that the
tools to meet these needs are often not applied in practice.

With regard to tracking data, parameters, models and results,
numerous products with different focuses and strengths have
been developed. Tools that focus on saving information around
the model training and development process are often referred
to as experiment tracking tools. But as stated in a Kaggle
survey [3], in a large amount of scenarios these relatively new
tools remain unused and tracking is either done manually or
not done at all.

The rest of the paper is structured as follows: In Section II
we explain the machine learning lifecycle and what artifacts
needs to be tracked in the context of an experiment. Based
on these findings we present the general architecture for

experiment tracking tools and formulate the most important
requirements in Section III. In Section IV a number of concrete
tools are presented and compared. The papers is finished with
a Conclusion in Section V.

II. BACKGROUND

In this section, a set of basic insights required for under-
standing tracking tools in the field of machine learning will
be presented.

A. The Machine Learning Lifecycle

The different phases and steps around the productive use of
a machine learning model have been described by different
authors using different terms. One of these terms is the
machine learning lifecycle. Garcia et al. [4] describe the
machine learning lifecycle as a three-phase process as shown
in Figure 1. The first phase is the pipeline development. During
this iterative phase, the data preprocessing, exploration and
visualization is done, model designs are chosen and models get
trained with different configurations and hyperparameters. The
authors emphasize that the model is not the important product
of the first phase, but the pipeline, which can be reused to
create a model from a data set. This pipeline can be used later
in the second phase training (middle), to train and validate
the model used for inference. The last phase (right) is called
inference. Here, the prediction service (which includes the data
preprocessing as well as the model used for inference) returns
a prediction for a given user input. The prediction service
provides information on the made predictions, which can be
used for later trainings. The authors mention that the different
stages are often managed by different teams.

B. Experiment Tracking

Langley [5] describes machine learning as an experimental
science and compares the process of finding a good model to
the empirical sciences of physics and chemistry. This aligns
with the results from interviews Hill et al. [6] conducted

21Copyright (c) IARIA, 2022. ISBN: 978-1-61208-969-0

DBKDA 2022 : The Fourteenth International Conference on Advances in Databases, Knowledge, and Data Applications

Fig. 1. Machine Learning Lifecycle (from [4])

with various machine learning practitioners in 2016. Seven
out of seven interviewees experienced the need ”to resort
to basic trial and error”. Langley defines an experiment as
the process of examining the effect of varying one or more
independent variables on some dependent variables [5]. Hence,
an experiment consists of multiple runs. According to Vartak
et al. [7], ”data scientist often built hundreds of models before
arriving at one that met some acceptance criteria”. Each model
built can be seen as the dependent variable of a run. However,
experiment tracking tools can also be used in the pipeline
development phase, introduced by Garcia et al. [4], which does
not produce a model, but a training pipeline. In this case, the
dependent variable would be the training pipeline. Therefore,
the following definition of a(n experiment) run is used in this
paper:

Definition (Experiment): A run is a part of an experiment,
it has a specific set of independent variables that produces a
model or a training pipeline. An experiment is a collection of
runs that try to solve the same problem or business task. The
objective of an experiment is to find the set of independent
variables resulting in the best dependent variable(s).

It should be noted that usually in practice it is not possible or
at least not economically feasible to find the best independent
variables [8].

Various possibilities exist to assess the quality of a model.
A common possibility is to calculate a metric for prediction
quality (such as accuracy) on a data set not used for training.
However, additional (nonfunctional) quality measures might
exist, e.g. the inference time, the training time or the explain-
ability of a prediction.

Due to the fact that the number of experiment runs might
be enormous, it is very helpful to track the experiment and its
runs. The term experiment tracking describes the process of
saving the information related to the experiment and its runs, to
allow further evaluation. Although typically the verb to track is
used in combination with experiments, some tools evaluated in
this work have functionalities that use the words log or logger.
Thus, both terms are treated as synonyms in this work. In its
easiest version, tracking can be done manually, alternatively
one of the tools presented in Section IV can be used. Either
way, tracking experiments brings multiple advantages:

Keeping track of all the runs makes it easy to find the

best variables. Additionally, it is easy to see which sets of
independent variables have already been tried out or might
be worth trying out in the future. This is especially helpful
if the work is done in teams, or if the responsible person
changes. With the right tool, tracked experiments can be
easily compared. If a model is used in production, it can
be very helpful to have the information available on how
the model was created. Another advantage – which applies
especially to research – is the fact, that results may need
to be reproduced. Furthermore, establishing the use of an
experiment tracking tool in a company or a project provides the
benefit of a structured way to access the data generated during
experimentation, regardless of the individuals responsible for
the experiments.

C. Reproducibility Requirements

In a reproducibility challenge, Pineau showed that most
challenge attendees found it at least reasonably difficult to
reproduce the result of a paper of the International Conference
on Learning Representations 2018 [9]. Pineau also published
a machine learning reproducibility checklist [10], which is
supposed to help increase the reproducibility of experiments.
Tatman et al. [11] define three levels of reproducibility for
research: low, medium and high reproducibility. The lowest
level of reproducibility is achieved by publishing the paper.
According to the authors, the medium level is achieved,
when the code is published along with the used data. The
highest level can be reached by additionally providing the
environment.

In the following subsections the requirements for repro-
ducibility introduced by Tatman et al. [11] as well as the terms
hyperparameters and metrics will be explained in detail.

1) Code: Similar to traditional programming, machine
learning highly depends on the source code. There are several
tools to effectively version source code. A developer survey
by StackOverflow in 2018 [12] showed that almost 90 % of
the developers use Git as a version control system. There is
no valid reason to not track the code used in machine learning
projects with Git. However, in a fast developing process,
experiment runs might be executed, without committing the
code beforehand. This would lead to a lack of reproducibility,
as Git needs a commit to restore a state of the code.

22Copyright (c) IARIA, 2022. ISBN: 978-1-61208-969-0

DBKDA 2022 : The Fourteenth International Conference on Advances in Databases, Knowledge, and Data Applications

2) Data: Besides the code, data plays an essential role in
machine learning, because different data can lead to different
results. As the kind of data depends on the business task, the
data format varies. Common data formats are text, image or
video. Due to the partly large data resources, a suitable tool
for the efficient storage of different variants of a data resource
should be used.

3) Environment: Providing information about the environ-
ment is certainly only necessary for some use cases. However,
it can contain important information of the original run,
such as the used hardware, the used operating system or the
software dependencies. Thus, keeping track of the environment
can be helpful to reproduce a run. Tatman et al. [11] propose
three possibilities to share the environment: Either by using
a hosted service, or by providing a container or virtual
machine, which includes all dependencies. At minimum, the
used libraries and their versions should be tracked.

4) Hyperparameters: According to Bergstra et al. [13],
hyperparameters configure the machine learning algorithm
before training, whereas, in the present paper, any kind of
configuration parameters of the experiment run (not only
the machine learning algorithm) will be considered as hy-
perparameters. As any change in configuration might result
in different results, it is recommended to track as many
hyperparameters as possible. Although hyperparameters are
often tracked implicitly when they are defined in the code
and the code is versioned, hyperparameters should be tracked
explicitly to allow easier comparison.

5) Metrics: A metric is an evaluation measure calculated
to quantify ”the effectiveness of a complete application that
includes machine learning components” [8]. Most of the times,
metrics will be calculated based on a model’s predictions on
data that has not been used for training. Different metrics with
varying strengths and weaknesses exist. For classification tasks
for example, accuracy or precision can be used. Accuracy
is defined as the fraction of correct predictions out of all
predictions [8]. Metrics can be used to compare different
runs of an experiment and can be considered as one of the
dependent variables of the experiment. Which type of metric
is used, is not important regarding experiment tracking.

III. EXPERIMENT TRACKING TOOLS

The main goal of experiment tracking is to save information
during experimentation in order to be able to access it later.
As a result, most experiment tracking tools consist of at least
three components, as shown in Figure 2. Some kind of client
software – for example a Python library – is required to store
the tracked information during experimenting on a persistent
data storage or send it to a server. The data can often be
retrieved programmatically through the client or be viewed in
a Graphical User Interface (GUI). The exact functionality of
those components differs between the available tools.

A. Requirements

As already discussed in Subsection II-B, tracking of code,
data, the used environment, hyperparameters, and metrics are

elementary requirements for such a tool. Additional require-
ments examined in our research also include the following
aspects:

1) Storing of Models: Training a model can take a long
time. Therefore, the models should be stored and linked to
the hyperparameters and metrics. This avoids time consuming
retraining e.g., if a model should be evaluated on new data.

2) Accessibility of Tracked Information: Tracking is a pre-
requisite, however the tracked data will only provide value,
if the tracked information can be accessed in a simple yet
powerful way. This includes a user interface which provides
a clear and customizable overview of all runs, as well as the
possibility to compare runs in depth. Filtering the runs with
easy but rich querying options is also part of this requirement.
Besides that, the tool should provide a possibility to create and
show plots. If additional interfaces, e.g., an API, exist, they
will be useful as well.

3) Collaboration: According to Tabladillo et al. [14], bring-
ing data science projects to production requires different tasks.
For this reason, data science projects are often worked on in
teams composed of different roles. Therefore, the tool should
facilitate collaborative work. This includes the possibility of
viewing existing results of different team members and adding
new results by executing new runs. To achieve this, a form of
access management is required.

4) Initial Setup and Infrastructure: Because tracking ma-
chine learning experiments should facilitate the work of the
teams, tools will only be taken into consideration if they
have low barriers to entry. Thus, this requirement describes
the initial investment needed to set up and use the tool. The
initial setup is everything that does not need to be repeated
if the same tool is used in another project (given the projects
can use the same infrastructure). As cloud tools might have
an advantage concerning the initial setup, it must be kept in
mind, that saving data off-premises might not be a possibility
due to legal or corporate regulations.

5) Ease of Integration: Similar to the previous requirement
this requirement concerns user-friendliness. Yet, unlike the
initial setup and infrastructure, the ease of integration describes
how easy it is to include the tool into a specific project. This
means, for example, project-specific configuration or source
code changes.

IV. EXAMINED TOOLS

In a market research, the following tools with experiment
tracking functionality were identified.

• Aim [15]
• Amazon SageMaker Experiments [16]
• Azure Machine Learning [17]
• ClearML [18]
• Comet [19]
• DAGsHub [20]
• DominoDataLab [21]
• DVC Studio [22]
• Guild AI [23]
• H2O MLOps [24]

23Copyright (c) IARIA, 2022. ISBN: 978-1-61208-969-0

DBKDA 2022 : The Fourteenth International Conference on Advances in Databases, Knowledge, and Data Applications

Fig. 2. General Architecture of an Experiment-Tracking-Tool

• MLflow [25]
• Neptune [26]
• Paperspace Gradient [27]
• Polyaxon [28]
• Sacred [28] in combination with Omniboard, Incense or

Sacredboard (GUIs)
• TensorBoard [29]
• Valohai [30]
• Verta [31]
• Vertex AI [32]
• Weights & Biases [33]
The research was conducted online, using search engines,

blogs, forums, as well as the websites of the respective tools.
To allow an in-depth evaluation of the tools in the scope of

this work, the tools listed previously have to be limited to a
reasonable amount. The tools were selected in consultation
with a project team at inovex, actually developing a mul-
tilingual and multidomain Conversational AI. The selection
was influenced by requirements given from the project team.
In this process, MLflow, ClearML, Neptune and DAGsHub
were adopted for a more detailed evaluation. MLflow was
selected because it is one of the most established and widely
used tools. ClearML was assessed because of its wide range
of operating options. It can be used for free (even in small
teams) as a hosted option, operated self-hosted for free, but
also be used with a paid plan. The most important argument
for choosing Neptune was that it promises an effortless setup.
The last option evaluated was DAGsHub, as it makes use of
Data Version Control (DVC) [34] for versioning data, like the
project. In the next subsections each tool will be evaluated
based on the requirements defined in Subsection III-A and an
exemplary integration will be provided.

A. MLflow

The open-source tool MLflow is developed by Databricks.

1 import mlflow
2 mlflow.set_tracking_uri("postgresql://postgres:

postgres@172.3...")
3 mlflow.set_experiment("MyProject") #group runs
4 with mlflow.start_run() as run:
5 hyperparams = {"lr": 0.01,}
6 mlflow.log_params(hyperparams)
7 #Training placeholder, model stored in var model
8 mlflow.pytorch.log_model(model, "log_r",)
9 mlflow.log_metric("acc", 0.99)

Listing 1. MLflow example code

To start tracking with MLflow, a run has to be started as
shown in Listing 1. By using a context manager, the run will
be ended automatically (line 4). MLflow differentiates between
metrics and params; both can be logged to MLflow by using

the respective function. MLflow provides functions to log one
value (line 9), or to log multiple values (here, a dictionary
is passed, as the only parameter and the name and values of
the dictionary will be used (line 6). Grouping multiple runs
together allows easy viewing and comparison in the GUI. This
can be achieved by setting up an experiment (line 3). Metadata
(params, metrics, etc.) are by default stored in a local text
file. However, other possibilities exist; such as saving them
in a SQL Database, which can be achieved by specifying a
tracking URI (line 2). By default, models logged with MLflow
are stored in the local file system. However, it is possible to
change the location, e.g., to an S3 bucket.

The MLflow GUI in Figure 3 shows all the hyperparameters
and metrics in a clear table. Runs of the same experiment can
be compared and metrics are automatically plotted. In addition
to the GUI, data tracked with MLflow can be retrieved via
Python, R, Java and REST APIs. MLflow does not provide a
dedicated way to keep track of the data used for training. It
does not support automated tracking of the environment either.
It can be used for free in teams, however, this requires shared
data storage, which has to be set up by yourself.

B. Neptune

Neptune is a tool developed by Neptune Labs. While the
Client Software (Python package) is open-source, the server
code is not publicly available. Free as well as paid plans exist.
To get started with Neptune, an account has to be created at
neptune.ai and an API token has to be generated. To track
experiments, a project (similar to an experiment in MLflow)
has to be created in the Neptune Web App. After those setup
steps, Neptune is ready for use.

1 import neptune.new as neptune
2 run = neptune.init(project="tbud/MyProject")
3 hyperparams = {"lr": 0.01,}
4 run["hyperparams"] = hyperparams
5 #Trainingloop placeholder
6 run["loss/train"].log(the_current_loss)
7 torch.save(model, "log_r.mdl")
8 run["model"].upload("log_r.mdl")
9 run["acc"] = 0.99

Listing 2. Neptune example code

Listing 2 shows the integration of Neptune, after importing
the new Neptune API, we can initialize a run and assign it
to a project (line 2). Neptune does not differentiate between
metrics and hyperparameters. To log values with Neptune,
a notation with square brackets and strings as keys (e.g.,
run[”some key”]) is used, which is similar to adding new
values to a dict (line 9). To track series such as the loss, the log
function has to be used (line 6). This automatically generates
a plot in the GUI. To upload a trained model, it first has to

24Copyright (c) IARIA, 2022. ISBN: 978-1-61208-969-0

DBKDA 2022 : The Fourteenth International Conference on Advances in Databases, Knowledge, and Data Applications

Fig. 3. MLflow GUI (from [35])

be saved locally and can then be uploaded to Neptune using
the upload (line 7).

The GUI of Neptune (Figure 4) looks similar to the MLflow
GUI. It includes all the basic functionalities that MLflow
has, but also has additional nice-to-have features, such as
query completion for filtering or an option to save customized
views. The data can also be retrieved through the Python API.
Similar to MLflow, Neptune’s focus is tracking metrics and
hyperparameters. The setup is easier as with MLflow, however,
using Neptune raises Data Governance questions, because data
is stored on Neptune servers, outside your own company. For
single users Neptune can be used for free. When working in
teams the prize is calculated based on the usage.

C. ClearML

ClearML is an open-source tool developed by Allegro AI,
it was formerly known as Allegro Trains. Multiple options to
operate ClearML exist, it can be self-managed for free, used
with a free as-a-Service plan for up to three team members or
used with a paid plan.

1 from clearml import Task, Logger, Dataset
2 path = Dataset.get(dataset_project="MyProject/data",

dataset_name="ds_1").get_local_copy()
3 task = Task.init(project_name="MyProject", task_name

="Task1", reuse_last_task_id=False, output_uri="
gs://MyProject",)

4 hyperparams = {"lr": 0.01,}
5 task.connect(hyperparams)
6 #Training placeholder, model stored in var model
7 torch.save(model, "log_r.mdl")
8 task.get_logger().report_scalar("model", "accuracy",

0.99, 0)

Listing 3. ClearML example code

Besides its hyperparameter and metric tracking capabilities,
ClearML provides a possibility to efficiently store and manage
large datasets. It works similar to DVC [34]. This allows

versioning datasets even for binary files. A simple example
of the integration into code is given in Listing 3. To get the
local path to a dataset managed with ClearML, the dataset has
to be queried with the Dataset.get() function (line 2).
The get_local_copy() (line 2) function ensures that
a local copy is available and returns the path, which can
then be used for training. In ClearML, a task is similar to
a run in MLflow and describes something that is executed
and should be tracked. In line 3, a task is initialized and
assigned to a project. Setting reuse_last_task_id to
False ensures that this task will not override an old task. The
output_uri specifies the location for the artifacts (e.g., the
model) and is in this example set to a Google Cloud Storage.
By initializing a task, the tracking is automatically started.
ClearML allows logging hyperparameters by connecting an
object to a task (line 5). When a model is saved locally,
ClearML automatically uploads it to the artifact store and
connects it to the task (line 7). Metrics can be reported to
a logger, where the first argument is the title of the plot, the
second is the name of the series, the third is the value and
the last is the iteration (x-coordinate). It should be noted that
executing Task.init automatically tracks the used python
packages and their versions, providing an additional amount
of information.

Figure 5 shows a screenshot of the GUI. While the overview
table of the experiments looks similar to Neptune and MLflow,
the detailed view of the task is very nested and can overwhelm
new users. This is in our opinion the biggest downside of
ClearML compared to the other tools: due to its huge amount
of possibilities, it requires more time to familiarize. However,
we think this time is well invested since ClearML provides a
lot of options and possibilities for the user. Besides the Python
API data collected with ClearML can also be retrieved with a
REST API.

25Copyright (c) IARIA, 2022. ISBN: 978-1-61208-969-0

DBKDA 2022 : The Fourteenth International Conference on Advances in Databases, Knowledge, and Data Applications

Fig. 4. Neptune GUI (from [26])

D. DAGsHub

In contrast to the other presented tools, DAGsHub offers
a different approach. It makes use of existing open-source
technologies and provides unified storage and GUI for them
(however, DAGsHub itself is not open-source):

• DVC [34] is used to keep track of the data and models.
• Git keeps track of the code.
• MLflow or the DAGsHub Client can be used to track

hyperparameters and metrics.
The interaction of the different tools is presented in Figure 6.

Beside DAGSHub’s own client, MLFlow can be used to
track hyperparameters and metrics. In this case the integration
into code looks like in Listing 1. The most important advan-
tages of DAGsHub are the unified storage and the efficient
handling of variants of datasets using DVC.

The GUI of DAGsHub in Figure 7 is familiar to GitHub
users, but additionally includes a data section, as well as an
overview of the experiment runs as known from MLflow. With
a free DAGsHub plan, the number of collaborators and storage
is limited. Paid plans exist, which allow working in bigger
teams. DAGsHub probably has the most potential for teams
that already use DVC and/or MLflow and want to keep using
the tools but would benefit from unified storage and GUI.

E. Comparison

Table IV-E shows a comparison for most of the defined
requirements. As tracking the code is done with Git most of
the times and tracking the hyperparameters and metrics and
the ease of integration are on a similar level for all four tools,
these defined requirements are not included in the table. The

tools have different strengths and weaknesses when it comes
to ease of use, pricing and more advanced requirements, such
as tracking data or computational environment. MLflow has a
well-structured API and can be used for free. Neptune, on the
other hand, offers a simple setup and highly functional GUI
but requires a paid plan when used as a team. In comparison
to the two previous tools, ClearML handles the tracking of
data and the computational environment, taking care of all
requirements. Additionally, it is open-source and can be self-
hosted or used as a free or paid Service. DAGsHub can be
considered as a good choice for teams already using DVC
and MLflow who like to have unified storage and GUI.

V. CONCLUSION

This paper showed the benefits of tracking machine learning
experiments. After presenting 20 tools with functionalities to
track experiments which have been identified in a market
research. Requirements for machine learning experiment tools
were defined based on the needs of an industrial data sci-
ence project and 4 tools have been evaluated in detail. This
evaluation has shown that the right choice of an experiment
tracking tool depends on the specific requirements, and iden-
tified ClearML as an open source tool that meets most of the
requirements.

Due to the quickly changing market of experiment tracking
tools, new tools might be released or existing tools might
receive new functionality. As a result, further research, also
of tools not evaluated in this paper, might be of use.

26Copyright (c) IARIA, 2022. ISBN: 978-1-61208-969-0

DBKDA 2022 : The Fourteenth International Conference on Advances in Databases, Knowledge, and Data Applications

Fig. 5. ClearML GUI (from [36])

TABLE I
COMPARITIVE OVERVIEW OF MLFLOW, NEPTUNE, CLEARML AND DAGSHUB

MLflow Neptune ClearML DAGsHub
Evaluated
version

1.17 0.9.18 1.0 as of June 2021

Data no dedicated functionality pro-
vided

no dedicated functionality pro-
vided

Data Managing and Versioning
with ClearML Data

Data Managing and Versioning
with DVC

Environment encourages the user to do it
manually (MLflow Projects)

no dedicated functionality pro-
vided

automatically keeps track of the
installed python packages and
their versions

no dedicated functionality pro-
vided

Storing
models

easily possible model has to be stored locally
first and can then be uploaded

automatically uploaded if saved
locally

possible to store models with
DVC, commit required for ev-
ery upload

Accessibility
of tracked
information

basic GUI as well as Python, R,
Java and REST APIs

highly customizable &
advanced GUI as well as
a Python API

advanced GUI as well as a
Python API

unified GUI for data, code, and
experiments, no Python API for
retrieving experiment data

Collaboration possible, requires a shared data
storage

possible with a paid account possible, user limit depends on
the operation mode, unlimited
for self-hosting

free for public repositories, not
free of charge for private repos-
itories

Initial setup
and infras-
tructure

setting up a database or shared
file storage is required for col-
laborative use

easy setup, as the user does not
have to take care of the infras-
tructure

hosted as well as self-hosting
options exist, images to make
the setup easier exist

easy setup if DAGsHub is used
as Git and DVC storage

Fig. 6. DAGsHub Architecture

ACKNOWLEDGMENT

The work was carried out in the course of the bachelor
thesis [37] of the first author at the company inovex GmbH.

27Copyright (c) IARIA, 2022. ISBN: 978-1-61208-969-0

DBKDA 2022 : The Fourteenth International Conference on Advances in Databases, Knowledge, and Data Applications

Fig. 7. DAGsHub GUI

REFERENCES

[1] Machine learning market. [Online]. Avail-
able: https://www.marketsandmarkets.com/Market-Reports/
machine-learning-market-263397704.html (Accessed 2021-07-19).

[2] P. Warden. The machine learning reproducibility cri-
sis. [Online]. Available: https://petewarden.com/2018/03/19/
the-machine-learning-reproducibility-crisis/ (Accessed 2021-03-11).

[3] State of data science and machine learning 2020. [Online]. Available:
https://www.kaggle.com/kaggle-survey-2020 (Accessed 2021-03-17).

[4] R. Garcia, V. Sreekanti, N. Yadwadkar, D. Crankshaw, J. E. Gonzalez,
and J. M. Hellerstein, “Context: The missing piece in the machine
learning lifecycle,” KDD CMI Workshop, vol. 114, pp. 32–38, 2018.

[5] P. Langley, “Machine learning as an experimental science,” Machine
Learning, vol. 3, no. 1, pp. 5–8, 1988. [Online]. Available:
https://doi.org/10.1023/A:1022623814640

[6] C. Hill, R. Bellamy, T. Erickson, and M. Burnett, “Trials and tribulations
of developers of intelligent systems: A field study,” in 2016 IEEE Sym-
posium on Visual Languages and Human-Centric Computing (VL/HCC),
2016, pp. 162–170, ISSN: 1943-6106.

[7] M. Vartak, H. Subramanyam, W.-E. Lee, S. Viswanathan, S. Husnoo,
S. Madden, and M. Zaharia, “ModelDB: a system for machine learning
model management,” in Proceedings of the Workshop on Human-
In-the-Loop Data Analytics - HILDA ’16. ACM Press, 2016, pp.
1–3. [Online]. Available: http://dl.acm.org/citation.cfm?doid=2939502.
2939516 (Accessed 2021-03-10).

[8] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[9] J. Pineau, “Reproducibility, reusability, and robustness in deep
reinforcement learning,” Paper presented at the meeting of ICLR
2018, 2018. [Online]. Available: https://www.youtube.com/watch?v=
Vh4H0gOwdIg

[10] J. Pineau, “The machine learning reproducibility check-
list,” 2020. [Online]. Available: https://www.cs.mcgill.ca/∼jpineau/
ReproducibilityChecklist.pdf

[11] R. Tatman, J. VanderPlas, and S. Dane, “A practical taxonomy of
reproducibility for machine learning research,” 2nd Reproducibility in
Machine Learning Workshop at ICML 2018, Stockholm, Sweden., 2018.

[12] Stack Overflow, “Stack overflow developer survey results 2018,”
2018. [Online]. Available: https://insights.stackoverflow.com/survey/
2018/#work- -version-control

[13] J. Bergstra, D. Yamins, and D. D. Cox, “Hyperopt: A python library
for optimizing the hyperparameters of machine learning algorithms,”
Proceedings of the 12th Python in Science Conference in Science
Conference (SCIPY 2013).

[14] M. Tabladillo, A. Arora, and C. Gronlund, “What is the Team Data
Science Process?” [Online]. Available: https://docs.microsoft.com/en-us/
azure/machine-learning/team-data-science-process/overview (Accessed
2021-05-10).

[15] Aim. [Online]. Available: https://aimstack.io (Accessed 2021-07-31).
[16] Amazon sagemaker. [Online]. Available: https://aws.amazon.com/

sagemaker/features/ (Accessed 2021-07-31).
[17] Azure machine learning. [Online]. Available: https://docs.microsoft.

com/de-de/azure/machine-learning/how-to-track-monitor-analyze-runs?
tabs=python (Accessed 2021-07-31).

[18] Clearml. [Online]. Available: https://clear.ml (Accessed 2021-05-11).
[19] Comet. [Online]. Available: https://www.comet.ml/site/ (Accessed

2021-07-31).
[20] Dagshub. [Online]. Available: https://dagshub.com (Accessed 2021-07-

31).
[21] Dominodatalab. [Online]. Available: https://www.dominodatalab.com

(Accessed 2021-07-31).
[22] Dvc studio. [Online]. Available: https://studio.iterative.ai (Accessed

2021-07-31).
[23] Guild ai. [Online]. Available: https://guild.ai (Accessed 2021-07-31).
[24] H2o mlops. [Online]. Available: https://www.h2o.ai/products/

h2o-mlops/ (Accessed 2021-07-31).
[25] Mlflow. [Online]. Available: https://mlflow.org (Accessed 2021-07-31).
[26] Neptune. [Online]. Available: https://neptune.ai/product (Accessed

2022-04-07).
[27] Paperspace gradient. [Online]. Available: https://gradient.paperspace.

com (Accessed 2021-07-31).
[28] Polyaxon. [Online]. Available: https://polyaxon.com (Accessed 2021-

07-31).
[29] Tensorboard. [Online]. Available: https://www.tensorflow.org/

tensorboard/ (Accessed 2021-07-31).
[30] Valohai. [Online]. Available: https://valohai.com (Accessed 2021-07-

31).
[31] Verta. [Online]. Available: https://www.verta.ai (Accessed 2021-07-31).
[32] Vertex ai. [Online]. Available: https://cloud.google.com/vertex-ai

(Accessed 2021-07-31).
[33] Weights & biases. [Online]. Available: https://wandb.ai/site (Accessed

2021-07-31).
[34] Data version control - documentation. [Online]. Available: https:

//dvc.org/doc (Accessed 2022-03-12).
[35] Pycaret logging with mlflow. [Online]. Available: https://pycaret.gitbook.

io/docs/get-started/functions/initialize#experiment-logging (Accessed
2022-04-06).

[36] Clearml. [Online]. Available: https://clear.ml/docs/latest/docs/webapp/
webapp exp table/ (Accessed 2022-04-06).

[37] T. Budras, “Evaluation of machine learning lifecycle tools in the
context of a specific NLP project,” Bachelor’s Thesis, Department of
Computer Science and Business Information Systems, University of
Applied Sciences Karlsruhe, Germany, 2021. [Online]. Available: https:
//www.smiffy.de/thesis/thesis-buti1021.pdf (Accessed 2022-04-08).

28Copyright (c) IARIA, 2022. ISBN: 978-1-61208-969-0

DBKDA 2022 : The Fourteenth International Conference on Advances in Databases, Knowledge, and Data Applications

